51
|
Moreno P, Jiménez-Jiménez C, Garrido-Rodríguez M, Calderón-Santiago M, Molina S, Lara-Chica M, Priego-Capote F, Salvatierra Á, Muñoz E, Calzado MA. Metabolomic profiling of human lung tumor tissues - nucleotide metabolism as a candidate for therapeutic interventions and biomarkers. Mol Oncol 2018; 12:1778-1796. [PMID: 30099851 PMCID: PMC6165994 DOI: 10.1002/1878-0261.12369] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Although metabolomics has attracted considerable attention in the field of lung cancer (LC) detection and management, only a very limited number of works have applied it to tissues. As such, the aim of this study was the thorough analysis of metabolic profiles of relevant LC tissues, including the most important histological subtypes (adenocarcinoma and squamous cell lung carcinoma). Mass spectrometry‐based metabolomics, along with genetic expression and histological analyses, were performed as part of this study, the widest to date, to identify metabolic alterations in tumors of the most relevant histological subtypes in lung. A total of 136 lung tissue samples were analyzed and 851 metabolites were identified through metabolomic analysis. Our data show the existence of a clear metabolic alteration not only between tumor vs. nonmalignant tissue in each patient, but also inherently intrinsic changes in both AC and SCC. Significant changes were observed in the most relevant biochemical pathways, and nucleotide metabolism showed an important number of metabolites with high predictive capability values. The present study provides a detailed analysis of the metabolomic changes taking place in relevant biochemical pathways of the most important histological subtypes of LC, which can be used as biomarkers and also to identify novel targets.
Collapse
Affiliation(s)
- Paula Moreno
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Unidad de Cirugía Torácica y Trasplante Pulmonar, Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Carla Jiménez-Jiménez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| | | | - Mónica Calderón-Santiago
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Química Analítica, Universidad de Córdoba, Cordoba, Spain
| | - Susana Molina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| | - Maribel Lara-Chica
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| | - Feliciano Priego-Capote
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Química Analítica, Universidad de Córdoba, Cordoba, Spain
| | - Ángel Salvatierra
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Unidad de Cirugía Torácica y Trasplante Pulmonar, Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| |
Collapse
|
52
|
Yu L, Li K, Xu Z, Cui G, Zhang X. Integrated omics and gene expression analysis identifies the loss of metabolite-metabolite correlations in small cell lung cancer. Onco Targets Ther 2018; 11:3919-3929. [PMID: 30013371 PMCID: PMC6039056 DOI: 10.2147/ott.s166149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Small cell lung cancer (SCLC) is the most aggressive type of lung carcinoma with high metastatic potential and chemoresistance upon relapse. Cancer cells remodel the existing metabolic pathways for their benefits and the perturbations in cellular metabolism are the hallmark of cancer. However, the extent of these changes remains largely unknown for SCLC. MATERIALS AND METHODS We characterized the metabolic perturbations in SCLC cells (SCLCC) by metabolomics. Large-scale correlation analysis was performed between metabolites. Targeted proteomics and gene expression analysis were employed to investigate the changes of key enzymes and genes in the disturbed pathways. RESULTS We found dramatic decrease of metabolite-metabolite correlations in SCLCC compared with normal control cells and non-small cell lung cancer cells. Pathway analysis revealed that the loss of correlations was associated with the alternations of fatty acid oxidation, urea cycle, and purine salvage pathway in SCLCC. Targeted proteomics and gene expression analysis confirmed significant changes of the expression for the key enzymes and genes in the pathways in SCLCC including the upregulation of carbamoyl phosphate synthase 1 (urea cycle) and carnitine palmitoyltransferase 1A (fatty acid oxidation), and the downregulation of hypoxanthine-guanine phosphoribosyltransferase and adenine phosphoribosyltransferase in purine salvage pathway. CONCLUSION We demonstrated the loss of metabolite-metabolite correlations in SCLCC associated with the upregulation of fatty acid oxidation and urea cycle and the downregulation of purine salvage pathways. Our findings provide insights into the metabolic reprogramming in SCLCC and highlight the potential therapeutic targets for the treatment of SCLC.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,
| | - Kefeng Li
- School of Medicine, University of California-San Diego, San Diego, CA, USA
| | - Zhaoguo Xu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,
| | - Guoyuan Cui
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,
| |
Collapse
|
53
|
Bamji-Stocke S, van Berkel V, Miller DM, Frieboes HB. A review of metabolism-associated biomarkers in lung cancer diagnosis and treatment. Metabolomics 2018; 14:81. [PMID: 29983671 PMCID: PMC6033515 DOI: 10.1007/s11306-018-1376-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/29/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Lung cancer continues to be the leading cause of cancer-related mortality worldwide. Early detection has proven essential to extend survival. Genomic and proteomic advances have provided impetus to the effort dedicated to detect and diagnose the disease at an earlier stage. Recently, the study of metabolites associated with tumor formation and progression has inaugurated the era of cancer metabolomics to aid in this effort. OBJECTIVES This review summarizes recent work regarding novel metabolites with the potential to serve as biomarkers for early lung tumor detection, evaluation of disease progression, and prediction of patient outcomes. METHOD We compare the metabolite profiling of cancer patients with that of healthy individuals, and the metabolites identified in tissue and biofluid samples and their usefulness as lung cancer biomarkers. We discuss metabolite alterations in tumor versus paired non-tumor lung tissues, as well as metabolite alterations in different stages of lung cancers and their usefulness as indicators of disease progression and overall survival. We evaluate metabolite dysregulation in different types of lung cancers, and those associated with lung cancer versus other lung diseases. We also examine metabolite differences between lung cancer patients and smokers/risk-factor individuals. RESULT Although an extensive list of metabolites has been evaluated to distinguish between these cases, refinement of methods is further required for adequate patient diagnosis. CONCLUSION We conclude that with technological advancement, metabolomics may be able to replace more invasive and costly diagnostic procedures while also providing the means to more effectively tailor treatment to patient-specific tumors.
