51
|
Chen W, Li Z, Liu H, Jiang S, Wang G, Sun L, Li J, Wang X, Yu S, Huang J, Dong Y. MicroRNA-30a targets BECLIN-1 to inactivate autophagy and sensitizes gastrointestinal stromal tumor cells to imatinib. Cell Death Dis 2020; 11:198. [PMID: 32251287 PMCID: PMC7090062 DOI: 10.1038/s41419-020-2390-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
Gastrointestinal stromal tumors (GISTs), the most widespread type of sarcoma, contain driver gene mutations predominantly of receptor tyrosine kinase and platelet-derived growth factor receptor alpha. However, the inevitable development of resistance to imatinib (IM) cannot be fully attributed to secondary driver gene mutations. In this study, we investigated the role of microRNA-30a in sensitization of GIST cells to IM in vivo and in vitro. Higher levels of miR-30a were detected in GIST-T1 cells, which were more sensitive to IM than GIST-882 cells. IM treatment also reduced miR-30a levels, indicating the possible role of miR-30a in GIST IM resistance. Subsequently, miR-30a was confirmed to be an IM sensitizer via a mechanism that was attributed to its involvement in the regulation of cell autophagy. The interaction of miR-30a and autophagy in IM treated GIST cells was found to be linked by beclin-1. Beclin-1 knockdown increased IM sensitivity in GIST cell lines. Finally, miR-30a was confirmed to enhance IM sensitivity of GIST cells in mouse tumor models. Our study provides evidence for the possible role of miR-30a in the emergence of secondary IM resistance in GIST patients, indicating a promising target for overcoming this chemoresistance.
Collapse
Affiliation(s)
- Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, 310012, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Tongde Hospital of Zhejiang Province, 310012, Hangzhou, Zhejiang, China
| | - Zhouqi Li
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Hao Liu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, 310012, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Tongde Hospital of Zhejiang Province, 310012, Hangzhou, Zhejiang, China
| | - Sujing Jiang
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, 325000, Wenzhou, China
| | - Guannan Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Lifeng Sun
- Department of Surgery Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Jun Li
- Department of Surgery Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Xiaochen Wang
- Department of Surgery Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Shaojun Yu
- Department of Surgery Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Jianjin Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Ying Dong
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China.
| |
Collapse
|
52
|
Zhou Y, Wu C, Lu G, Hu Z, Chen Q, Du X. FGF/FGFR signaling pathway involved resistance in various cancer types. J Cancer 2020; 11:2000-2007. [PMID: 32127928 PMCID: PMC7052940 DOI: 10.7150/jca.40531] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/04/2020] [Indexed: 12/16/2022] Open
Abstract
Resistance becomes major clinical issue in cancer treatment, which strongly limits patients to benefit from oncotherapy. Growing evidences have been indicative of the critical role of fibroblast growth factor (FGF)/receptor (FGFR) signaling played in resistance to oncotherapy. In this review we discussed the underlying mechanisms of FGF/FGFR signaling mediated resistance to chemotherapy, radiotherapy and target therapy in various cancers. Meanwhile, we summarized the reported mechanism of FGF/FGFR inhibitors resistance in cancers.
Collapse
Affiliation(s)
- Yangyang Zhou
- Department of Rheumatology and Immunology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengyu Wu
- Department of Rheumatology and Immunology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Guangrong Lu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical, Wenzhou, Zhejiang 325000, China)
| | - Zijing Hu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiuxiang Chen
- Department of Ultrasonic Imaging, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojing Du
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
53
|
Inhibition of FGFR2-Signaling Attenuates a Homology-Mediated DNA Repair in GIST and Sensitizes Them to DNA-Topoisomerase II Inhibitors. Int J Mol Sci 2020; 21:ijms21010352. [PMID: 31948066 PMCID: PMC6982350 DOI: 10.3390/ijms21010352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 01/30/2023] Open
Abstract
Deregulation of receptor tyrosine kinase (RTK)-signaling is frequently observed in many human malignancies, making activated RTKs the promising therapeutic targets. In particular, activated RTK-signaling has a strong impact on tumor resistance to various DNA damaging agents, e.g., ionizing radiation and chemotherapeutic drugs. We showed recently that fibroblast growth factor receptor (FGFR)-signaling might be hyperactivated in imatinib (IM)-resistant gastrointestinal stromal tumors (GIST) and inhibition of this pathway sensitized tumor cells to the low doses of chemotherapeutic agents, such as topoisomerase II inhibitors. Here, we report that inhibition of FGFR-signaling in GISTs attenuates the repair of DNA double-strand breaks (DSBs), which was evidenced by the delay in γ-H2AX decline after doxorubicin (Dox)-induced DNA damage. A single-cell gel electrophoresis (Comet assay) data showed an increase of tail moment in Dox-treated GIST cells cultured in presence of BGJ398, a selective FGFR1-4 inhibitor, thereby revealing the attenuated DNA repair. By utilizing GFP-based reporter constructs to assess the efficiency of DSBs repair via homologous recombination (HR) and non-homologous end-joining (NHEJ), we found for the first time that FGFR inhibition in GISTs attenuated the homology-mediated DNA repair. Of note, FGFR inhibition/depletion did not reduce the number of BrdU and phospho-RPA foci in Dox-treated cells, suggesting that inhibition of FGFR-signaling has no impact on the processing of DSBs. In contrast, the number of Dox-induced Rad51 foci were decreased when FGFR2-mediated signaling was interrupted/inhibited by siRNA FGFR2 or BGJ398. Moreover, Rad51 and -H2AX foci were mislocalized in FGFR-inhibited GIST and the amount of Rad51 was substantially decreased in -H2AX-immunoprecipitated complexes, thereby illustrating the defect of Rad51 recombinase loading to the Dox-induced DSBs. Finally, as a result of the impaired homology-mediated DNA repair, the increased numbers of hypodiploid (i.e., apoptotic) cells were observed in FGFR2-inhibited GISTs after Dox treatment. Collectively, our data illustrates for the first time that inhibition of FGF-signaling in IM-resistant GIST interferes with the efficiency of DDR signaling and attenuates the homology-mediated DNA repair, thus providing the molecular mechanism of GIST’s sensitization to DNA damaging agents, e.g., DNA-topoisomerase II inhibitors.
Collapse
|
54
|
Abstract
Introduction: Since the approval of immune checkpoint inhibitors (ICIs), there has been continuing and significant progress in urothelial cancer (UC) treatment. However, only about one fifth of UC patients respond to ICI. Recently, erdafitinib was developed for treating locally advanced or metastatic UC (mUC) with FGFR3 or FGFR2 alterations, accounting for 15-20% of patients. Erdafitinib is the first targeted therapy ever approved for mUC.Areas covered: This review summarizes the preclinical and clinical data on erdafitinib for UC. PubMed search and relevant articles presented at international conferences were used for the literature search.Expert opinion: The FDA approval of erdafitinib provided a new treatment option for FGFR-altered UC progressing on platinum-based chemotherapy. It is not clear whether FGFR inhibitor is a preferred second-line treatment choice to ICI. Compared to ICI, erdafitinib has a better response rate in patients with visceral metastases. However, a shorter duration of response and toxicity profile of erdafitinib, particularly ocular toxicity, is an important consideration. Regular eye exams are recommended by the FDA. Tumor profiling during upfront therapy may help identify those who benefit at the time of progression. In summary, a high unmet need remains for new drugs in chemotherapy- and ICI-refractory UC.
