51
|
Zaanan A, Okamoto K, Kawakami H, Khazaie K, Huang S, Sinicrope FA. The Mutant KRAS Gene Up-regulates BCL-XL Protein via STAT3 to Confer Apoptosis Resistance That Is Reversed by BIM Protein Induction and BCL-XL Antagonism. J Biol Chem 2015; 290:23838-49. [PMID: 26245900 DOI: 10.1074/jbc.m115.657833] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 01/05/2023] Open
Abstract
In colorectal cancers with oncogenic GTPase Kras (KRAS) mutations, inhibition of downstream MEK/ERK signaling has shown limited efficacy, in part because of failure to induce a robust apoptotic response. We studied the mechanism of apoptosis resistance in mutant KRAS cells and sought to enhance the efficacy of a KRAS-specific MEK/ERK inhibitor, GDC-0623. GDC-0623 was shown to potently up-regulate BIM expression to a greater extent versus other MEK inhibitors in isogenic KRAS HCT116 and mutant KRAS SW620 colon cancer cells. ERK silencing enhanced BIM up-regulation by GDC-0623 that was due to its loss of phosphorylation at Ser(69), confirmed by a BIM-EL phosphorylation-defective mutant (S69G) that increased protein stability and blocked BIM induction. Despite BIM and BIK induction, the isogenic KRAS mutant versus wild-type cells remained resistant to GDC-0623-induced apoptosis, in part because of up-regulation of BCL-XL. KRAS knockdown by a doxycycline-inducible shRNA attenuated BCL-XL expression. BCL-XL knockdown sensitized KRAS mutant cells to GDC-0623-mediated apoptosis, as did the BH3 mimetic ABT-263. GDC-0623 plus ABT-263 induced a synergistic apoptosis by a mechanism that includes release of BIM from its sequestration by BCL-XL. Furthermore, mutant KRAS activated p-STAT3 (Tyr(705)) in the absence of IL-6 secretion, and STAT3 knockdown reduced BCL-XL mRNA and protein expression. These data suggest that BCL-XL up-regulation by STAT3 contributes to mutant KRAS-mediated apoptosis resistance. Such resistance can be overcome by potent BIM induction and concurrent BCL-XL antagonism to enable a synergistic apoptotic response.
Collapse
Affiliation(s)
- Aziz Zaanan
- From the Departments of Medicine and Oncology, Gastroenterology Research Unit, and the Mayo Clinic Cancer Center and
| | - Koichi Okamoto
- From the Departments of Medicine and Oncology, Gastroenterology Research Unit, and the Mayo Clinic Cancer Center and
| | - Hisato Kawakami
- From the Departments of Medicine and Oncology, Gastroenterology Research Unit, and the Mayo Clinic Cancer Center and
| | | | - Shengbing Huang
- From the Departments of Medicine and Oncology, Gastroenterology Research Unit, and the Mayo Clinic Cancer Center and
| | - Frank A Sinicrope
- From the Departments of Medicine and Oncology, Gastroenterology Research Unit, and the Mayo Clinic Cancer Center and
| |
Collapse
|
52
|
Anania VG, Lill JR. Proteomic tools for the characterization of cell death mechanisms in drug discovery. Proteomics Clin Appl 2015; 9:671-83. [DOI: 10.1002/prca.201400151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/28/2015] [Accepted: 02/18/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Veronica G. Anania
- Department of Biomarker Development; Genentech, Inc; South San Francisco CA USA
| | - Jennie R. Lill
- Department of Protein Chemistry; Genentech, Inc. South San Francisco CA USA
| |
Collapse
|
53
|
Huang J, Fairbrother W, Reed JC. Therapeutic targeting of Bcl-2 family for treatment of B-cell malignancies. Expert Rev Hematol 2015; 8:283-97. [PMID: 25912824 DOI: 10.1586/17474086.2015.1026321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The BCL2 gene was discovered nearly 30 years ago, launching a field of scientific inquiry and medical research with the potential for delivering transformational therapeutics. Revealed by its involvement in chromosomal translocations of B-cell lymphomas, BCL2 is the founding member of a family of cell survival genes that endow cells with long life spans and provide protection from a myriad of cellular stresses, including chemotherapy. Anti-apoptotic Bcl-2 family members are commonly overexpressed in a variety of human malignancies through a diversity of genetic and epigenetic mechanisms. Here, we review therapeutic strategies for targeting Bcl-2 family members with an emphasis on B-cell malignancies, providing insights into their current promise and remaining challenges.
