51
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
52
|
Li W, Zhao B, Wang Q, Lu J, Wu X, Chen X. Integrated analysis of tumour-derived exosome-related immune genes to predict progression and immune status of hepatocellular carcinoma. Clin Immunol 2023; 256:109774. [PMID: 37774907 DOI: 10.1016/j.clim.2023.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Tumour-derived exosomes (TDEs) play an important role in tumourigenesis and progression by regulating components in the tumour microenvironment (TME), however, the role of TDE-related immune genes in hepatocellular carcinoma is not fully known. We systematically analysed TDE genes from ExoCarta and immune genes from Immport,Machine learning ultimately identified eight TDE-related prognostic immune genes and used them as the basis for constructing a risk model, which was constructed to better predict patients with hepatocellular carcinoma (HCC) compared with published prognostic models. There were significant differences between the high and low risk groups in terms of biological functioning. Low-risk group were more sensitive to immunotherapy, the sensitivity to oxaliplatin and cisplatin differed between the high- and low-risk groups, and knockout of the core gene RAC1 limited the malignant biological behaviour of hepatocellular carcinoma cells. In conclusion, TIRGs are effective in predicting the prognosis of patients with hepatocellular carcinoma and provide a new perspective on immunotherapy and chemotherapy for patients.
Collapse
Affiliation(s)
- Wenhua Li
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Bin Zhao
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Qianwen Wang
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Junxia Lu
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Xiangwei Wu
- Shihezi University School of Medicine, Shihezi 832000, China; The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| | - Xueling Chen
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| |
Collapse
|
53
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
54
|
Tang X, Luo B, Huang S, Jiang J, Chen Y, Ren W, Shi X, Zhang W, Shi L, Zhong X, Lü M. FANCD2 as a novel prognostic biomarker correlated with immune and drug therapy in Hepatitis B-related hepatocellular carcinoma. Eur J Med Res 2023; 28:419. [PMID: 37821996 PMCID: PMC10566141 DOI: 10.1186/s40001-023-01411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Ferroptosis is related to the immunosuppression of tumors and plays a critical role in cancer progression. Fanconi anemia complementation group D2 (FANCD2) is a vital gene that regulates ferroptosis. However, the mechanism of action of FANCD2 in Hepatitis B-related hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the prognostic significance and mechanism of action of FANCD2 in Hepatitis B-related HCC. METHODS The expression of FANCD2 in Hepatitis B-related HCC was explored using The Cancer Genome Atlas (TCGA) and validated using the Gene Expression Omnibus (GEO) database. Univariate and multivariate Cox regression analyses and Kaplan-Meier survival curves were used to analyze the relationship between FANCD2 expression and the overall survival of patients with Hepatitis B-related HCC. Protein-protein interaction networks for FANCD2 were built using the STRING website. In addition, correlations between FANCD2 expression and the dryness index, tumor mutational burden, microsatellite instability (MSI), immune pathways, genes involved in iron metabolism, and sorafenib chemotherapeutic response were analyzed. RESULTS Our results indicated that FANCD2 was significantly overexpressed in Hepatitis B-related HCC and demonstrated a strong predictive ability for diagnosis (Area Under Curve, 0.903) and prognosis of the disease. High FANCD2 expression was associated with poor prognosis, high-grade tumors, high expression of PDL-1, high MSI scores, and low sorafenib IC50 in Hepatitis B-related HCC. BRCA1, BRCA2, FAN1, and FANCC were vital proteins interacting with FANCD2. The expression level of FANCD2 significantly correlated with the infiltration levels of Treg cells, B cells, CD8 + T cells, CD4 + T cells, neutrophils, macrophages, myeloid dendritic cells, and NK cells in Hepatitis B-related HCC. FANCD2 was positively correlated with the tumor proliferation signature pathway, DNA repair, and cellular response to hypoxia. CONCLUSION Our study indicated that FANCD2 was a potential novel biomarker and immunotherapeutic target against Hepatitis B-related HCC, which might be related to the chemotherapeutic response to sorafenib.