Collapse
Affiliation(s)
- Kamaneh Montazeri
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joaquim Bellmunt
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
55
|
Hemming ML, Heinrich MC, Bauer S, George S. Translational insights into gastrointestinal stromal tumor and current clinical advances. Ann Oncol 2019; 29:2037-2045. [PMID: 30101284 DOI: 10.1093/annonc/mdy309] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common soft tissue sarcoma of the gastrointestinal tract and, in the vast majority of cases, is characterized by activating mutations in KIT or, less commonly, PDGFRA. Mutations in these type III receptor tyrosine kinases (RTKs) account for over 85% of GIST cases, and the majority of KIT primary mutations respond to treatment with the tyrosine kinase inhibitor (TKI) imatinib. However, drug resistance develops over time, most commonly due to secondary kinase mutations. Sunitinib and regorafenib are approved for the treatment of imatinib-resistant GIST in the second and third lines, respectively. However, resistance to these agents also develops and new therapeutic options are needed. In addition, a small number of GISTs harbor primary activating mutations that are resistant to currently available TKIs, highlighting an additional unmet medical need. Several novel and selective TKIs that overcome known mechanisms of resistance in GIST have been developed and show promise in early clinical trials. Additional emerging targeted therapies in GIST include modulation of cellular signaling pathways downstream of KIT, antibodies targeting KIT and PDGFRA and immune checkpoint inhibitors. These advancements highlight the rapid evolution in the understanding of this malignancy and provide perspective on the encouraging horizon of current and forthcoming therapeutic strategies for GIST.
Collapse
Affiliation(s)
- M L Hemming
- Department of Medical Oncology, Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - M C Heinrich
- VA Health Care System and Knight Cancer Institute, Oregon Health and Science University, Oregon, USA
| | - S Bauer
- Sarcoma Center, Western German Cancer Center and German Cancer Consortium (DKTK), Essen, Germany
| | - S George
- Department of Medical Oncology, Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
56
|
Flavahan WA, Drier Y, Johnstone SE, Hemming ML, Tarjan DR, Hegazi E, Shareef SJ, Javed NM, Raut CP, Eschle BK, Gokhale PC, Hornick JL, Sicinska ET, Demetri GD, Bernstein BE. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature 2019; 575:229-233. [PMID: 31666694 PMCID: PMC6913936 DOI: 10.1038/s41586-019-1668-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 09/10/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic aberrations are widespread in cancer, yet the underlying
mechanisms and causality remain poorly understood1-3.
A subset of gastrointestinal stromal tumors (GISTs) lack canonical kinase
mutations but instead have succinate dehydrogenase (SDH)-deficiency and global
DNA hyper-methylation4,5. Here we associate this hyper-methylation
with changes in genome topology that activate oncogenic programs. To investigate
epigenetic alterations systematically, we mapped DNA methylation, CTCF
insulators, enhancers, and chromosome topology in KIT-mutant,
PDGFRA-mutant, and SDH-deficient GISTs. Although these
respective subtypes shared similar enhancer landscapes, we identified hundreds
of putative insulators where DNA methylation replaced CTCF binding in
SDH-deficient GISTs. We focused on a disrupted insulator that normally
partitions a core GIST super-enhancer from the FGF4 oncogene.
Recurrent loss of this insulator alters locus topology in SDH-deficient GISTs,
allowing aberrant physical interaction between enhancer and oncogene.
CRISPR-mediated excision of the corresponding CTCF motifs in an SDH-intact GIST
model disrupted the boundary and strongly up-regulated FGF4
expression. We also identified a second recurrent insulator loss event near the
KIT oncogene, which is also highly expressed across
SDH-deficient GISTs. Finally, we established a patient-derived xenograft (PDX)
from an SDH-deficient GIST that faithfully maintains the epigenetics of the
parental tumor, including hyper-methylation and insulator defects. This PDX
model is highly sensitive to FGF receptor (FGFR) inhibitor, and more so to
combined FGFR and KIT inhibition, validating the functional significance of the
underlying epigenetic lesions. Our study reveals how epigenetic alterations can
drive oncogenic programs in the absence of canonical kinase mutations, with
implications for mechanistic targeting of aberrant pathways in cancers.
Collapse
Affiliation(s)
- William A Flavahan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yotam Drier
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| | - Sarah E Johnstone
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew L Hemming
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School Boston, Boston, MA, USA
| | - Daniel R Tarjan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Esmat Hegazi
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah J Shareef
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nauman M Javed
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin K Eschle
- Experimental Therapeutics Core, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ewa T Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School Boston, Boston, MA, USA. .,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| | - Bradley E Bernstein
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
57
|
Inhibition of fibroblast growth factor receptor-signaling sensitizes imatinib-resistant gastrointestinal stromal tumors to low doses of topoisomerase II inhibitors. Anticancer Drugs 2019; 29:549-559. [PMID: 29697413 DOI: 10.1097/cad.0000000000000637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The acquired resistance of gastrointestinal stromal tumors (GISTs) to the targeted-based therapy remains the driving force to identify the novel approaches that are capable of increasing the sensitivity of GISTs to the current therapeutic regimens. Our present data show that BGJ398, a selective fibroblast growth factor receptor (FGFR) inhibitor, sensitizes imatinib (IM)-resistant GIST cells with receptor tyrosine kinase (RTK) switch (loss of c-KIT/gain of pFGFR2a) to the low doses of topoisomerase II inhibitors - doxorubicin (Dox) and etoposide (Eto). Mechanistically, pretreatment of IM-resistant GIST cells with BGJ398 for 12 h markedly enhanced proapoptotic and growth-suppressive effects of Dox (or Eto). Indeed, a significant cleavage of PARP and caspase-3 was observed in GIST cells treated with a combination of FGFR and topoisomerase II inhibitor. In contrast, no signs of apoptosis were detected in IM-resistant GIST cells treated with BGJ398, whereas the low doses of Dox (Eto) exerted the minor proapoptotic effects on GISTs. The mechanism of BGJ398-induced sensitization of GIST to topoisomerase II inhibitors might be because of attenuation of DNA damage signaling and repair. Indeed, we observed a marked decrease in Rad51 expression in GIST cells treated with BGJ398 together with Dox. Similar results were obtained when an overexpressed pFGFR2a was knocked down by corresponding siRNA before Dox (Eto) exposure. Moreover, FGFR inhibition/depletion caused a loss of Rad51 foci in Dox-treated GIST cells, suggesting that FGFR-signaling plays an important regulatory role in homology-mediated DNA repair. Our data show that combined therapy (RTKs inhibitors supplemented with low doses of topoisomerase II inhibitors) might be effective for unresectable and metastatic forms of GISTs. In case of resistance to IM because of RTKs switch indicated above, FGFR inhibitors (e.g. BGJ398) might be potentially useful because of their ability to sensitize tumor cells to topoisomerase II inhibitors and induce tumor cell apoptosis by targeting DNA double-strand breaks repair.
Collapse
|
58
|
Gebreyohannes YK, Burton EA, Wozniak A, Matusow B, Habets G, Wellens J, Cornillie J, Lin J, Nespi M, Wu G, Zhang C, Bollag G, Debiec-Rychter M, Sciot R, Schöffski P. PLX9486 shows anti-tumor efficacy in patient-derived, tyrosine kinase inhibitor-resistant KIT-mutant xenograft models of gastrointestinal stromal tumors. Clin Exp Med 2018; 19:201-210. [DOI: 10.1007/s10238-018-0541-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/26/2018] [Indexed: 11/25/2022]
|
59
|
Receptor Tyrosine Kinase-Targeted Cancer Therapy. Int J Mol Sci 2018; 19:ijms19113491. [PMID: 30404198 PMCID: PMC6274851 DOI: 10.3390/ijms19113491] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
In the past two decades, several molecular targeted inhibitors have been developed and evaluated clinically to improve the survival of patients with cancer. Molecular targeted inhibitors inhibit the activities of pathogenic tyrosine kinases. Particularly, aberrant receptor tyrosine kinase (RTK) activation is a potential therapeutic target. An increased understanding of genetics, cellular biology and structural biology has led to the development of numerous important therapeutics. Pathogenic RTK mutations, deletions, translocations and amplification/over-expressions have been identified and are currently being examined for their roles in cancers. Therapies targeting RTKs are categorized as small-molecule inhibitors and monoclonal antibodies. Studies are underway to explore abnormalities in 20 types of RTK subfamilies in patients with cancer or other diseases. In this review, we describe representative RTKs important for developing cancer therapeutics and predicting or evaluated resistance mechanisms.