Collapse
Affiliation(s)
- Jane Huang
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | | |
Collapse
|
54
|
Hata AN, Engelman JA, Faber AC. The BCL2 Family: Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics. Cancer Discov 2015; 5:475-87. [PMID: 25895919 DOI: 10.1158/2159-8290.cd-15-0011] [Citation(s) in RCA: 456] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/27/2015] [Indexed: 12/23/2022]
Abstract
UNLABELLED The ability of cancer cells to suppress apoptosis is critical for carcinogenesis. The BCL2 family proteins comprise the sentinel network that regulates the mitochondrial or intrinsic apoptotic response. Recent advances in our understanding of apoptotic signaling pathways have enabled methods to identify cancers that are "primed" to undergo apoptosis, and have revealed potential biomarkers that may predict which cancers will undergo apoptosis in response to specific therapies. Complementary efforts have focused on developing novel drugs that directly target antiapoptotic BCL2 family proteins. In this review, we summarize the current knowledge of the role of BCL2 family members in cancer development and response to therapy, focusing on targeted therapeutics, recent progress in the development of apoptotic biomarkers, and therapeutic strategies designed to overcome deficiencies in apoptosis. SIGNIFICANCE Apoptosis, long known to be important for response to conventional cytotoxic chemotherapy, has more recently been shown to be essential for the efficacy of targeted therapies. Approaches that increase the likelihood of a cancer to undergo apoptosis following therapy may help improve targeted treatment strategies. Cancer Discov; 5(5); 475-87. ©2015 AACR.
Collapse
Affiliation(s)
- Aaron N Hata
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| | - Anthony C Faber
- Virginia Commonwealth University Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Richmond, Virginia.
| |
Collapse
|
55
|
The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet 2015; 47:250-6. [PMID: 25665005 DOI: 10.1038/ng.3218] [Citation(s) in RCA: 438] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/15/2015] [Indexed: 12/20/2022]
Abstract
Resistance to RAF- and MEK-targeted therapy is a major clinical challenge. RAF and MEK inhibitors are initially but only transiently effective in some but not all patients with BRAF gene mutation and are largely ineffective in those with RAS gene mutation because of resistance. Through a genetic screen in BRAF-mutant tumor cells, we show that the Hippo pathway effector YAP (encoded by YAP1) acts as a parallel survival input to promote resistance to RAF and MEK inhibitor therapy. Combined YAP and RAF or MEK inhibition was synthetically lethal not only in several BRAF-mutant tumor types but also in RAS-mutant tumors. Increased YAP in tumors harboring BRAF V600E was a biomarker of worse initial response to RAF and MEK inhibition in patients, establishing the clinical relevance of our findings. Our data identify YAP as a new mechanism of resistance to RAF- and MEK-targeted therapy. The findings unveil the synthetic lethality of combined suppression of YAP and RAF or MEK as a promising strategy to enhance treatment response and patient survival.
Collapse
|
56
|
Antihelminthic benzimidazoles potentiate navitoclax (ABT-263) activity by inducing Noxa-dependent apoptosis in non-small cell lung cancer (NSCLC) cell lines. Cancer Cell Int 2015; 15:5. [PMID: 25685063 PMCID: PMC4326508 DOI: 10.1186/s12935-014-0151-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/19/2014] [Indexed: 11/21/2022] Open
Abstract
Background Evasion of apoptosis is a hallmark of cancer cells. One mechanism to deregulate the apoptotic pathway is by upregulation of the anti-apoptotic Bcl-2 family members. Navitoclax (ABT-263) is a Bcl-2/Bcl-xL inhibitor that restores the ability of cancer cells to undergo apoptosis. Methods In this study we performed a high-throughput screen with 640 FDA-approved drugs to identify potential therapeutic combinations with navitoclax in a non-small cell lung cancer (NSCLC) cell line. Results Other than a panel of cancer compounds such as doxorubicin, camptothecin, and docetaxel, four antihelminthic compounds (benzimidazoles) potentiated navitoclax activity. Treatment with benzimidazoles led to induction of the pro-apoptotic protein Noxa at the mRNA and protein level. Noxa binds and antagonizes antiapoptotic protein Mcl-1. siRNA-mediated knock-down of Noxa completely rescued benzimidazole-potentiated navitoclax activity. In addition, inhibiting caspase 3 and 9 partially rescued benzimidazole-potentiated navitoclax activity. Conclusions We have identified compounds and mechanisms which potentiate navitoclax activity in lung cancer cell lines. Further validation of the benzimidazole-potentiated navitoclax effect in vivo is required to evaluate the potential for translating this observation into clinical benefit. Electronic supplementary material The online version of this article (doi:10.1186/s12935-014-0151-3) contains supplementary material, which is available to authorized users.