Collapse
Affiliation(s)
- Sanaya Bamji-Stocke
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40208, USA
| | - Victor van Berkel
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Donald M Miller
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40208, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
54
|
Chen Y, Ma Z, Zhong J, Li L, Min L, Xu L, Li H, Zhang J, Wu W, Dai L. Simultaneous quantification of serum monounsaturated and polyunsaturated phosphatidylcholines as potential biomarkers for diagnosing non-small cell lung cancer. Sci Rep 2018; 8:7137. [PMID: 29740076 PMCID: PMC5940703 DOI: 10.1038/s41598-018-25552-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies worldwide. In this study, we investigated Ultrahigh Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry and Gas Chromatography Time-of-Flight/Mass Spectrometry-based non-targeted metabolomic profiles of serum samples obtained from early-stage NSCLC patients and healthy controls (HC). Metabolic pathways and the biological relevance of potential biomarkers were extensively studied to gain insights into dysregulated metabolism in NSCLC. The identified biomarker candidates were further externally validated via a targeted metabolomics analysis. The global metabolomics profiles could clearly distinguish NSCLC patients from HC. Phosphatidylcholine (PC) levels were found to be dysregulated in glycerophospholipid (GPL) metabolism, which was the top altered pathway in early-stage NSCLC. Compared with those in HC, significant increases in the levels of saturated and monounsaturated PCs such as PC (15:0/18:1), PC (18:0/16:0) and PC (18:0/20:1) were observed in NSCLC. Additionally, relative to those in HC, the levels of 9 polyunsaturated PCs, namely, PC (17:2/2:0), PC (18:4/3:0), and PC (15:0/18:2), and so on were significantly decreased in NSCLC patients. A panel of 12 altered PCs had good diagnostic performance in differentiating early-stage NSCLC patients from HC, and these PCs may thus be used as serum biomarkers for the early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Yingrong Chen
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, 313000, P.R. China
| | - Zhihong Ma
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, 313000, P.R. China
| | - Jing Zhong
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, 313000, P.R. China
| | - Liqin Li
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, 313000, P.R. China
| | - Lishan Min
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, 313000, P.R. China
| | - Limin Xu
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, 313000, P.R. China
| | - Hongwei Li
- Cardiothoracic Surgery, Huzhou Central Hospital, Huzhou, 313000, P.R. China
| | - Jianbin Zhang
- Cardiothoracic Surgery, Huzhou Central Hospital, Huzhou, 313000, P.R. China
| | - Wei Wu
- Internal Medicine, Huzhou Central Hospital, Huzhou, 313000, P.R. China
| | - Licheng Dai
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, 313000, P.R. China.
| |
Collapse
|
55
|
Chang CC, Zhang C, Zhang Q, Sahin O, Wang H, Xu J, Xiao Y, Zhang J, Rehman SK, Li P, Hung MC, Behbod F, Yu D. Upregulation of lactate dehydrogenase a by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression. Oncotarget 2018; 7:35270-83. [PMID: 27150057 PMCID: PMC5085227 DOI: 10.18632/oncotarget.9136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. Elevated glycolysis in cancer cells switches the cellular metabolic flux to produce more biological building blocks, thereby sustaining rapid proliferation. Recently, new evidence has emerged that metabolic dysregulation may occur at early-stages of neoplasia and critically contribute to cancer initiation. Here, our bioinformatics analysis of microarray data from early-stages breast neoplastic lesions revealed that 14-3-3ζ expression is strongly correlated with the expression of canonical glycolytic genes, particularly lactate dehydrogenase A (LDHA). Experimentally, increasing 14-3-3ζ expression in human mammary epithelial cells (hMECs) up-regulated LDHA expression, elevated glycolytic activity, and promoted early transformation. Knockdown of LDHA in the 14-3-3ζ-overexpressing hMECs significantly reduced glycolytic activity and inhibited transformation. Mechanistically, 14-3-3ζ overexpression activates the MEK-ERK-CREB axis, which subsequently up-regulates LDHA. In vivo, inhibiting the activated the MEK/ERK pathway in 14-3-3ζ-overexpressing hMEC-derived MCF10DCIS.COM lesions led to effective inhibition of tumor growth. Therefore, targeting the MEK/ERK pathway could be an effective strategy for intervention of 14-3-3ζ-overexpressing early breast lesions. Together, our data demonstrate that overexpression of 14-3-3ζ in early stage pre-cancerous breast epithelial cells may trigger an elevated glycolysis and transcriptionally up-regulating LDHA, thereby contributes to human breast cancer initiation.
Collapse
Affiliation(s)
- Chia-Chi Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Cancer Biology Program, Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chenyu Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingling Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ozgur Sahin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jia Xu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sumaiyah K Rehman
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Cancer Biology Program, Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Cancer Biology Program, Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
56
|
Björkblom B, Wibom C, Jonsson P, Mörén L, Andersson U, Johannesen TB, Langseth H, Antti H, Melin B. Metabolomic screening of pre-diagnostic serum samples identifies association between α- and γ-tocopherols and glioblastoma risk. Oncotarget 2018; 7:37043-37053. [PMID: 27175595 PMCID: PMC5095057 DOI: 10.18632/oncotarget.9242] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/23/2016] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma is associated with poor prognosis with a median survival of one year. High doses of ionizing radiation is the only established exogenous risk factor. To explore new potential biological risk factors for glioblastoma, we investigated alterations in metabolite concentrations in pre-diagnosed serum samples from glioblastoma patients diagnosed up to 22 years after sample collection, and undiseased controls. The study points out a latent biomarker for future glioblastoma consisting of nine metabolites (γ-tocopherol, α-tocopherol, erythritol, erythronic acid, myo-inositol, cystine, 2-keto-L-gluconic acid, hypoxanthine and xanthine) involved in antioxidant metabolism. We detected significantly higher serum concentrations of α-tocopherol (p=0.0018) and γ-tocopherol (p=0.0009) in future glioblastoma cases. Compared to their matched controls, the cases showed a significant average fold increase of α- and γ-tocopherol levels: 1.2 for α-T (p=0.018) and 1.6 for γ-T (p=0.003). These tocopherol levels were associated with a glioblastoma odds ratio of 1.7 (α-T, 95% CI:1.0-3.0) and 2.1 (γ-T, 95% CI:1.2-3.8). Our exploratory metabolomics study detected elevated serum levels of a panel of molecules with antioxidant properties as well as oxidative stress generated compounds. Additional studies are necessary to confirm the association between the observed serum metabolite pattern and future glioblastoma development.