Collapse
Affiliation(s)
- Xiaowei Tang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bei Luo
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shu Huang
- Department of Gastroenterology, the People's Hospital of Lianshui, Huaian, China
| | - Jiao Jiang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuan Chen
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wensen Ren
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomin Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Zhang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaolin Zhong
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Muhan Lü
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
55
|
Lan T, Wang W, Zeng XX, Tong YH, Mao ZJ, Wang SW. Saikosaponin A triggers cell ferroptosis in hepatocellular carcinoma by inducing endoplasmic reticulum stress-stimulated ATF3 expression. Biochem Biophys Res Commun 2023; 674:10-18. [PMID: 37393639 DOI: 10.1016/j.bbrc.2023.06.086] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Ferroptosis is a type of nonapoptotic necrotic cell death characterized by iron-dependent lipid peroxidation. Saikosaponin A (SsA), a natural bioactive triterpenoid saponin extracted from Radix Bupleuri, has shown potent antitumor activity against various tumors. However, the underlying mechanism of the antitumor activity of SsA remains unclear. Here, we discovered that SsA induced HCC cell ferroptosis in vitro and in vivo. Using RNA-sequence analysis, we found that SsA mainly affected the glutathione metabolic pathway and inhibited the expression of cystine transporter solute carrier family 7 member 11 (SLC7A11). Indeed, SsA increased intracellular malondialdehyde (MDA) and iron accumulation, while it decreased the levels of reduced glutathione (GSH) in HCC. Deferoxamine (DFO), ferrostatin-1 (Fer-1) and GSH could rescue SsA-induced cell death, whereas Z-VAD-FMK was found ineffective in inhibiting SsA-induced cell death in HCC. Importantly, our result indicated that SsA induced the expression of activation transcription factor 3 (ATF3). SsA-induced cell ferroptosis and suppression of SLC7A11 are dependent on ATF3 in HCC. Moreover, we revealed that SsA induced ATF3 upregulation via activation of endoplasmic reticulum (ER) stress. Taken together, our findings support that ATF3-dependent cell ferroptosis mediated the antitumor effects of SsA, opening the possibility to explore SsA as a ferroptosis inducer in HCC.
Collapse
Affiliation(s)
- Tian Lan
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Wen Wang
- Preventive Treatment Center, Zhejiang Chinese Medical University Affiliated Four-provinces Marginal Hospital of Traditional Chinese Medicine, Quzhou Hospital of Traditional Chinese Medicine, Quzhou, 324000, China
| | - Xi-Xi Zeng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Yu-Hua Tong
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Zhu-Jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Si-Wei Wang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
56
|
Deng W, Ai J, Zhang W, Zhou Z, Li M, Yan L, Zhang L, Huang Z, Wu Z, Ai J, Jiang H. Arginine methylation of HSPA8 by PRMT9 inhibits ferroptosis to accelerate hepatitis B virus-associated hepatocellular carcinoma progression. J Transl Med 2023; 21:625. [PMID: 37715221 PMCID: PMC10503172 DOI: 10.1186/s12967-023-04408-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND The hepatitis B virus X (HBx) protein is an established cause of hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC). Whether arginine methylation regulates ferroptosis involved in HBx-induced HCC progression has not been reported. This study aimed to explore whether HBx-regulated protein arginine methyltransferase 9 (PRMT9) mediates the involvement of ferroptosis in the development of HCC. METHODS AND RESULTS HBx inhibited ferroptosis through promoting PRMT9 expression in HCC cells. PRMT9 suppressed ferroptosis to accelerate HCC progression in vivo. PRMT9 targeted HSPA8 and enhanced arginine methylation of HSPA8 at R76 and R100 to regulate ferroptosis in HCC. HSPA8 overexpression altered the transcriptome profile of HepG2 cells, in particular, ferroptosis and immune-related pathways were significantly enriched by differentially expressed genes, including CD44. HSPA8 overexpression up-regulated CD44 expression and knockdown of CD44 significantly reversed the inhibition of ferroptosis caused by PRMT9 overexpression. CONCLUSIONS In conclusion, HBx/PRMT9/HSPA8/CD44 axis is a vital signal pathway regulating ferroptosis in HCC cells. This study provides new opportunities and targets for the treatment of HBV-induced HCC.