Collapse
|
57
|
Okumura S, Jänne PA. Molecular pathways: the basis for rational combination using MEK inhibitors in KRAS-mutant cancers. Clin Cancer Res 2014; 20:4193-9. [PMID: 24907112 DOI: 10.1158/1078-0432.ccr-13-2365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in RAS oncogenes are frequently observed in human cancers, and the mutations result in activation of the RAS-RAF-MEK-ERK pathway, leading to cell proliferation and survival. The pathway is, therefore, a potent therapeutic target in the RAS-mutant cancers. MEK inhibitors can specifically block the pathway and are one of the key types of drugs for the treatment of the RAS-mutant cancers. As RAS proteins activate other downstream signaling proteins in addition to the RAS-RAF-MEK-ERK pathway, combination therapeutic approaches with MEK inhibitors are also being evaluated. Moreover, MEK inhibitors can arrest cancer cells in G1 phase and repress prosurvival Bcl2 family proteins such as MCL1 and BCL2/BCLXL, and increase expression of Bim, a proapoptotic BH3-only family protein. This mechanism may explain the efficacy of the combination of MEK inhibitors with cytotoxic agents or other targeted inhibitors. A better understanding of the pathway will help us with development of rational combinations for the treatment of the RAS-mutant cancers.
Collapse
Affiliation(s)
| | - Pasi A Jänne
- Department of Medical Oncology; Lowe Center for Thoracic Oncology; and Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
58
|
Ebi H, Faber AC, Engelman JA, Yano S. Not just gRASping at flaws: finding vulnerabilities to develop novel therapies for treating KRAS mutant cancers. Cancer Sci 2014; 105:499-505. [PMID: 24612015 PMCID: PMC4317830 DOI: 10.1111/cas.12383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 01/02/2023] Open
Abstract
Mutations in Kirsten rat-sarcoma (KRAS) are well appreciated to be major drivers of human cancers through dysregulation of multiple growth and survival pathways. Similar to many other non-kinase oncogenes and tumor suppressors, efforts to directly target KRAS pharmaceutically have not yet materialized. As a result, there is broad interest in an alternative approach to develop therapies that induce synthetic lethality in cancers with mutant KRAS, therefore exposing the particular vulnerabilities of these cancers. Fueling these efforts is our increased understanding into the biology driving KRAS mutant cancers, in particular the important pathways that mutant KRAS governs to promote survival. In this mini-review, we summarize the latest approaches to treat KRAS mutant cancers and the rationale behind them.
Collapse
Affiliation(s)
- Hiromichi Ebi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | | |
Collapse
|
59
|
Jebahi A, Villedieu M, Pétigny-Lechartier C, Brotin E, Louis MH, Abeilard E, Giffard F, Guercio M, Briand M, Gauduchon P, Lheureux S, Poulain L. PI3K/mTOR dual inhibitor NVP-BEZ235 decreases Mcl-1 expression and sensitizes ovarian carcinoma cells to Bcl-xL-targeting strategies, provided that Bim expression is induced. Cancer Lett 2014; 348:38-49. [PMID: 24650799 DOI: 10.1016/j.canlet.2014.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/10/2014] [Accepted: 03/04/2014] [Indexed: 01/25/2023]
Abstract
We previously showed that Bcl-xL and Mcl-1 cooperatively protect platinum-resistant ovarian cancer cells from apoptosis. Here we assessed the anticancer potential of combining ABT-737-induced inhibition of Bcl-xL with Mcl-1 inhibition via PI3K/Akt/mTOR pathway disruption using NVP-BEZ235. NVP-BEZ235 inhibited cell proliferation without inducing apoptosis. It strongly repressed Mcl-1 expression and induced Puma expression in both cell lines tested while differentially modulating Bim between the two. Interestingly, NVP-BEZ235 efficiently sensitized ovarian carcinoma cells to ABT-737, provided that Bim expression was induced. Moreover, inhibiting the ERK1/2 pathway restored Bim expression and sensitized low Bim-expressing cancer cells to the BEZ235/ABT-737 treatment.
