51
|
Smyth LM, Piha-Paul SA, Won HH, Schram AM, Saura C, Loi S, Lu J, Shapiro GI, Juric D, Mayer IA, Arteaga CL, de la Fuente MI, Brufksy AM, Spanggaard I, Mau-Sørensen M, Arnedos M, Moreno V, Boni V, Sohn J, Schwartzberg LS, Gonzàlez-Farré X, Cervantes A, Bidard FC, Gorelick AN, Lanman RB, Nagy RJ, Ulaner GA, Chandarlapaty S, Jhaveri K, Gavrila EI, Zimel C, Selcuklu SD, Melcer M, Samoila A, Cai Y, Scaltriti M, Mann G, Xu F, Eli LD, Dujka M, Lalani AS, Bryce R, Baselga J, Taylor BS, Solit DB, Meric-Bernstam F, Hyman DM. Efficacy and Determinants of Response to HER Kinase Inhibition in HER2-Mutant Metastatic Breast Cancer. Cancer Discov 2019; 10:198-213. [PMID: 31806627 DOI: 10.1158/2159-8290.cd-19-0966] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/23/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022]
Abstract
HER2 mutations define a subset of metastatic breast cancers with a unique mechanism of oncogenic addiction to HER2 signaling. We explored activity of the irreversible pan-HER kinase inhibitor neratinib, alone or with fulvestrant, in 81 patients with HER2-mutant metastatic breast cancer. Overall response rate was similar with or without estrogen receptor (ER) blockade. By comparison, progression-free survival and duration of response appeared longer in ER+ patients receiving combination therapy, although the study was not designed for direct comparison. Preexistent concurrent activating HER2 or HER3 alterations were associated with poor treatment outcome. Similarly, acquisition of multiple HER2-activating events, as well as gatekeeper alterations, were observed at disease progression in a high proportion of patients deriving clinical benefit from neratinib. Collectively, these data define HER2 mutations as a therapeutic target in breast cancer and suggest that coexistence of additional HER signaling alterations may promote both de novo and acquired resistance to neratinib. SIGNIFICANCE: HER2 mutations define a targetable breast cancer subset, although sensitivity to irreversible HER kinase inhibition appears to be modified by the presence of concurrent activating genomic events in the pathway. These findings have implications for potential future combinatorial approaches and broader therapeutic development for this genomically defined subset of breast cancer.This article is highlighted in the In This Issue feature, p. 161.
Collapse
Affiliation(s)
- Lillian M Smyth
- Memorial Sloan Kettering Cancer Center, New York, New York.,St. Vincent's University Hospital, Dublin, Ireland
| | | | - Helen H Won
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Cristina Saura
- Vall d'Hebron University Hospital, Vall d'Hebrón Institute of Oncology (VHIO), Barcelona, Spain
| | - Sherene Loi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Janice Lu
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | | | - Dejan Juric
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Carlos L Arteaga
- The University of Texas Southwestern Medical Center Harold C. Simmons Comprehensive Cancer Center, Dallas, Texas
| | | | - Adam M Brufksy
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
| | | | | | | | | | - Valentina Boni
- START Madrid Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Joohyuk Sohn
- Yonsei Cancer Center, University College of Medicine, Seoul, Korea
| | | | | | - Andrés Cervantes
- CIBERONC, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | | | | | | | | | - Gary A Ulaner
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Myra Melcer
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Yanyan Cai
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Grace Mann
- Puma Biotechnology, Inc., Los Angeles, California
| | - Feng Xu
- Puma Biotechnology, Inc., Los Angeles, California
| | - Lisa D Eli
- Puma Biotechnology, Inc., Los Angeles, California
| | | | | | | | - José Baselga
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barry S Taylor
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - David M Hyman
- Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
52
|
Xuhong JC, Qi XW, Zhang Y, Jiang J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am J Cancer Res 2019; 9:2103-2119. [PMID: 31720077 PMCID: PMC6834479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023] Open
Abstract
The incidence of breast cancer ranks first among female malignant tumors that affect women's health. Epidermal growth factor receptor (EGFR) family overexpression, especially human epidermal receptor2 (HER2), features prominently in breast cancer with a significant relation to poor prognosis. Currently, specific monoclonal antibodies and tyrosine kinase inhibitors (TKIs) are the two HER2 targeting strategies that have successfully improved the prognosis of patients with HER2-positive breast cancer. This paper focuses on three officially approved TKIs for HER2 breast cancer, namely, lapatinib, neratinib and pyrotinib, and systematically reviews the mechanism, safety, efficacy and resistance of these TKIs.