Collapse
|
60
|
Boichuk S, Galembikova A, Dunaev P, Micheeva E, Valeeva E, Novikova M, Khromova N, Kopnin P. Targeting of FGF-Signaling Re-Sensitizes Gastrointestinal Stromal Tumors (GIST) to Imatinib In Vitro and In Vivo. Molecules 2018; 23:E2643. [PMID: 30326595 PMCID: PMC6222839 DOI: 10.3390/molecules23102643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of the fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling pathway is frequently observed in multiple human malignancies, and thus, therapeutic strategies targeting FGFs and FGFRs in human cancer are being extensively explored. We observed the activation of the FGF/FGFR-signaling pathway in imatinib (IM)-resistant gastrointestinal stromal tumor (GIST) cells. Furthermore, we found that the activation of FGFR signaling has a significant impact on IM resistance in GISTs in vitro. Next, we tested the efficacy of BGJ398, a potent and selective FGFR1⁻3 inhibitor, in xenograft models of GISTs exhibiting secondary IM resistance due to receptor-tyrosine kinase (RTK) switch (loss of c-KIT/gain of FGFR2a). Five to eight-week-old female nu/nu mice were subcutaneously inoculated into the flank areas with GIST T-1R cells. Mice were randomized as control (untreated), IM, BGJ398, or a combination and treated orally for 12 days. IM had a moderate effect on tumor size, thus revealing GIST resistance to IM. Similarly, a minor regression in tumor size was observed in BGJ398-treated mice. Strikingly, a 90% decrease in tumor size was observed in mice treated with a combination of IM and BGJ398. Treatment with BGJ398 and IM also induced major histopathologic changes according to a previously defined histopathologic response score and resulted in massive myxoid degeneration. This was associated with increased intratumoral apoptosis as detected by immunohistochemical staining for cleaved caspase-3 on day 5 of the treatment. Furthermore, treatment with BGJ398 and IM significantly reduced the proliferative activity of tumor cells as measured by positivity for Ki-67 staining. In conclusion, inhibition of FGFR signaling substantially inhibited the growth of IM-resistant GISTs in vitro and showed potent antitumor activity in an IM-resistant GIST model via the inhibition of proliferation, tumor growth, and the induction of apoptosis, thereby suggesting that patients with advanced and metastatic GISTs exhibiting IM resistance might benefit from therapeutic inhibition of FGFR signaling.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia.
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia.
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia.
| | - Ekaterina Micheeva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia.
| | - Elena Valeeva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia.
| | - Maria Novikova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia.
| | - Natalya Khromova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia.
| | - Pavel Kopnin
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia.
| |
Collapse
|
61
|
A phase Ib study of BGJ398, a pan-FGFR kinase inhibitor in combination with imatinib in patients with advanced gastrointestinal stromal tumor. Invest New Drugs 2018; 37:282-290. [PMID: 30101387 DOI: 10.1007/s10637-018-0648-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
Background Preclinical studies suggest that imatinib resistance in gastrointestinal stromal tumor (GIST) can be mediated by MAP-kinase activation via fibroblast growth factor (FGF) signaling. In FGF stimulated GIST cell lines, BGJ398, a pan-FGFR kinase inhibitor in combination with imatinib, was cytotoxic and superior to imatinib therapy alone. In FGF-dependent GIST, the combination of BGJ398 and imatinib may provide a mechanism to overcome imatinib resistance. Methods This phase Ib study of BGJ398 and imatinib was performed in patients with imatinib refractory advanced GIST. A standard 3 + 3 dosing schema was utilized to determine the recommended phase II dose (RP2D). Two treatment schedules were evaluated incorporating imatinib 400 mg daily in combination with (A) BGJ398 daily 3 weeks on, 1 week off or (B) BGJ398 daily 1 week on, 3 weeks off. Results 16 patients enrolled. The median age was 54 years (range: 44-77), 81% were male, and the median number of lines of prior therapy was 4 [range: 2-6, 13 patients had ≥3 prior therapies]. 12 patients received treatment on schedule A [BGJ398 dose range: 25 - 75 mg]: 2 patients experienced dose limiting toxicities (DLT) (n = 1, myocardial infarction & grade (G)4 CPK elevation; n = 1, G3 ALT elevation) on schedule A (BGJ398 75 mg), significant hyperphosphatemia, an on-target effect, was not observed, implying the maximum tolerated dose was below the therapeutic dose. Following protocol amendment, 4 patients enrolled on schedule B [BGJ398 dose range: 75 - 100 mg]: no DLTs were observed. The most common treatment related adverse events occurring in >15% of patients included CPK elevation (50%), lipase elevation (44%), hyperphosphatemia (24%), anemia (19%), and peripheral edema (19%). Among the 12 evaluable patients, stable disease (SD) was the best response observed in 7 patients by RECIST v1.1 and 9 patients by CHOI. Stable disease ≥ 32 weeks was observed in 3 patients (25%). Median progression free survival was 12.1 weeks (95% CI 4.7-19.5 weeks). Conclusions Toxicity was encountered with the combination therapy of BGJ398 and imatinib. Due to withdrawal of sponsor support the study closed before the RP2D or dosing schedule of the combination therapy was identified. In heavily pre-treated patients, stable disease ≥ 32 weeks was observed in 3 of 12 evaluable patients. Trial Registration: NCT02257541 .
Collapse
|
62
|
Wang Y, Li J, Kuang D, Wang X, Zhu Y, Xu S, Chen Y, Cheng H, Zhao Q, Duan Y, Wang G. miR-148b-3p functions as a tumor suppressor in GISTs by directly targeting KIT. Cell Commun Signal 2018; 16:16. [PMID: 29661252 PMCID: PMC5902930 DOI: 10.1186/s12964-018-0228-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gain-of-function mutations and overexpression of KIT are characteristic features of gastrointestinal stromal tumor (GIST). Dysregulation in miRNA expression may lead to KIT overexpression and tumorigenesis. METHODS miRNA microarray analysis and real-time PCR were used to determine the miRNA expression profiles in a cohort of 69 clinical samples including 50 CD117IHC+/KITmutation GISTs and 19 CD117IHC-/wild-type GISTs. GO enrichment and KEGG pathway analyses were performed to reveal the predicted targets of the dysregulated miRNAs. Of the dysregulated miRNAs whose expression was inversely correlated with that of KIT miRNAs were predicted by bioinformatics analysis and confirmed by luciferase reporter assay. Cell counting kit-8 (CCK-8) and flow cytometry were used to measure the cell proliferation, cycle arrest and apoptosis. Wound healing and transwell assays were used to evaluate migration and invasion. A xenograft BALB/c nude mouse model was applied to investigate the tumorigenesis in vivo. Western blot and qRT-PCR were used to investigate the protein and mRNA levels of KIT and its downstream effectors including ERK, AKT and STAT3. RESULTS Of the six miRNAs whose expression was inversely correlated with that of KIT, we found that miR-148b-3p was significantly downregulated in the CD117IHC+/KITmutation GIST cohort. This miRNA was subsequently found to inhibit proliferation, migration and invasion of GIST882 cells. Mechanistically, miR-148b-3p was shown to regulate KIT expression through directly binding to the 3'-UTR of the KIT mRNA. Restoration of miR-148b-3p expression in GIST882 cells led to reduced expression of KIT and the downstream effectors proteins ERK, AKT and STAT3. However, overexpression of KIT reversed the inhibitory effect of miR-148b-3p on cell proliferation, migration and invasion. Furthermore, we found that reduced miR-148b-3p expression correlated with poor overall survival (OS) and disease-free survival (DFS) in GIST patients. CONCLUSION miR-148b-3p functions as an important regulator of KIT expression and a potential prognostic biomarker for GISTs.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Jun Li
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Xiaoyan Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Yuanli Zhu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Sanpeng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Yaobing Chen
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Henghui Cheng
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Yaqi Duan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China.