Collapse
Affiliation(s)
- Benny Björkblom
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Carl Wibom
- Department of Radiation Sciences, Oncology, Umeå University, SE-90187 Umeå, Sweden
| | - Pär Jonsson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Lina Mörén
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Ulrika Andersson
- Department of Radiation Sciences, Oncology, Umeå University, SE-90187 Umeå, Sweden
| | - Tom Børge Johannesen
- Cancer Registry of Norway, Institute of Population-Based Cancer Research, N-0304 Oslo, Norway
| | - Hilde Langseth
- Cancer Registry of Norway, Institute of Population-Based Cancer Research, N-0304 Oslo, Norway
| | - Henrik Antti
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
57
|
Yu L, Li K, Zhang X. Next-generation metabolomics in lung cancer diagnosis, treatment and precision medicine: mini review. Oncotarget 2017; 8:115774-115786. [PMID: 29383200 PMCID: PMC5777812 DOI: 10.18632/oncotarget.22404] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/21/2017] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death. Next-generation metabolomics is becoming a powerful emerging technology for studying the systems biology and chemistry of health and disease. This mini review summarized the main platforms of next-generation metabolomics and its main applications in lung cancer including early diagnosis, pathogenesis, classifications and precision medicine. The period covers between 2009 and August, 2017. The major issues and future directions of metabolomics in lung cancer research and clinical applications were also discussed.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Kefeng Li
- School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
58
|
Fong LY, Jing R, Smalley KJ, Taccioli C, Fahrmann J, Barupal DK, Alder H, Farber JL, Fiehn O, Croce CM. Integration of metabolomics, transcriptomics, and microRNA expression profiling reveals a miR-143-HK2-glucose network underlying zinc-deficiency-associated esophageal neoplasia. Oncotarget 2017; 8:81910-81925. [PMID: 29137232 PMCID: PMC5669858 DOI: 10.18632/oncotarget.18434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/29/2017] [Indexed: 01/01/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) in humans is a deadly disease associated with dietary zinc (Zn)-deficiency. In the rat esophagus, Zn-deficiency induces cell proliferation, alters mRNA and microRNA gene expression, and promotes ESCC. We investigated whether Zn-deficiency alters cell metabolism by evaluating metabolomic profiles of esophageal epithelia from Zn-deficient and replenished rats vs sufficient rats, using untargeted gas chromatography time-of-flight mass spectrometry (n = 8/group). The Zn-deficient proliferative esophagus exhibits a distinct metabolic profile with glucose down 153-fold and lactic acid up 1.7-fold (P < 0.0001), indicating aerobic glycolysis (the "Warburg effect"), a hallmark of cancer cells. Zn-replenishment rapidly increases glucose content, restores deregulated metabolites to control levels, and reverses the hyperplastic phenotype. Integration of metabolomics and our reported transcriptomic data for this tissue unveils a link between glucose down-regulation and overexpression of HK2, an enzyme that catalyzes the first step of glycolysis and is overexpressed in cancer cells. Searching our published microRNA profile, we find that the tumor-suppressor miR-143, a negative regulator of HK2, is down-regulated in Zn-deficient esophagus. Using in situ hybridization and immunohistochemical analysis, the inverse correlation between miR-143 down-regulation and HK2 overexpression is documented in hyperplastic Zn-deficient esophagus, archived ESCC-bearing Zn-deficient esophagus, and human ESCC tissues. Thus, to sustain uncontrolled cell proliferation, Zn-deficiency reprograms glucose metabolism by modulating expression of miR-143 and its target HK2. Our work provides new insight into critical roles of Zn in ESCC development and prevention.
Collapse
Affiliation(s)
- Louise Y. Fong
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Center for Molecular Carcinogenesis, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ruiyan Jing
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karl J. Smalley
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Cristian Taccioli
- Animal Medicine, Production and Health Department, University of Padua, Padua, Italy
| | - Johannes Fahrmann
- University of California, Davis, West Coast Metabolomics Center, Davis, CA, USA
| | - Dinesh K. Barupal
- University of California, Davis, West Coast Metabolomics Center, Davis, CA, USA
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - John L. Farber
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Oliver Fiehn
- University of California, Davis, West Coast Metabolomics Center, Davis, CA, USA
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
59
|
Andrisic L, Dudzik D, Barbas C, Milkovic L, Grune T, Zarkovic N. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol 2017; 14:47-58. [PMID: 28866248 PMCID: PMC5583394 DOI: 10.1016/j.redox.2017.08.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Association of oxidative stress with carcinogenesis is well known, but not understood well, as is pathophysiology of oxidative stress generated during different types of anti-cancer treatments. Moreover, recent findings indicate that cancer associated lipid peroxidation might eventually help defending adjacent nonmalignant cells from cancer invasion. Therefore, untargeted metabolomics studies designed for advanced translational and clinical studies are needed to understand the existing paradoxes in oncology, including those related to controversial usage of antioxidants aiming to prevent or treat cancer. In this short review we have tried to put emphasis on the importance of pathophysiology of oxidative stress and lipid peroxidation in cancer development in relation to metabolic adaptation of particular types of cancer allowing us to conclude that adaptation to oxidative stress is one of the main driving forces of cancer pathophysiology. With the help of metabolomics many novel findings are being achieved thus encouraging further scientific breakthroughs. Combined with targeted qualitative and quantitative methods, especially immunochemistry, further research might reveal bio-signatures of individual patients and respective malignant diseases, leading to individualized treatment approach, according to the concepts of modern integrative medicine.