Collapse
Affiliation(s)
- Abdelghani Jebahi
- Normandy University, France; UNICAEN, "Biology and Innovative Therapeutics of Locally Aggressive Cancers" Unit (EA 4656), Caen, France; François Baclesse Comprehensive Cancer Centre, Caen, France
| | - Marie Villedieu
- Normandy University, France; UNICAEN, "Biology and Innovative Therapeutics of Locally Aggressive Cancers" Unit (EA 4656), Caen, France; François Baclesse Comprehensive Cancer Centre, Caen, France; (d)On secondment from ISPB, Faculte de Pharmacie, Universite Lyon 1, Lyon, France.
| | - Cécile Pétigny-Lechartier
- Normandy University, France; UNICAEN, "Biology and Innovative Therapeutics of Locally Aggressive Cancers" Unit (EA 4656), Caen, France; François Baclesse Comprehensive Cancer Centre, Caen, France
| | - Emilie Brotin
- Normandy University, France; UNICAEN, "Biology and Innovative Therapeutics of Locally Aggressive Cancers" Unit (EA 4656), Caen, France
| | - Marie-Hélène Louis
- Normandy University, France; UNICAEN, "Biology and Innovative Therapeutics of Locally Aggressive Cancers" Unit (EA 4656), Caen, France; François Baclesse Comprehensive Cancer Centre, Caen, France
| | - Edwige Abeilard
- Normandy University, France; UNICAEN, "Biology and Innovative Therapeutics of Locally Aggressive Cancers" Unit (EA 4656), Caen, France; François Baclesse Comprehensive Cancer Centre, Caen, France
| | - Florence Giffard
- Normandy University, France; UNICAEN, "Biology and Innovative Therapeutics of Locally Aggressive Cancers" Unit (EA 4656), Caen, France; François Baclesse Comprehensive Cancer Centre, Caen, France
| | - Marika Guercio
- Normandy University, France; UNICAEN, "Biology and Innovative Therapeutics of Locally Aggressive Cancers" Unit (EA 4656), Caen, France
| | - Mélanie Briand
- Normandy University, France; UNICAEN, "Biology and Innovative Therapeutics of Locally Aggressive Cancers" Unit (EA 4656), Caen, France; François Baclesse Comprehensive Cancer Centre, Caen, France
| | - Pascal Gauduchon
- Normandy University, France; UNICAEN, "Biology and Innovative Therapeutics of Locally Aggressive Cancers" Unit (EA 4656), Caen, France; François Baclesse Comprehensive Cancer Centre, Caen, France
| | - Stéphanie Lheureux
- Normandy University, France; UNICAEN, "Biology and Innovative Therapeutics of Locally Aggressive Cancers" Unit (EA 4656), Caen, France; François Baclesse Comprehensive Cancer Centre, Caen, France; Clinical Research Department, François Baclesse Comprehensive Cancer Centre, Caen, France; Oncologic Uro-Gynaecology Department, François Baclesse Comprehensive Cancer Centre, Caen, France
| | - Laurent Poulain
- Normandy University, France; UNICAEN, "Biology and Innovative Therapeutics of Locally Aggressive Cancers" Unit (EA 4656), Caen, France; François Baclesse Comprehensive Cancer Centre, Caen, France
| |
Collapse
|
60
|
Abstract
The past decade has witnessed tremendous advances in the discovery and development of novel small-molecule inhibitors targeting apoptosis pathways for cancer treatment, with some compounds now in clinical development. Early promising clinical data have been reported with these new classes of anticancer drugs. This review highlights the recent advancements in the development of small-molecule inhibitors targeting three major classes of antiapoptotic proteins: antiapoptotic B cell lymphoma 2 (BCL-2) proteins, inhibitor of apoptosis proteins (IAPs), and murine double-minute 2 (MDM2). Special emphasis is given to those that have been advanced into clinical trials. The challenges and future directions in the further preclinical and clinical development of these new anticancer drugs are also discussed.