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China.
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
63
|
Novel Insights into the Treatment of Imatinib-Resistant Gastrointestinal Stromal Tumors. Target Oncol 2018; 12:277-288. [PMID: 28478525 DOI: 10.1007/s11523-017-0490-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumors (GIST) have emerged as a compelling clinical and biological model for the rational development of therapeutic strategies targeting critical oncogenic events over the past two decades. Oncogenic activation of KIT or PDGFRA receptor tyrosine kinases is the crucial driver for GIST tumor initiation, transformation, and cancer cell proliferation. Three tyrosine kinase inhibitors (TKIs) with KIT inhibitory activity - imatinib, sunitinib, and regorafenib - are approved to treat advanced GIST and have successfully exploited this addiction to KIT oncogenic signaling, demonstrating remarkable activity in a disease that historically had no successful systemic therapy options. However, GIST refractory to approved TKIs remain an unmet clinical need, as virtually all patients with metastatic GIST eventually progress on any given therapy. The main and best-established mechanism of resistance is the polyclonal expansion of multiple subpopulations harboring different secondary KIT mutations. The present review aims at summarizing current and forthcoming treatment directions in advanced imatinib-resistant GIST supported by a strong biological rationale.
Collapse
|
64
|
Boettcher M, Tian R, Blau JA, Markegard E, Wagner RT, Wu D, Mo X, Biton A, Zaitlen N, Fu H, McCormick F, Kampmann M, McManus MT. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat Biotechnol 2018; 36:170-178. [PMID: 29334369 PMCID: PMC6072461 DOI: 10.1038/nbt.4062] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/20/2017] [Indexed: 02/08/2023]
Abstract
Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyse the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair. Based on the results from over 100,000 perturbed gene pairs, we reconstruct a directional dependency network for human K562 leukemia cells and demonstrate how our approach allows the determination of directionality in activating genetic interactions. Our interaction network connects previously uncharacterised genes to well-studied pathways and identifies targets relevant for therapeutic intervention.
Collapse
Affiliation(s)
- Michael Boettcher
- Department of Microbiology and Immunology, University of California San Francisco Diabetes Center, WM Keck Center for Noncoding RNAs, University of California, San Francisco, San Francisco, California, USA
| | - Ruilin Tian
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco and Chan Zuckerberg Biohub, San Francisco, California, USA
| | - James A Blau
- Department of Microbiology and Immunology, University of California San Francisco Diabetes Center, WM Keck Center for Noncoding RNAs, University of California, San Francisco, San Francisco, California, USA
| | - Evan Markegard
- Helen Diller Family Comprehensive Cancer Center, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Ryan T Wagner
- Department of Microbiology and Immunology, University of California San Francisco Diabetes Center, WM Keck Center for Noncoding RNAs, University of California, San Francisco, San Francisco, California, USA
| | - David Wu
- Department of Microbiology and Immunology, University of California San Francisco Diabetes Center, WM Keck Center for Noncoding RNAs, University of California, San Francisco, San Francisco, California, USA
| | - Xiulei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anne Biton
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, California, USA.,Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 Institut Pasteur et CNRS), Paris, France
| | - Noah Zaitlen
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, California, USA
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco and Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California San Francisco Diabetes Center, WM Keck Center for Noncoding RNAs, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
65
|
Loss of TGF-β signaling in osteoblasts increases basic-FGF and promotes prostate cancer bone metastasis. Cancer Lett 2018; 418:109-118. [PMID: 29337106 DOI: 10.1016/j.canlet.2018.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 01/02/2023]
Abstract
TGF-β plays a central role in prostate cancer (PCa) bone metastasis, and it is crucial to understand the bone cell-specific role of TGF-β signaling in this process. Thus, we used knockout (KO) mouse models having deletion of the Tgfbr2 gene specifically in osteoblasts (Tgfbr2Col1CreERT KO) or in osteoclasts (Tgfbr2LysMCre KO). We found that PCa-induced bone lesion development was promoted in the Tgfbr2Col1CreERT KO mice, but was inhibited in the Tgfbr2LysMCre KO mice, relative to their respective control Tgfbr2FloxE2 littermates. Since metastatic PCa cells attach to osteoblasts when colonized in the bone microenvironment, we focused on the mechanistic studies using the Tgfbr2Col1CreERT KO mouse model. We found that bFGF was upregulated in osteoblasts from PC3-injected tibiae of Tgfbr2Col1CreERT KO mice and correlated with increased tumor cell proliferation, angiogenesis, amounts of cancer-associated fibroblasts and osteoclasts. In vitro studies showed that osteoblastogenesis was inhibited, osteoclastogenesis was stimulated, but PC3 viability was not affected, by bFGF treatments. Lastly, the increased PC3-induced bone lesions in Tgfbr2Col1CreERT KO mice were significantly attenuated by blocking bFGF using neutralizing antibody, suggesting bFGF is a promising target inhibiting bone metastasis.