Collapse
Affiliation(s)
- Luka Andrisic
- CEMBIO (Centre for Metabolomics and Bioanalysis); Facultad de Farmacia; Universidad San Pablo CEU, Campus Montepríncipe, Madrid, Spain; Rudjer Boskovic Institute, Division of Molecular Medicine, Laboratory for Oxidative Stress, Zagreb, Croatia
| | - Danuta Dudzik
- CEMBIO (Centre for Metabolomics and Bioanalysis); Facultad de Farmacia; Universidad San Pablo CEU, Campus Montepríncipe, Madrid, Spain
| | - Coral Barbas
- CEMBIO (Centre for Metabolomics and Bioanalysis); Facultad de Farmacia; Universidad San Pablo CEU, Campus Montepríncipe, Madrid, Spain
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Laboratory for Oxidative Stress, Zagreb, Croatia
| | - Tilman Grune
- German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Laboratory for Oxidative Stress, Zagreb, Croatia.
| |
Collapse
|
60
|
Khoomrung S, Wanichthanarak K, Nookaew I, Thamsermsang O, Seubnooch P, Laohapand T, Akarasereenont P. Metabolomics and Integrative Omics for the Development of Thai Traditional Medicine. Front Pharmacol 2017; 8:474. [PMID: 28769804 PMCID: PMC5513896 DOI: 10.3389/fphar.2017.00474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022] Open
Abstract
In recent years, interest in studies of traditional medicine in Asian and African countries has gradually increased due to its potential to complement modern medicine. In this review, we provide an overview of Thai traditional medicine (TTM) current development, and ongoing research activities of TTM related to metabolomics. This review will also focus on three important elements of systems biology analysis of TTM including analytical techniques, statistical approaches and bioinformatics tools for handling and analyzing untargeted metabolomics data. The main objective of this data analysis is to gain a comprehensive understanding of the system wide effects that TTM has on individuals. Furthermore, potential applications of metabolomics and systems medicine in TTM will also be discussed.
Collapse
Affiliation(s)
- Sakda Khoomrung
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand.,Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand.,Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Kwanjeera Wanichthanarak
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand.,Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Intawat Nookaew
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand.,Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical SciencesLittle Rock, AR, United States
| | - Onusa Thamsermsang
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Patcharamon Seubnooch
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Tawee Laohapand
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Pravit Akarasereenont
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand.,Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand.,Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| |
Collapse
|
61
|
Ciborowski M, Kisluk J, Pietrowska K, Samczuk P, Parfieniuk E, Kowalczyk T, Kozlowski M, Kretowski A, Niklinski J. Development of LC-QTOF-MS method for human lung tissue fingerprinting. A preliminary application to nonsmall cell lung cancer. Electrophoresis 2017; 38:2304-2312. [PMID: 28440547 DOI: 10.1002/elps.201700022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
Abstract
The major histologic subtypes of non-small cell lung cancer (NSCLC) include adenocarcinoma (ADC), squamous cell lung carcinoma (SCC), and large-cell carcinoma (LCC). Clinical trials of targeted agents and newer chemotherapy agents yielded differences in outcomes according to histologic subgroups providing a rationale for histology-based treatment in NSCLC. Currently, NSCLC subtyping is performed based on histopathological examinations and immunohistochemistry. However available methods leave about 10% of NSCLC cases as not otherwise specified. The purpose of this study was development of an LC-QTOF-MS method for human lung tissue metabolic fingerprinting that could discriminate NSCLC histological subtypes and propose biomarkers candidates that could support proper NSCLC diagnosis. Metabolites were extracted with acetonitrile or methanol/ethanol and different chromatographic conditions were tested. In the final method 10 mg of lung tissue was homogenized with 50% methanol and metabolites were extracted with acetonitrile. Metabolites were separated on C8-RP and HILIC columns. About 3500 and 2000 of metabolic features (in both ion modes) were detected with good repeatability (CV < 20%) by RP and HILIC methods, respectively. Lung tumor and control tissue samples obtained from NSCLC patients were analyzed with developed methodology. Acylcarnitines, fatty acids, phospholipids, and amino acids were found more abundant in tumor as compared to control tissue. Acylcarnitines, lysophospholipids, creatinine, creatine, and alanine were identified as potential targets enabling classification of NSCLC subtypes.
Collapse
Affiliation(s)
- Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kisluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pietrowska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Paulina Samczuk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Parfieniuk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Miroslaw Kozlowski
- Department of Thoracic Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
62
|
Pasamontes A, Aksenov AA, Schivo M, Rowles T, Smith CR, Schwacke LH, Wells RS, Yeates L, Venn-Watson S, Davis CE. Noninvasive Respiratory Metabolite Analysis Associated with Clinical Disease in Cetaceans: A Deepwater Horizon Oil Spill Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5737-5746. [PMID: 28406294 DOI: 10.1021/acs.est.6b06482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Health assessments of wild cetaceans can be challenging due to the difficulty of gaining access to conventional diagnostic matrices of blood, serum and others. While the noninvasive detection of metabolites in exhaled breath could potentially help to address this problem, there exists a knowledge gap regarding associations between known disease states and breath metabolite profiles in cetaceans. This technology was applied to the largest marine oil spill in U.S. history (The 2010 Deepwater Horizon oil spill in the Gulf of Mexico). An accurate analysis was performed to test for associations between the exhaled breath metabolome and sonographic lung abnormalities as well as hematological, serum biochemical, and endocrine hormone parameters. Importantly, metabolites consistent with chronic inflammation, such as products of lung epithelial cellular breakdown and arachidonic acid cascade metabolites were associated with sonographic evidence of lung consolidation. Exhaled breath condensate (EBC) metabolite profiles also correlated with serum hormone concentrations (cortisol and aldosterone), hepatobiliary enzyme levels, white blood cell counts, and iron homeostasis. The correlations among breath metabolites and conventional health measures suggest potential application of breath sampling for remotely assessing health of wild cetaceans. This methodology may hold promise for large cetaceans in the wild for which routine collection of blood and respiratory anomalies are not currently feasible.