Collapse
Affiliation(s)
- Longchuan Bai
- University of Michigan Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109;
| | | |
Collapse
|
61
|
Vari S, Pilotto S, Maugeri-Saccà M, Ciuffreda L, Cesta Incani U, Falcone I, Del Curatolo A, Ceribelli A, Gelibter A, De Maria R, Tortora G, Cognetti F, Bria E, Milella M. Advances towards the design and development of personalized non-small-cell lung cancer drug therapy. Expert Opin Drug Discov 2013; 8:1381-97. [PMID: 24088065 DOI: 10.1517/17460441.2013.843523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Non-small-cell lung cancer (NSCLC) subtypes are driven by specific genetic aberrations. For reasons such as this, there is a call for treatment personalization. The ability to instigate NSCLC fragmentation poses new methodological problems, and new 'driver' molecular aberrations are being discovered at an unprecedented pace. AREAS COVERED This article describes the clinical development of epidermal growth factor-tyrosine kinase inhibitors (EGFR-TKIs) and crizotinib for EGFR-mutant and anaplastic lymphoma kinase (ALK)-rearranged NSCLC. Further, the authors briefly describe the emerging molecular targets in NSCLC, in terms of both rationale for therapeutic targeting and strategies, for clinical development. EXPERT OPINION Target identification and validation in NSCLC still requires considerable effort, as not all of the molecular alterations are clear 'drivers' nor can they be efficiently targeted with available drugs. However, 50% of the NSCLC cases are without clear-defined molecular aberrations. Clinical trial methodology will need to develop novel paradigms for targeted drug development, aiming at the validation of an ideal 'biology-to-trial' approach. Despite significant challenges, a truly 'personalized' approach to NSCLC therapy appears to be within our reach.
Collapse
Affiliation(s)
- Sabrina Vari
- Regina Elena National Cancer Institute, Division of Medical Oncology A , Via Elio Chianesi 53, 00144, Rome , Italy +39 06 52666919 ; +39 06 52665637 ; ;
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Sale MJ, Cook SJ. That which does not kill me makes me stronger; combining ERK1/2 pathway inhibitors and BH3 mimetics to kill tumour cells and prevent acquired resistance. Br J Pharmacol 2013; 169:1708-22. [PMID: 23647573 PMCID: PMC3753831 DOI: 10.1111/bph.12220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/10/2013] [Accepted: 04/25/2013] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Oncogenic mutations in RAS or BRAF can drive the inappropriate activation of the ERK1/2. In many cases, tumour cells adapt to become addicted to this deregulated ERK1/2 signalling for their proliferation, providing a therapeutic window for tumour-selective growth inhibition. As a result, inhibition of ERK1/2 signalling by BRAF or MEK1/2 inhibitors is an attractive therapeutic strategy. Indeed, the first BRAF inhibitor, vemurafenib, has now been approved for clinical use, while clinical evaluation of MEK1/2 inhibitors is at an advanced stage. Despite this progress, it is apparent that tumour cells adapt quickly to these new targeted agents so that tumours with acquired resistance can emerge within 6-9 months of primary treatment. One of the major reasons for this is that tumour cells typically respond to BRAF or MEK1/2 inhibitors by undergoing a G1 cell cycle arrest rather than dying. Indeed, although inhibition of ERK1/2 invariably increases the expression of pro-apoptotic BCL2 family proteins, tumour cells undergo minimal apoptosis. This cytostatic response may simply provide the cell with the opportunity to adapt and acquire resistance. Here we discuss recent studies that demonstrate that combination of BRAF or MEK1/2 inhibitors with inhibitors of pro-survival BCL2 proteins is synthetic lethal for ERK1/2-addicted tumour cells. This combination effectively transforms the cytostatic response of BRAF and MEK1/2 inhibitors into a striking apoptotic cell death response. This not only augments the primary efficacy of BRAF and MEK1/2 inhibitors but delays the onset of acquired resistance to these agents, validating their combination in the clinic. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- Matthew J Sale
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, UK.
| | | |
Collapse
|