Collapse
|
66
|
Rusan M, Li K, Li Y, Christensen CL, Abraham BJ, Kwiatkowski N, Buczkowski KA, Bockorny B, Chen T, Li S, Rhee K, Zhang H, Chen W, Terai H, Tavares T, Leggett AL, Li T, Wang Y, Zhang T, Kim TJ, Hong SH, Poudel-Neupane N, Silkes M, Mudianto T, Tan L, Shimamura T, Meyerson M, Bass AJ, Watanabe H, Gray NS, Young RA, Wong KK, Hammerman PS. Suppression of Adaptive Responses to Targeted Cancer Therapy by Transcriptional Repression. Cancer Discov 2018; 8:59-73. [PMID: 29054992 PMCID: PMC5819998 DOI: 10.1158/2159-8290.cd-17-0461] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022]
Abstract
Acquired drug resistance is a major factor limiting the effectiveness of targeted cancer therapies. Targeting tumors with kinase inhibitors induces complex adaptive programs that promote the persistence of a fraction of the original cell population, facilitating the eventual outgrowth of inhibitor-resistant tumor clones. We show that the addition of a newly identified CDK7/12 inhibitor, THZ1, to targeted therapy enhances cell killing and impedes the emergence of drug-resistant cell populations in diverse cellular and in vivo cancer models. We propose that targeted therapy induces a state of transcriptional dependency in a subpopulation of cells poised to become drug tolerant, which THZ1 can exploit by blocking dynamic transcriptional responses, promoting remodeling of enhancers and key signaling outputs required for tumor cell survival in the setting of targeted therapy. These findings suggest that the addition of THZ1 to targeted therapies is a promising broad-based strategy to hinder the emergence of drug-resistant cancer cell populations.Significance: CDK7/12 inhibition prevents active enhancer formation at genes, promoting resistance emergence in response to targeted therapy, and impedes the engagement of transcriptional programs required for tumor cell survival. CDK7/12 inhibition in combination with targeted cancer therapies may serve as a therapeutic paradigm for enhancing the effectiveness of targeted therapies. Cancer Discov; 8(1); 59-73. ©2017 AACR.See related commentary by Carugo and Draetta, p. 17This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Maria Rusan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Clinical Medicine, Aarhus University, Aarhus, 8000, Denmark
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kapsok Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yvonne Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Brian J Abraham
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Nicholas Kwiatkowski
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin A Buczkowski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Bruno Bockorny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Ting Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Shuai Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kevin Rhee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Haikuo Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Wankun Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hideki Terai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tiffany Tavares
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Alan L Leggett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tianxia Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Yichen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tae-Jung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook-Hee Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Michael Silkes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tenny Mudianto
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Li Tan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Takeshi Shimamura
- Molecular Pharmacology and Therapeutics, Oncology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153 USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Departments of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hideo Watanabe
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kwok-Kin Wong
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Novartis Institutes of Biomedical Research, Cambridge, MA, 02139
| |
Collapse
|
67
|
Kasireddy V, von Mehren M. Emerging drugs for the treatment of gastrointestinal stromal tumour. Expert Opin Emerg Drugs 2017; 22:317-329. [DOI: 10.1080/14728214.2017.1411479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vineela Kasireddy
- Fellow (PGY5), Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Margaret von Mehren
- Director of Sarcoma Oncology, Associate Director for Clinical Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
68
|
Gao X, Xue A, Fang Y, Shu P, Ling J, Hou Y, Shen K, Qin J, Sun Y, Qin X. RACK1 overexpression is linked to acquired imatinib resistance in gastrointestinal stromal tumor. Oncotarget 2017; 7:14300-9. [PMID: 26893362 PMCID: PMC4924716 DOI: 10.18632/oncotarget.7426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Abstract
Although treatment with imatinib, which inhibits KIT and PDGFR, controls advanced disease in about 80% of gastrointestinal stromal tumor (GIST) patients, resistance to imatinib often develops. RACK1 (Receptor for Activated C Kinase 1) is a ribosomal protein that contributes to tumor progression by affecting proliferation, apoptosis, angiogenesis, and migration. Here, we found that c-KIT binds to RACK1 and increases proteasome-mediated RACK1 degradation. Imatinib treatment inhibits c-KIT activity and prevents RACK1 degradation, and RACK1 is upregulated in imatinib-resistant GIST cells compared to non-resistant parental cells. Moreover, Erk and Akt signaling were reactivated by imatinib in resistant GIST cells. RACK1 functioned as a scaffold protein and mediated Erk and Akt reactivation after imatinib treatment, thereby promoting GIST cell survival even in the presence of imatinib. Combined inhibition of KIT and RACK1 inhibited growth in imatinib-resistant GIST cell lines and reduced tumor relapse in GIST xenografts. These findings provide new insight into the role of RACK1 in imatinib resistance in GIST.
Collapse
Affiliation(s)
- Xiaodong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of General Surgery, Fudan University, Shanghai, China
| | - Anwei Xue
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of General Surgery, Fudan University, Shanghai, China
| | - Yong Fang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of General Surgery, Fudan University, Shanghai, China
| | - Ping Shu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of General Surgery, Fudan University, Shanghai, China
| | - Jiaqian Ling
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of General Surgery, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kuntang Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of General Surgery, Fudan University, Shanghai, China
| | - Jing Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of General Surgery, Fudan University, Shanghai, China
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of General Surgery, Fudan University, Shanghai, China
| | - Xinyu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of General Surgery, Fudan University, Shanghai, China
| |
Collapse
|
69
|
Wozniak A, Gebreyohannes YK, Debiec-Rychter M, Schöffski P. New targets and therapies for gastrointestinal stromal tumors. Expert Rev Anticancer Ther 2017; 17:1117-1129. [PMID: 29110548 DOI: 10.1080/14737140.2017.1400386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The majority of gastrointestinal stromal tumors (GIST) are driven by an abnormal receptor tyrosine kinase (RTK) signaling, occurring mainly due to somatic mutations in KIT or platelet derived growth factor receptor alpha (PDGFRA). Although the introduction of tyrosine kinase inhibitors (TKIs) has revolutionized therapy for GIST patients, with time the vast majority of them develop TKI resistance. Advances in understanding the molecular background of GIST resistance allows for the identification of new targets and the development of novel strategies to overcome or delay its occurrence. Areas covered: The focus of this review is on novel, promising therapeutic approaches to overcome heterogeneous resistance to registered TKIs. These approaches involve new TKIs, including drugs specific for a mutated form of KIT/PDGFRA, drugs with inhibitory effect against multiple RTKs, compounds targeting dysregulated downstream signaling pathways, drugs affecting KIT expression and degradation, inhibitors of cell cycle, and immunotherapeutics. Expert commentary: As the resistance to standard TKI treatment can be heterogeneous, a combinational approach for refractory GIST could be beneficial. Moreover, the understanding of the molecular background of resistant disease would allow development of a more personalized approach for these patients and their response to targeted therapy could be monitored closely using 'liquid biopsy'.
Collapse
Affiliation(s)
- Agnieszka Wozniak
- a Laboratory of Experimental Oncology, Department of Oncology , KU Leuven , Leuven , Belgium
| | | | | | - Patrick Schöffski
- a Laboratory of Experimental Oncology, Department of Oncology , KU Leuven , Leuven , Belgium.,c Department of General Medical Oncology , University Hospitals Leuven, Leuven Cancer Institute , Leuven , Belgium
| |
Collapse
|
70
|
A Novel Receptor Tyrosine Kinase Switch Promotes Gastrointestinal Stromal Tumor Drug Resistance. Molecules 2017; 22:molecules22122152. [PMID: 29206199 PMCID: PMC6149963 DOI: 10.3390/molecules22122152] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
The fact that most gastrointestinal stromal tumors (GISTs) acquire resistance to imatinib (IM)-based targeted therapy remains the main driving force to identify novel molecular targets that are capable to increase GISTs sensitivity to the current therapeutic regimens. Secondary resistance to IM in GISTs typically occurs due to several mechanisms that include hemi- or homo-zygous deletion of the wild-type KIT allele, overexpression of focal adhesion kinase (FAK) and insulin-like growth factor receptor I (IGF-1R) amplification, BRAF mutation, a RTK switch (loss of c-KIT and gain of c-MET/AXL), etc. We established and characterized the IM-resistant GIST T-1 cell line (GIST T-1R) lacking secondary c-KIT mutations typical for the IM-resistant phenotype. The resistance to IM in GIST T-1R cells was due to RTK switch (loss of c-KIT/gain of FGFR2α). Indeed, we have found that FGFR inhibition reduced cellular viability, induced apoptosis and affected the growth kinetics of the IM-resistant GISTs in vitro. In contrast, IM-naive GIST T-1 parental cells were not susceptible to FGFR inhibition. Importantly, inhibition of FGF-signaling restored the susceptibility to IM in IM-resistant GISTs. Additionally, IM-resistant GISTs were less susceptible to certain chemotherapeutic agents as compared to parental IM-sensitive GIST cells. The chemoresistance in GIST T-1R cells is not due to overexpression of ABC-related transporter proteins and might be the result of upregulation of DNA damage signaling and repair (DDR) genes involved in DNA double-strand break (DSB) repair pathways (e.g., XRCC3, Rad51, etc.). Taken together, the established GIST T-1R cell subline might be used for in vitro and in vivo studies to examine the efficacy and prospective use of FGFR inhibitors for patients with IM-resistant, un-resectable and metastatic forms of GISTs with the type of RTK switch indicated above.