Collapse
Affiliation(s)
- Alberto Pasamontes
- Mechanical and Aerospace Engineering, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Alexander A Aksenov
- Mechanical and Aerospace Engineering, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Michael Schivo
- Department of Internal Medicine, University of California , 4150 V Street, Suite 3400, Sacramento, California 95817, United States
- Center for Comparative Respiratory Biology and Medicine, University of California , Davis, California 95616, United States
| | - Teri Rowles
- Office of Protected Resources, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 1315 East West Highway, Silver Spring, Maryland 20910, United States
| | - Cynthia R Smith
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, United States
| | - Lori H Schwacke
- National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, Florida 34236, United States
| | - Laura Yeates
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, United States
| | - Stephanie Venn-Watson
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, United States
| | - Cristina E Davis
- Mechanical and Aerospace Engineering, University of California , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
63
|
Peralbo-Molina A, Calderón-Santiago M, Jurado-Gámez B, Luque de Castro MD, Priego-Capote F. Exhaled breath condensate to discriminate individuals with different smoking habits by GC-TOF/MS. Sci Rep 2017; 7:1421. [PMID: 28469199 PMCID: PMC5431160 DOI: 10.1038/s41598-017-01564-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/31/2017] [Indexed: 12/29/2022] Open
Abstract
Smoking is a crucial factor in respiratory diseases and lung inflammation, which are the reasons for high mortality worldwide. Despite the negative impact that tobacco consumption causes on health, few metabolomics studies have compared the composition of biofluids from smoker and non-smoker individuals. Exhaled breath condensate (EBC) is one of the biofluids less employed for clinical studies despite its non-invasive sampling and the foreseeable relationship between its composition and respiratory diseases. EBC was used in this research as clinical sample to compare three groups of individuals: current smokers (CS), former smokers (FS) and never smokers (NS). Special attention was paid to the cumulative consumption expressed as smoked pack-year. The levels of 12 metabolites found statistically significant among the three groups of individuals were discussed to find an explanation to their altered levels. Significant compounds included monoacylglycerol derivatives, terpenes and other compounds, the presence of which could be associated to the influence of smoking on the qualitative and quantitative composition of the microbiome.
Collapse
Affiliation(s)
- A Peralbo-Molina
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain.,Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain
| | - M Calderón-Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain.,Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain
| | - B Jurado-Gámez
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain.,Department of Respiratory Medicine, Reina Sofia Hospital, E-14004, Córdoba, Spain
| | - M D Luque de Castro
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain. .,Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain.
| | - F Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain. .,Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain.
| |
Collapse
|
64
|
Fahrmann JF, Grapov DD, Wanichthanarak K, DeFelice BC, Salemi MR, Rom WN, Gandara DR, Phinney BS, Fiehn O, Pass H, Miyamoto S. Integrated Metabolomics and Proteomics Highlight Altered Nicotinamide- and Polyamine Pathways in Lung Adenocarcinoma. Carcinogenesis 2017; 38:271-280. [PMID: 28049629 PMCID: PMC5862279 DOI: 10.1093/carcin/bgw205] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/02/2016] [Accepted: 12/20/2016] [Indexed: 01/11/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality in the United States with non-small cell lung cancer (NSCLC) adenocarcinoma being the most common histological type. Early perturbations in cellular metabolism are a hallmark of cancer, but the extent of these changes in early stage lung adenocarcinoma remains largely unknown. In the current study, an integrated metabolomics and proteomics approach was utilized to characterize the biochemical and molecular alterations between malignant and matched control tissue from 27 subjects diagnosed with early stage lung adenocarcinoma. Differential analysis identified 71 metabolites and 1102 proteins that delineated tumor from control tissue. Integrated results indicated four major metabolic changes in early stage adenocarcinoma: (1) increased glycosylation and glutaminolysis; (2) elevated Nrf2 activation; (3) increase in nicotinic and nicotinamide salvaging pathways; and (4) elevated polyamine biosynthesis linked to differential regulation of the SAM/nicotinamide methyl-donor pathway. Genomic data from publicly available databases were included to strengthen proteomic findings. Our findings provide insight into the biochemical and molecular biological reprogramming that may accompanies early stage lung tumorigenesis and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- University of California, Davis, West Coast Metabolomics Center, Davis, California
| | | | | | - Brian C DeFelice
- University of California, Davis, West Coast Metabolomics Center, Davis, California
| | | | - William N Rom
- Division of Pulmonary, Critical Care, and Sleep, NYU School of Medicine, New York, NY, USA
| | - David R Gandara
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California, Davis Medical Center, Sacramento, California
| | | | - Oliver Fiehn
- University of California, Davis, West Coast Metabolomics Center, Davis, California
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi-Arabia
| | - Harvey Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, NY, USA
| | - Suzanne Miyamoto
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California, Davis Medical Center, Sacramento, California
| |
Collapse
|
65
|
Wanichthanarak K, Fan S, Grapov D, Barupal DK, Fiehn O. Metabox: A Toolbox for Metabolomic Data Analysis, Interpretation and Integrative Exploration. PLoS One 2017; 12:e0171046. [PMID: 28141874 PMCID: PMC5283729 DOI: 10.1371/journal.pone.0171046] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/13/2017] [Indexed: 01/22/2023] Open
Abstract
Similar to genomic and proteomic platforms, metabolomic data acquisition and analysis is becoming a routine approach for investigating biological systems. However, computational approaches for metabolomic data analysis and integration are still maturing. Metabox is a bioinformatics toolbox for deep phenotyping analytics that combines data processing, statistical analysis, functional analysis and integrative exploration of metabolomic data within proteomic and transcriptomic contexts. With the number of options provided in each analysis module, it also supports data analysis of other 'omic' families. The toolbox is an R-based web application, and it is freely available at http://kwanjeeraw.github.io/metabox/ under the GPL-3 license.
Collapse
Affiliation(s)
- Kwanjeera Wanichthanarak
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
| | - Sili Fan
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
| | - Dmitry Grapov
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
| | - Dinesh Kumar Barupal
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
| | - Oliver Fiehn
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
66
|
Lu AY, Turban JL, Damisah EC, Li J, Alomari AK, Eid T, Vortmeyer AO, Chiang VL. Novel biomarker identification using metabolomic profiling to differentiate radiation necrosis and recurrent tumor following Gamma Knife radiosurgery. J Neurosurg 2016; 127:388-396. [PMID: 27885954 DOI: 10.3171/2016.8.jns161395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Following an initial response of brain metastases to Gamma Knife radiosurgery, regrowth of the enhancing lesion as detected on MRI may represent either radiation necrosis (a treatment-related inflammatory change) or recurrent tumor. Differentiation of radiation necrosis from tumor is vital for management decision making but remains difficult by imaging alone. In this study, gas chromatography with time-of-flight mass spectrometry (GC-TOF) was used to identify differential metabolite profiles of the 2 tissue types obtained by surgical biopsy to find potential targets for noninvasive imaging. METHODS Specimens of pure radiation necrosis and pure tumor obtained from patient brain biopsies were flash-frozen and validated histologically. These formalin-free tissue samples were then analyzed using GC-TOF. The metabolite profiles of radiation necrosis and tumor samples were compared using multivariate and univariate statistical analysis. Statistical significance was defined as p ≤ 0.05. RESULTS For the metabolic profiling, GC-TOF was performed on 7 samples of radiation necrosis and 7 samples of tumor. Of the 141 metabolites identified, 17 (12.1%) were found to be statistically significantly different between comparison groups. Of these metabolites, 6 were increased in tumor, and 11 were increased in radiation necrosis. An unsupervised hierarchical clustering analysis found that tumor had elevated levels of metabolites associated with energy metabolism, whereas radiation necrosis had elevated levels of metabolites that were fatty acids and antioxidants/cofactors. CONCLUSIONS To the authors' knowledge, this is the first tissue-based metabolomics study of radiation necrosis and tumor. Radiation necrosis and recurrent tumor following Gamma Knife radiosurgery for brain metastases have unique metabolite profiles that may be targeted in the future to develop noninvasive metabolic imaging techniques.