Collapse
Affiliation(s)
- Wensheng Deng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Wanlin Zhang
- Department of Clinical Laboratory, Ningbo Yinzhou No. 2 Hospital Ningbo Urology and Nephtology Hospital, Ningbo, 315100, Zhejiang, China
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Muqi Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China
| | - Likun Yan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China
| | - Lidong Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China
| | - Zongjing Huang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China
| | - Ziyi Wu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China
| | - Junhua Ai
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China.
| | - Hai Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China.
| |
Collapse
|
57
|
Zhang CY, Liu S, Yang M. Treatment of liver fibrosis: Past, current, and future. World J Hepatol 2023; 15:755-774. [PMID: 37397931 PMCID: PMC10308286 DOI: 10.4254/wjh.v15.i6.755] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 06/25/2023] Open
Abstract
Liver fibrosis accompanies the progression of chronic liver diseases independent of etiologies, such as hepatitis viral infection, alcohol consumption, and metabolic-associated fatty liver disease. It is commonly associated with liver injury, inflammation, and cell death. Liver fibrosis is characterized by abnormal accumulation of extracellular matrix components that are expressed by liver myofibroblasts such as collagens and alpha-smooth actin proteins. Activated hepatic stellate cells contribute to the major population of myofibroblasts. Many treatments for liver fibrosis have been investigated in clinical trials, including dietary supplementation (e.g., vitamin C), biological treatment (e.g., simtuzumab), drug (e.g., pegbelfermin and natural herbs), genetic regulation (e.g., non-coding RNAs), and transplantation of stem cells (e.g., hematopoietic stem cells). However, none of these treatments has been approved by Food and Drug Administration. The treatment efficacy can be evaluated by histological staining methods, imaging methods, and serum biomarkers, as well as fibrosis scoring systems, such as fibrosis-4 index, aspartate aminotransferase to platelet ratio, and non-alcoholic fatty liver disease fibrosis score. Furthermore, the reverse of liver fibrosis is slowly and frequently impossible for advanced fibrosis or cirrhosis. To avoid the life-threatening stage of liver fibrosis, anti-fibrotic treatments, especially for combined behavior prevention, biological treatment, drugs or herb medicines, and dietary regulation are needed. This review summarizes the past studies and current and future treatments for liver fibrosis.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- Department of Radiology,The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
58
|
Zhou Y, Pan X, Liu Y, Li X, Lin K, Zhu J, Zhan L, Kan C, Zheng H. Loss of the Novel Mitochondrial Membrane Protein FAM210B Is Associated with Hepatocellular Carcinoma. Biomedicines 2023; 11:biomedicines11041232. [PMID: 37189851 DOI: 10.3390/biomedicines11041232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and challenging disease to treat. Due to the lack of effective early diagnosis and therapy for the illness, it is crucial to identify novel biomarkers that can predict tumor behavior in HCC. In such cases, family with sequence similarity 210 member B (FAM210B) is abundant in various human tissues, but its regulatory mechanisms and role in various tissues remain unclear. In this study, we analyzed the expression pattern of FAM210B in HCC using public gene expression databases and clinical tissue samples. Our results confirmed that FAM210B was dysregulated in both HCC cell lines and HCC paraffin section samples. FAM210B depletion significantly increased the capacity of cells to grow, migrate, and invade in vitro, while overexpression of FAM210B suppressed tumor growth in a xenograft tumor model. Furthermore, we identified FAM210B's involvement in MAPK signaling and p-AKT signaling pathways, both of which are known oncogenic signaling pathways. In summary, our study provides a rational basis for the further investigation of FAM210B as a valuable biological marker for diagnosing and predicting the prognosis of HCC patients.
Collapse
Affiliation(s)
- Yuanqin Zhou
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Xianzhu Pan
- Department of Pathology and Pathophysiology, School of Basic Medicine, Anhui Medical College, Hefei 230601, China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaofei Li
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Keqiong Lin
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Jicheng Zhu
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Li Zhan
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Chen Kan
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Hong Zheng
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|