Collapse
|
71
|
Nishina T, Takahashi S, Iwasawa R, Noguchi H, Aoki M, Doi T. Safety, pharmacokinetic, and pharmacodynamics of erdafitinib, a pan-fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor, in patients with advanced or refractory solid tumors. Invest New Drugs 2017; 36:424-434. [PMID: 28965185 DOI: 10.1007/s10637-017-0514-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 11/30/2022]
Abstract
Introduction This phase 1, open-label, multicenter, single-arm, dose-escalation study aimed to evaluate safety, pharmacokinetics (PK), and pharmacodynamics of erdafitinib (JNJ-42756493), an oral selective pan-fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor, and to determine the recommended phase 2 dose in Japanese patients with advanced or refractory solid tumors. Methods Three to 6 patients were enrolled into sequentially escalating dose cohorts (erdafitinib 2, 4, or 6 mg) with a daily dosing schedule of 21-day cycles or a 7 days-on/7 days-off intermittent schedule (erdafitinib 10 mg or 12 mg) of 28-day cycles. Results Nineteen patients received escalating doses of erdafitinib with a daily or intermittent schedule. The most common treatment-emergent adverse events (TEAEs) were hyperphosphatemia (73.7%), nausea (36.8%), stomatitis (26.3%), dysgeusia (26.3%) and dry mouth (21.1%). The maximum tolerated dose was not reached in this study. No Grade 3 or higher TEAEs, or serious TEAEs were noted and no clinically significant changes in vital signs, laboratory parameters, and electrocardiogram readings were observed. However, one case of dose-limiting toxicity in the 12 mg intermittent dosing group was observed: Grade 2 detachment of retinal pigment epithelium (bilateral) with treatment discontinuation. The maximum plasma concentrations of erdafitinib exhibited a dose-dependent increase. The median tmax ranged from 2 to 3 h after the initial dose to 2-6 h following multiple daily dosing. Based on the safety and PK data, the 10 mg 7 days-on/7 days-off regimen was determined as the recommended phase 2 dose in this study. Conclusions Erdafitinib was well tolerated in Japanese patients with advanced or refractory solid tumors. TRIAL REGISTRATION NCT01962532.
Collapse
Affiliation(s)
- Tomohiro Nishina
- National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Shunji Takahashi
- The Cancer Institute Hospital of Japanese Foundation of Cancer Research, Tokyo, Japan
| | | | | | | | - Toshihiko Doi
- National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
72
|
Hanker AB, Garrett JT, Estrada MV, Moore PD, Ericsson PG, Koch JP, Langley E, Singh S, Kim PS, Frampton GM, Sanford E, Owens P, Becker J, Groseclose MR, Castellino S, Joensuu H, Huober J, Brase JC, Majjaj S, Brohée S, Venet D, Brown D, Baselga J, Piccart M, Sotiriou C, Arteaga CL. HER2-Overexpressing Breast Cancers Amplify FGFR Signaling upon Acquisition of Resistance to Dual Therapeutic Blockade of HER2. Clin Cancer Res 2017; 23:4323-4334. [PMID: 28381415 PMCID: PMC5540793 DOI: 10.1158/1078-0432.ccr-16-2287] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/11/2016] [Accepted: 03/31/2017] [Indexed: 12/26/2022]
Abstract
Purpose: Dual blockade of HER2 with trastuzumab and lapatinib or pertuzumab has been shown to be superior to single-agent trastuzumab. However, a significant fraction of HER2-overexpressing (HER2+) breast cancers escape from these drug combinations. In this study, we sought to discover the mechanisms of acquired resistance to the combination of lapatinib + trastuzumab.Experimental Design: HER2+ BT474 xenografts were treated with lapatinib + trastuzumab long-term until resistance developed. Potential mechanisms of acquired resistance were evaluated in lapatinib + trastuzumab-resistant (LTR) tumors by targeted capture next-generation sequencing. In vitro experiments were performed to corroborate these findings, and a novel drug combination was tested against LTR xenografts. Gene expression and copy-number analyses were performed to corroborate our findings in clinical samples.Results: LTR tumors exhibited an increase in FGF3/4/19 copy number, together with an increase in FGFR phosphorylation, marked stromal changes in the tumor microenvironment, and reduced tumor uptake of lapatinib. Stimulation of BT474 cells with FGF4 promoted resistance to lapatinib + trastuzumab in vitro Treatment with FGFR tyrosine kinase inhibitors reversed these changes and overcame resistance to lapatinib + trastuzumab. High expression of FGFR1 correlated with a statistically shorter progression-free survival in patients with HER2+ early breast cancer treated with adjuvant trastuzumab. Finally, FGFR1 and/or FGF3 gene amplification correlated with a lower pathologic complete response in patients with HER2+ early breast cancer treated with neoadjuvant anti-HER2 therapy.Conclusions: Amplification of FGFR signaling promotes resistance to HER2 inhibition, which can be diminished by the combination of HER2 and FGFR inhibitors. Clin Cancer Res; 23(15); 4323-34. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Disease-Free Survival
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Fibroblast Growth Factor 3/antagonists & inhibitors
- Fibroblast Growth Factor 3/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lapatinib
- Mice
- Neoadjuvant Therapy/adverse effects
- Protein Kinase Inhibitors/administration & dosage
- Quinazolines/administration & dosage
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Trastuzumab/administration & dosage
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ariella B Hanker
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Joan T Garrett
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Mónica Valeria Estrada
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Preston D Moore
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Paula González Ericsson
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - James P Koch
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | | | | | | | | | | | - Philip Owens
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Jennifer Becker
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - M Reid Groseclose
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina
| | - Stephen Castellino
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
| | - Jens Huober
- Department of Gynecology, University of Ulm, Ulm, Germany
| | - Jan C Brase
- Novartis Pharmaceuticals, Basel, Switzerland
| | - Samira Majjaj
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvain Brohée
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - David Venet
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - David Brown
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - José Baselga
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martine Piccart
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Christos Sotiriou
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Carlos L Arteaga
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee.