Collapse
Affiliation(s)
| | | | | | | | | | - Tore Eid
- Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | | |
Collapse
|
67
|
Fahrmann JF, Grapov D, Phinney BS, Stroble C, DeFelice BC, Rom W, Gandara DR, Zhang Y, Fiehn O, Pass H, Miyamoto S. Proteomic profiling of lung adenocarcinoma indicates heightened DNA repair, antioxidant mechanisms and identifies LASP1 as a potential negative predictor of survival. Clin Proteomics 2016; 13:31. [PMID: 27799870 PMCID: PMC5084393 DOI: 10.1186/s12014-016-9132-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer mortality in the United States. Non-small cell lung cancer accounts for 85% of all lung cancers for which adenocarcinoma is the most common histological type. Management of lung cancer is hindered by high false-positive rates due to difficulty resolving between benign and malignant tumors. Better molecular analysis comparing malignant and non-malignant tissues will provide important evidence of the underlying biology contributing to tumorigenesis. METHODS We utilized a proteomics approach to analyze 38 malignant and non-malignant paired tissue samples obtained from current or former smokers with early stage (Stage IA/IB) lung adenocarcinoma. Statistical mixed effects modeling and orthogonal partial least squares discriminant analysis were used to identify key cancer-associated perturbations in the adenocarcinoma proteome. Identified proteins were subsequently assessed against clinicopathological variables. RESULTS Top cancer-associated protein alterations were characterized by: (1) elevations in APEX1, HYOU1 and PDIA4, indicative of increased DNA repair machinery and heightened anti-oxidant defense mechanisms; (2) increased LRPPRC, STOML2, COPG1 and EPRS, suggesting altered tumor metabolism and inflammation; (3) reductions in SPTB, SPTA1 and ANK1 implying dysregulation of membrane integrity; and (4) decreased SLCA41 suggesting altered pH regulation. Increased protein levels of HYOU1, EPRS and LASP1 in NSCLC adenocarcinoma was independently validated by tissue microarray immunohistochemistry. Immunohistochemistry for HYOU1 and EPRS indicated AUCs of 0.952 and 0.841, respectively, for classifying tissue as malignant. Increased LASP1 correlated with poor overall survival (HR 3.66 per unit increase; CI 1.37-9.78; p = 0.01). CONCLUSION These results reveal distinct proteomic changes associated with early stage lung adenocarcinoma that may be useful prognostic indicators and therapeutic targets.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- University of California, Davis Genome Center, Davis, CA USA.,Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | | | - Brett S Phinney
- Genome Center Proteomics Core Facility, University of California, Davis, Davis, CA USA
| | - Carol Stroble
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis Medical Center, 4501 X Street, Suite 3016, Sacramento, CA 95817 USA
| | | | - William Rom
- Division of Pulmonary, Critical Care, and Sleep, NYU School of Medicine, New York, NY USA
| | - David R Gandara
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis Medical Center, 4501 X Street, Suite 3016, Sacramento, CA 95817 USA
| | - Yanhong Zhang
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA USA
| | - Oliver Fiehn
- University of California, Davis Genome Center, Davis, CA USA.,Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Harvey Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York City, NY USA
| | - Suzanne Miyamoto
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis Medical Center, 4501 X Street, Suite 3016, Sacramento, CA 95817 USA
| |
Collapse
|
68
|
Abstract
Precision medicine relies on validated biomarkers with which to better classify patients by their probable disease risk, prognosis and/or response to treatment. Although affordable 'omics'-based technology has enabled faster identification of putative biomarkers, the validation of biomarkers is still stymied by low statistical power and poor reproducibility of results. This Review summarizes the successes and challenges of using different types of molecule as biomarkers, using lung cancer as a key illustrative example. Efforts at the national level of several countries to tie molecular measurement of samples to patient data via electronic medical records are the future of precision medicine research.
Collapse
Affiliation(s)
- Ashley J Vargas
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Room 3068A, MSC 425, 837 Convent Drive, Bethesda, Maryland 20892-4258, USA
- Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland 20850, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Room 3068A, MSC 425, 837 Convent Drive, Bethesda, Maryland 20892-4258, USA
| |
Collapse
|
69
|
Wang M, Comunale MA, Herrera H, Betesh L, Kono Y, Mehta A. Identification of IgM as a contaminant in lectin-FLISA assays for HCC detection. Biochem Biophys Res Commun 2016; 476:140-5. [PMID: 27181357 DOI: 10.1016/j.bbrc.2016.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 12/14/2022]
Abstract
Liver disease, in the form of hepatocellular carcinoma (HCC) accounts for > 700,000 deaths worldwide. A major reason for this is late diagnosis of HCC. The currently used biomarker, serum alpha-fetoprotein (AFP) is elevated in 40-60% of those with HCC and other markers that can either compliment or replace AFP are desired. Our previous work has identified a number of proteins that contain altered glycans in HCC. Specifically, these altered glycans were increased levels of core and outer arm fucosylation. To determine the clinical usefulness of those identified glycoproteins, a plate based assay was developed that allowed for the detection of fucosylated glycoforms. While this method was applicable to a number of independent patient sets, it was unable to specifically detect fucosylated glycoforms in many patient samples. That is, some material was present in serum that led to non-specific signal in the lectin- fluorescence -linked immunosorbent assay (lectin-FLISA). To address this issue, a systematic process was undertaken to identify the material. This material was found to be increased levels of lectin reactive IgM. Removal of both IgG and IgM using a multi-step protein A/G incubation and filtration step removed the contaminating signal and allowed for the analysis of specific protein glycoforms. This assay was subsequently used on two sample sets, one that was shown previously to be unable to be tested via a lectin FLISA and in a larger independent sample set. The clinical usefulness of this assay in the early detection of HCC is discussed.