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
73
|
Li X, Guise CP, Taghipouran R, Yosaatmadja Y, Ashoorzadeh A, Paik WK, Squire CJ, Jiang S, Luo J, Xu Y, Tu ZC, Lu X, Ren X, Patterson AV, Smaill JB, Ding K. 2-Oxo-3, 4-dihydropyrimido[4, 5- d ]pyrimidinyl derivatives as new irreversible pan fibroblast growth factor receptor (FGFR) inhibitors. Eur J Med Chem 2017; 135:531-543. [DOI: 10.1016/j.ejmech.2017.04.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
|
74
|
Wang HQ, Halilovic E, Li X, Liang J, Cao Y, Rakiec DP, Ruddy DA, Jeay S, Wuerthner JU, Timple N, Kasibhatla S, Li N, Williams JA, Sellers WR, Huang A, Li F. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models. eLife 2017; 6. [PMID: 28425916 PMCID: PMC5435462 DOI: 10.7554/elife.17137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 04/18/2017] [Indexed: 12/02/2022] Open
Abstract
The efficacy of ALK inhibitors in patients with ALK-mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations. DOI:http://dx.doi.org/10.7554/eLife.17137.001
Collapse
Affiliation(s)
- Hui Qin Wang
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Ensar Halilovic
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Xiaoyan Li
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Jinsheng Liang
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Yichen Cao
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Daniel P Rakiec
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - David A Ruddy
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Sebastien Jeay
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jens U Wuerthner
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Noelito Timple
- Genomics Institute of the Novartis Research Foundation, San Diego, United States
| | - Shailaja Kasibhatla
- Genomics Institute of the Novartis Research Foundation, San Diego, United States
| | - Nanxin Li
- Genomics Institute of the Novartis Research Foundation, San Diego, United States
| | - Juliet A Williams
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - William R Sellers
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Alan Huang
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Fang Li
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| |
Collapse
|
75
|
Insights into ligand stimulation effects on gastro-intestinal stromal tumors signalling. Cell Signal 2017; 29:138-149. [DOI: 10.1016/j.cellsig.2016.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 01/24/2023]
|
76
|
Traer E, Martinez J, Javidi-Sharifi N, Agarwal A, Dunlap J, English I, Kovacsovics T, Tyner JW, Wong M, Druker BJ. FGF2 from Marrow Microenvironment Promotes Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia. Cancer Res 2016; 76:6471-6482. [PMID: 27671675 DOI: 10.1158/0008-5472.can-15-3569] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022]
Abstract
Potent FLT3 inhibitors, such as quizartinib (AC220), have shown promise in treating acute myeloid leukemia (AML) containing FLT3 internal tandem duplication (ITD) mutations. However, responses are not durable and resistance develops within months. In this study, we outline a two-step model of resistance whereby extrinsic microenvironmental proteins FLT3 ligand (FL) and fibroblast growth factor 2 (FGF2) protect FLT3-ITD+ MOLM14 cells from AC220, providing time for subsequent accumulation of ligand-independent resistance mechanisms. FL directly attenuated AC220 inhibition of FLT3, consistent with previous reports. Conversely, FGF2 promoted resistance through activation of FGFR1 and downstream MAPK effectors; these resistant cells responded synergistically to combinatorial inhibition of FGFR1 and FLT3. Removing FL or FGF2 from ligand-dependent resistant cultures transiently restored sensitivity to AC220, but accelerated acquisition of secondary resistance via reactivation of FLT3 and RAS/MAPK signaling. FLT3-ITD AML patients treated with AC220 developed increased FGF2 expression in marrow stromal cells, which peaked prior to overt clinical relapse and detection of resistance mutations. Overall, these results support a strategy of early combination therapy to target early survival signals from the bone marrow microenvironment, in particular FGF2, to improve the depth of response in FLT3-ITD AML. Cancer Res; 76(22); 6471-82. ©2016 AACR.
Collapse
Affiliation(s)
- Elie Traer
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. .,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Jacqueline Martinez
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | | | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Jennifer Dunlap
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Department of Anatomic Pathology, Oregon Health and Science University, Portland, Oregon
| | - Isabel English
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Tibor Kovacsovics
- BMT, Blood and Marrow Transplant, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Melissa Wong
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
77
|
Szucs Z, Thway K, Fisher C, Bulusu R, Constantinidou A, Benson C, van der Graaf WT, Jones RL. Promising novel therapeutic approaches in the management of gastrointestinal stromal tumors. Future Oncol 2016; 13:185-194. [PMID: 27600625 DOI: 10.2217/fon-2016-0194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Primary and secondary resistance to currently available licensed tyrosine kinase inhibitors poses a real clinical challenge in the management of advanced gastrointestinal stromal tumors. Within the frame of early phase clinical trials novel systemic treatments are currently being evaluated to target both the well explored and novel emerging downstream effectors of KIT and PDGFRA signaling. Alternative therapeutic approaches also include exploring novel inhibitors of the KIT/PDGFRA receptors, immune checkpoint and cyclin-dependent kinase inhibitors. The final clinical trial outcome data for these agents are highly anticipated. Integration of new diagnostic techniques into routine clinical practice can potentially guide tailored delivery of agents in the treatment of a highly polyclonal, heterogeneous disease such as heavily pretreated advanced gastrointestinal stromal tumor.
Collapse
Affiliation(s)
- Zoltan Szucs
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Khin Thway
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Cyril Fisher
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Ramesh Bulusu
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | | | - Charlotte Benson
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Winette Ta van der Graaf
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK.,The Institute of Cancer Research, Cotswold Road, Sutton, SM2 5NG, UK
| | - Robin L Jones
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
78
|
Molecular subtypes of gastrointestinal stromal tumor requiring specific treatments. Curr Opin Oncol 2016; 28:331-7. [DOI: 10.1097/cco.0000000000000303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
79
|
Manchado E, Weissmueller S, Morris JP, Chen CC, Wullenkord R, Lujambio A, de Stanchina E, Poirier JT, Gainor JF, Corcoran RB, Engelman JA, Rudin CM, Rosen N, Lowe SW. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 2016; 534:647-51. [PMID: 27338794 PMCID: PMC4939262 DOI: 10.1038/nature18600] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/24/2016] [Indexed: 01/10/2023]
Abstract
Therapeutic targeting of KRAS-mutant lung adenocarcinoma represents a major goal of clinical oncology. KRAS itself has proved difficult to inhibit, and the effectiveness of agents that target key KRAS effectors has been thwarted by activation of compensatory or parallel pathways that limit their efficacy as single agents. Here we take a systematic approach towards identifying combination targets for trametinib, a MEK inhibitor approved by the US Food and Drug Administration, which acts downstream of KRAS to suppress signalling through the mitogen-activated protein kinase (MAPK) cascade. Informed by a short-hairpin RNA screen, we show that trametinib provokes a compensatory response involving the fibroblast growth factor receptor 1 (FGFR1) that leads to signalling rebound and adaptive drug resistance. As a consequence, genetic or pharmacological inhibition of FGFR1 in combination with trametinib enhances tumour cell death in vitro and in vivo. This compensatory response shows distinct specificities: it is dominated by FGFR1 in KRAS-mutant lung and pancreatic cancer cells, but is not activated or involves other mechanisms in KRAS wild-type lung and KRAS-mutant colon cancer cells. Importantly, KRAS-mutant lung cancer cells and patients’ tumours treated with trametinib show an increase in FRS2 phosphorylation, a biomarker of FGFR activation; this increase is abolished by FGFR1 inhibition and correlates with sensitivity to trametinib and FGFR inhibitor combinations. These results demonstrate that FGFR1 can mediate adaptive resistance to trametinib and validate a combinatorial approach for treating KRAS-mutant lung cancer.
Collapse
Affiliation(s)
- Eusebio Manchado
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Susann Weissmueller
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - John P. Morris
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chi-Chao Chen
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Ramona Wullenkord
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amaia Lujambio
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John T. Poirier
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin F. Gainor
- Massachusetts General Hospital Cancer Center, Department of Medicine and Harvard Medical School, Boston, MA 02114, USA
| | - Ryan B. Corcoran
- Massachusetts General Hospital Cancer Center, Department of Medicine and Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey A. Engelman
- Massachusetts General Hospital Cancer Center, Department of Medicine and Harvard Medical School, Boston, MA 02114, USA
| | - Charles M. Rudin
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neal Rosen
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| |
Collapse
|
80
|
Kitai H, Ebi H, Tomida S, Floros KV, Kotani H, Adachi Y, Oizumi S, Nishimura M, Faber AC, Yano S. Epithelial-to-Mesenchymal Transition Defines Feedback Activation of Receptor Tyrosine Kinase Signaling Induced by MEK Inhibition in KRAS-Mutant Lung Cancer. Cancer Discov 2016; 6:754-69. [PMID: 27154822 DOI: 10.1158/2159-8290.cd-15-1377] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/04/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED KRAS is frequently mutated in lung cancer. Whereas MAPK is a well-known effector pathway of KRAS, blocking this pathway with clinically available MAPK inhibitors is relatively ineffective. Here, we report that epithelial-to-mesenchymal transition rewires the expression of receptor tyrosine kinases, leading to differential feedback activation of the MAPK pathway following MEK inhibition. In epithelial-like KRAS-mutant lung cancers, this feedback was attributed to ERBB3-mediated activation of MEK and AKT. In contrast, in mesenchymal-like KRAS-mutant lung cancers, FGFR1 was dominantly expressed but suppressed by the negative regulator Sprouty proteins; MEK inhibition led to repression of SPRY4 and subsequent FGFR1-mediated reactivation of MEK and AKT. Therapeutically, the combination of a MEK inhibitor (MEKi) and an FGFR inhibitor (FGFRi) induced cell death in vitro and tumor regressions in vivo These data establish the rationale and a therapeutic approach to treat mesenchymal-like KRAS-mutant lung cancers effectively with clinically available FGFR1 and MAPK inhibitors. SIGNIFICANCE Adaptive resistance to MEKi is driven by receptor tyrosine kinases specific to the differentiation state of the KRAS-mutant non-small cell lung cancer (NSCLC). In mesenchymal-like KRAS-mutant NSCLC, FGFR1 is highly expressed, and MEK inhibition relieves feedback suppression of FGFR1, resulting in reactivation of ERK; suppression of ERK by MEKi/FGFRi combination results in tumor shrinkage. Cancer Discov; 6(7); 754-69. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 681.
Collapse
Affiliation(s)
- Hidenori Kitai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Ishikawa, Japan. First Department of Medicine, Hokkaido University School of Medicine, Hokkaido, Japan
| | - Hiromichi Ebi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Ishikawa, Japan. Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, Japan.
| | - Shuta Tomida
- Department of Biobank, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Konstantinos V Floros
- VCU Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Hiroshi Kotani
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Yuta Adachi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Satoshi Oizumi
- First Department of Medicine, Hokkaido University School of Medicine, Hokkaido, Japan
| | - Masaharu Nishimura
- First Department of Medicine, Hokkaido University School of Medicine, Hokkaido, Japan
| | - Anthony C Faber
- VCU Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
81
|
Integrating computational and chemical biology tools in the discovery of antiangiogenic small molecule ligands of FGF2 derived from endogenous inhibitors. Sci Rep 2016; 6:23432. [PMID: 27000667 PMCID: PMC4802308 DOI: 10.1038/srep23432] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
The FGFs/FGFRs system is a recognized actionable target for therapeutic approaches aimed at inhibiting tumor growth, angiogenesis, metastasis, and resistance to therapy. We previously identified a non-peptidic compound (SM27) that retains the structural and functional properties of the FGF2-binding sequence of thrombospondin-1 (TSP-1), a major endogenous inhibitor of angiogenesis. Here we identified new small molecule inhibitors of FGF2 based on the initial lead. A similarity-based screening of small molecule libraries, followed by docking calculations and experimental studies, allowed selecting 7 bi-naphthalenic compounds that bound FGF2 inhibiting its binding to both heparan sulfate proteoglycans and FGFR-1. The compounds inhibit FGF2 activity in in vitro and ex vivo models of angiogenesis, with improved potency over SM27. Comparative analysis of the selected hits, complemented by NMR and biochemical analysis of 4 newly synthesized functionalized phenylamino-substituted naphthalenes, allowed identifying the minimal stereochemical requirements to improve the design of naphthalene sulfonates as FGF2 inhibitors.
Collapse
|
82
|
Ye Y, Jiang D, Li J, Wang M, Han C, Zhang X, Zhao C, Wen J, Kan Q. Silencing of FGFR4 could influence the biological features of gastric cancer cells and its therapeutic value in gastric cancer. Tumour Biol 2015; 37:3185-95. [PMID: 26432329 DOI: 10.1007/s13277-015-4100-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/14/2015] [Indexed: 12/29/2022] Open
Abstract
To clarify the role of fibroblast growth factor receptor 4 (FGFR4) in gastric cancer (GC) and explore the therapeutic value of BGJ398 targeted to FGFR4. We constructed lentivirus vectors to stably knockdown FGFR4 expression in GC cells. Function assays in vitro and in vivo, treated with 5-fluorouracil (5-Fu) and BGJ398, were performed to study the change of biological behaviors of GC cells and related mechanism. The proliferation and invasive ability of HGC27 and MKN45 significantly decreased while the apoptosis rate of GC cells obviously increased in shRNA group (P < 0.05). The expressions of Bcl-xl, FLIP, PCNA, vimentin, p-erk, and p-STAT3 significantly reduced while the expressions of caspase-3 and E-cadherin markly enhanced in shRNA group. The proliferation abilities of GC cells were more significantly inhibited by the combination of BGJ398 and 5-Fu in shRNA group (P < 0.05). Compared to negative control (NC), the single and combination of 5-Fu and BGJ398 all significantly increased the apoptosis rate of GC cells, especially in the combination group (P < 0.01). The single and combination of 5-Fu and BGJ398 decreased the expressions of PCNA, Bcl-xl, and FLIP while increased the expression of caspase-3 in GC cells, especially in shRNA groups. Furthermore, knockdown of FGFR4 expression might prevent the growth of GC in vivo. Silencing of FGFR4 expression could weaken the invasive ability, increase the apoptosis rate, and decrease the proliferation ability of GC cells in vitro and in vivo. Furthermore, the combination of 5-Fu and BGJ398 had synergy in inhibiting the proliferation ability and increasing apoptosis rate of GC cells, directing a new target drug in GC.
Collapse
Affiliation(s)
- Yanwei Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Dongbao Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Li
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Wang
- Department of Function, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Han
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiefu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianguo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quancheng Kan
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
83
|
Bauer S, Joensuu H. Emerging Agents for the Treatment of Advanced, Imatinib-Resistant Gastrointestinal Stromal Tumors: Current Status and Future Directions. Drugs 2015; 75:1323-34. [PMID: 26187774 PMCID: PMC4532715 DOI: 10.1007/s40265-015-0440-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Imatinib is strongly positioned as the recommended first-line agent for most patients with advanced gastrointestinal stromal tumor (GIST) due to its good efficacy and tolerability. Imatinib-resistant advanced GIST continues to pose a therapeutic challenge, likely due to the frequent presence of multiple mutations that confer drug resistance. Sunitinib and regorafenib are approved as second- and third-line agents, respectively, for patients whose GIST does not respond to imatinib or who do not tolerate imatinib, and their use is supported by large randomized trials. ATP-mimetic tyrosine kinase inhibitors provide clinical benefit even in heavily pretreated GIST suggesting that oncogenic dependency on KIT frequently persists. Several potentially useful tyrosine kinase inhibitors with distinct inhibitory profiles against both KIT ATP-binding domain and activation loop mutations have not yet been fully evaluated. Agents that have been found promising in preclinical models and early clinical trials include small molecule KIT and PDGFRA mutation-specific inhibitors, heat shock protein inhibitors, histone deacetylase inhibitors, allosteric KIT inhibitors, KIT and PDGFRA signaling pathway inhibitors, and immunological approaches including antibody-drug conjugates. Concomitant or sequential administration of tyrosine kinase inhibitors with KIT signaling pathway inhibitors require further evaluation, as well as rotation of tyrosine kinase inhibitors as a means to suppress drug-resistant cell clones.
Collapse
Affiliation(s)
- Sebastian Bauer
- />Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- />German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Heikki Joensuu
- />Department of Oncology, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00029 Helsinki, Finland
| |
Collapse
|