Collapse
Affiliation(s)
- Mengjun Wang
- Drexel University College of Medicine, Department of Microbiology and Immunology, Room 18307 New College Building, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Mary Ann Comunale
- Drexel University College of Medicine, Department of Microbiology and Immunology, Room 18307 New College Building, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Harmin Herrera
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Microbiology and Immunology Graduate Program, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - Lucy Betesh
- Drexel University College of Medicine, Department of Microbiology and Immunology, Room 18307 New College Building, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Yuko Kono
- Division of Gastroenterology & Hepatology, University of California, San Diego 200 West Arbor Drive, San Diego, CA 92103-8413, USA
| | - Anand Mehta
- Drexel University College of Medicine, Department of Microbiology and Immunology, Room 18307 New College Building, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
70
|
Haznadar M, Cai Q, Krausz KW, Bowman ED, Margono E, Noro R, Thompson MD, Mathé EA, Munro HM, Steinwandel MD, Gonzalez FJ, Blot WJ, Harris CC. Urinary Metabolite Risk Biomarkers of Lung Cancer: A Prospective Cohort Study. Cancer Epidemiol Biomarkers Prev 2016; 25:978-86. [PMID: 27013655 DOI: 10.1158/1055-9965.epi-15-1191] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/17/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lung cancer is a major health burden causing 160,000 and 1.6 million deaths annually in the United States and worldwide, respectively. METHODS While seeking to identify stable and reproducible biomarkers in noninvasively collected biofluids, we assessed whether previously identified metabolite urinary lung cancer biomarkers, creatine riboside (CR), N-acetylneuraminic acid (NANA), cortisol sulfate, and indeterminate metabolite 561+, were elevated in the urines of subjects prior to lung cancer diagnosis in a well-characterized prospective Southern Community Cohort Study (SCCS). Urine was examined from 178 patients and 351 nondiseased controls, confirming that one of four metabolites was associated with lung cancer risk in the overall case-control set, whereas two metabolites were associated with lung cancer risk in European-Americans. RESULTS OR of lung cancer associated with elevated CR levels, and adjusted for smoking and other potential confounders, was 2.0 [95% confidence interval (CI), 1.2-3.4; P= 0.01]. In European-Americans, both CR and NANA were significantly associated with lung cancer risk (OR = 5.3; 95% CI, 1.6-17.6; P= 0.006 and OR=3.5; 95% CI, 1.5-8.4; P= 0.004, respectively). However, race itself did not significantly modify the associations. ROC analysis showed that adding CR and NANA to a model containing previously established lung cancer risk factors led to a significantly improved classifier (P= 0.01). Increasing urinary levels of CR and NANA displayed a positive association with increasing tumor size, strengthening a previously established link to altered tumor metabolism. CONCLUSION AND IMPACT These replicated results provide evidence that identified urinary metabolite biomarkers have a potential utility as noninvasive, clinical screening tools for early diagnosis of lung cancer. Cancer Epidemiol Biomarkers Prev; 25(6); 978-86. ©2016 AACR.
Collapse
Affiliation(s)
- Majda Haznadar
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ezra Margono
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Matthew D Thompson
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ewy A Mathé
- Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio
| | | | | | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee. International Epidemiology Institute, Rockville, Maryland.
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
71
|
Lou TF, Sethuraman D, Dospoy P, Srivastva P, Kim HS, Kim J, Ma X, Chen PH, Huffman KE, Frink RE, Larsen JE, Lewis C, Um SW, Kim DH, Ahn JM, DeBerardinis RJ, White MA, Minna JD, Yoo H. Cancer-Specific Production of N-Acetylaspartate via NAT8L Overexpression in Non-Small Cell Lung Cancer and Its Potential as a Circulating Biomarker. Cancer Prev Res (Phila) 2016; 9:43-52. [PMID: 26511490 PMCID: PMC4774047 DOI: 10.1158/1940-6207.capr-14-0287] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/18/2015] [Indexed: 01/14/2023]
Abstract
In order to identify new cancer-associated metabolites that may be useful for early detection of lung cancer, we performed a global metabolite profiling of a non-small cell lung cancer (NSCLC) line and immortalized normal lung epithelial cells from the same patient. Among several metabolites with significant cancer/normal differences, we identified a unique metabolic compound, N-acetylaspartate (NAA), in cancer cells-undetectable in normal lung epithelium. NAA's cancer-specific detection was validated in additional cancer and control lung cells as well as selected NSCLC patient tumors and control tissues. NAA's cancer specificity was further supported in our analysis of NAA synthetase (gene symbol: NAT8L) gene expression levels in The Cancer Genome Atlas: elevated NAT8L expression in approximately 40% of adenocarcinoma and squamous cell carcinoma cases (N = 577), with minimal expression in all nonmalignant lung tissues (N = 74). We then showed that NAT8L is functionally involved in NAA production of NSCLC cells through siRNA-mediated suppression of NAT8L, which caused selective reduction of intracellular and secreted NAA. Our cell culture experiments also indicated that NAA biosynthesis in NSCLC cells depends on glutamine availability. For preliminary evaluation of NAA's clinical potential as a circulating biomarker, we developed a sensitive NAA blood assay and found that NAA blood levels were elevated in 46% of NSCLC patients (N = 13) in comparison with age-matched healthy controls (N = 21) among individuals aged 55 years or younger. Taken together, these results indicate that NAA is produced specifically in NSCLC tumors through NAT8L overexpression, and its extracellular secretion can be detected in blood. Cancer Prev Res; 9(1); 43-52. ©2015 AACR.
Collapse
Affiliation(s)
- Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas. Center for Systems Biology, University of Texas at Dallas, Richardson, Texas
| | - Deepa Sethuraman
- Center for Systems Biology, University of Texas at Dallas, Richardson, Texas. Department of Bioengineering, University of Texas at Dallas, Richardson, Texas
| | - Patrick Dospoy
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pallevi Srivastva
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas. Center for Systems Biology, University of Texas at Dallas, Richardson, Texas
| | - Hyun Seok Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joongsoo Kim
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas
| | - Xiaotu Ma
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | - Pei-Hsuan Chen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth E Huffman
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robin E Frink
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jill E Larsen
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Cheryl Lewis
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Mo Ahn
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hyuntae Yoo
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas. Center for Systems Biology, University of Texas at Dallas, Richardson, Texas. Department of Bioengineering, University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
72
|
Misra BB, van der Hooft JJJ. Updates in metabolomics tools and resources: 2014-2015. Electrophoresis 2015; 37:86-110. [DOI: 10.1002/elps.201500417] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Biswapriya B. Misra
- Department of Biology, Genetics Institute; University of Florida; Gainesville FL USA
| | | |
Collapse
|
73
|
Wanichthanarak K, Fahrmann JF, Grapov D. Genomic, Proteomic, and Metabolomic Data Integration Strategies. Biomark Insights 2015; 10:1-6. [PMID: 26396492 PMCID: PMC4562606 DOI: 10.4137/bmi.s29511] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
Robust interpretation of experimental results measuring discreet biological domains remains a significant challenge in the face of complex biochemical regulation processes such as organismal versus tissue versus cellular metabolism, epigenetics, and protein post-translational modification. Integration of analyses carried out across multiple measurement or omic platforms is an emerging approach to help address these challenges. This review focuses on select methods and tools for the integration of metabolomic with genomic and proteomic data using a variety of approaches including biochemical pathway-, ontology-, network-, and empirical-correlation-based methods.
Collapse
|
74
|
Fahrmann JF, Kim K, DeFelice BC, Taylor SL, Gandara DR, Yoneda KY, Cooke DT, Fiehn O, Kelly K, Miyamoto S. Investigation of metabolomic blood biomarkers for detection of adenocarcinoma lung cancer. Cancer Epidemiol Biomarkers Prev 2015; 24:1716-23. [PMID: 26282632 DOI: 10.1158/1055-9965.epi-15-0427] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/27/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Untargeted metabolomics was used in case-control studies of adenocarcinoma (ADC) lung cancer to develop and test metabolite classifiers in serum and plasma as potential biomarkers for diagnosing lung cancer. METHODS Serum and plasma were collected and used in two independent case-control studies (ADC1 and ADC2). Controls were frequency matched for gender, age, and smoking history. There were 52 adenocarcinoma cases and 31 controls in ADC1 and 43 adenocarcinoma cases and 43 controls in ADC2. Metabolomics was conducted using gas chromatography time-of-flight mass spectrometry. Differential analysis was performed on ADC1 and the top candidates (FDR < 0.05) for serum and plasma used to develop individual and multiplex classifiers that were then tested on an independent set of serum and plasma samples (ADC2). RESULTS Aspartate provided the best accuracy (81.4%) for an individual metabolite classifier in serum, whereas pyrophosphate had the best accuracy (77.9%) in plasma when independently tested. Multiplex classifiers of either 2 or 4 serum metabolites had an accuracy of 72.7% when independently tested. For plasma, a multimetabolite classifier consisting of 8 metabolites gave an accuracy of 77.3% when independently tested. Comparison of overall diagnostic performance between the two blood matrices yielded similar performances. However, serum is most ideal given higher sensitivity for low-abundant metabolites. CONCLUSION This study shows the potential of metabolite-based diagnostic tests for detection of lung adenocarcinoma. Further validation in a larger pool of samples is warranted. IMPACT These biomarkers could improve early detection and diagnosis of lung cancer.
Collapse
Affiliation(s)
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, California
| | - Brian C DeFelice
- University of California, Davis Genome Center, Davis, California
| | - Sandra L Taylor
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, California
| | - David R Gandara
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California, Davis Medical Center, Sacramento, California
| | - Ken Y Yoneda
- Division of Pulmonary Medicine, Department of Internal Medicine, UC Davis Medical Center, Sacramento, California
| | - David T Cooke
- Division of Thoracic Surgery, Department of Surgery, School of Medicine, University of California, Davis Medical Center, Sacramento, California
| | - Oliver Fiehn
- University of California, Davis Genome Center, Davis, California. Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Karen Kelly
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California, Davis Medical Center, Sacramento, California
| | - Suzanne Miyamoto
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California, Davis Medical Center, Sacramento, California.
| |
Collapse
|
75
|
Grapov D, Wanichthanarak K, Fiehn O. MetaMapR: pathway independent metabolomic network analysis incorporating unknowns. Bioinformatics 2015; 31:2757-60. [PMID: 25847005 DOI: 10.1093/bioinformatics/btv194] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/30/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with metabolite structural similarity, mass spectral similarity and empirical associations to generate richly connected metabolic networks. This open source, web-based or desktop software, written in the R programming language, leverages KEGG and PubChem databases to derive associations between metabolites even in cases where biochemical domain or molecular annotations are unknown. Network calculation is enhanced through an interface to the Chemical Translation System, which allows metabolite identifier translation between >200 common biochemical databases. Analysis results are presented as interactive visualizations or can be exported as high-quality graphics and numerical tables which can be imported into common network analysis and visualization tools. AVAILABILITY AND IMPLEMENTATION Freely available at http://dgrapov.github.io/MetaMapR/. Requires R and a modern web browser. Installation instructions, tutorials and application examples are available at http://dgrapov.github.io/MetaMapR/. CONTACT ofiehn@ucdavis.edu.
Collapse
Affiliation(s)
- Dmitry Grapov
- National Institutes of Health West Coast Metabolomics Center, Genome Center, University of California Davis, Davis CA 95616, USA and
| | - Kwanjeera Wanichthanarak
- National Institutes of Health West Coast Metabolomics Center, Genome Center, University of California Davis, Davis CA 95616, USA and
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, Genome Center, University of California Davis, Davis CA 95616, USA and King Abdulaziz University, Biochemistry Department, Jeddah, Saudi Arabia
| |
Collapse
|