Collapse
Affiliation(s)
- Jun-Cheng Xuhong
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Xiao-Wei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Jun Jiang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| |
Collapse
|
53
|
Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat 2019; 47:100646. [PMID: 31733611 DOI: 10.1016/j.drup.2019.100646] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
For many decades classical anti-tumor therapies included chemotherapy, radiation and surgery; however, in the last two decades, following the identification of the genomic drivers and main hallmarks of cancer, the introduction of therapies that target specific tumor-promoting oncogenic or non-oncogenic pathways, has revolutionized cancer therapeutics. Despite the significant progress in cancer therapy, clinical oncologists are often facing the primary impediment of anticancer drug resistance, as many cancer patients display either intrinsic chemoresistance from the very beginning of the therapy or after initial responses and upon repeated drug treatment cycles, acquired drug resistance develops and thus relapse emerges, resulting in increased mortality. Our attempts to understand the molecular basis underlying these drug resistance phenotypes in pre-clinical models and patient specimens revealed the extreme plasticity and adaptive pathways employed by tumor cells, being under sustained stress and extensive genomic/proteomic instability due to the applied therapeutic regimens. Subsequent efforts have yielded more effective inhibitors and combinatorial approaches (e.g. the use of specific pharmacologic inhibitors with immunotherapy) that exhibit synergistic effects against tumor cells, hence enhancing therapeutic indices. Furthermore, new advanced methodologies that allow for the early detection of genetic/epigenetic alterations that lead to drug chemoresistance and prospective validation of biomarkers which identify patients that will benefit from certain drug classes, have started to improve the clinical outcome. This review discusses emerging principles of drug resistance to cancer therapies targeting a wide array of oncogenic kinases, along with hedgehog pathway and the proteasome and apoptotic inducers, as well as epigenetic and metabolic modulators. We further discuss mechanisms of resistance to monoclonal antibodies, immunomodulators and immune checkpoint inhibitors, potential biomarkers of drug response/drug resistance, along with possible new therapeutic avenues for the clinicians to combat devastating drug resistant malignancies. It is foreseen that these topics will be major areas of focused multidisciplinary translational research in the years to come.
Collapse
Affiliation(s)
- Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
54
|
Preclinical Characteristics of the Irreversible Pan-HER Kinase Inhibitor Neratinib Compared with Lapatinib: Implications for the Treatment of HER2-Positive and HER2-Mutated Breast Cancer. Cancers (Basel) 2019; 11:cancers11060737. [PMID: 31141894 PMCID: PMC6628314 DOI: 10.3390/cancers11060737] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
An estimated 15–20% of breast cancers overexpress human epidermal growth factor receptor 2 (HER2/ERBB2/neu). Two small-molecule tyrosine kinase inhibitors (TKIs), lapatinib and neratinib, have been approved for the treatment of HER2-positive (HER2+) breast cancer. Lapatinib, a reversible epidermal growth factor receptor (EGFR/ERBB1/HER1) and HER2 TKI, is used for the treatment of advanced HER2+ breast cancer in combination with capecitabine, in combination with trastuzumab in patients with hormone receptor-negative metastatic breast cancer, and in combination with an aromatase inhibitor for the first-line treatment of HER2+ breast cancer. Neratinib, a next-generation, irreversible pan-HER TKI, is used in the US for extended adjuvant treatment of adult patients with early-stage HER2+ breast cancer following 1 year of trastuzumab. In Europe, neratinib is used in the extended adjuvant treatment of adult patients with early-stage hormone receptor-positive HER2+ breast cancer who are less than 1 year from the completion of prior adjuvant trastuzumab-based therapy. Preclinical studies have shown that these agents have distinct properties that may impact their clinical activity. This review describes the preclinical characterization of lapatinib and neratinib, with a focus on the differences between these two agents that may have implications for patient management.
Collapse
|
55
|
Floss DM, Scheller J. Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine Growth Factor Rev 2019; 47:1-20. [PMID: 31147158 DOI: 10.1016/j.cytogfr.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Cytokines control immune related events and are critically involved in a plethora of patho-physiological processes including autoimmunity and cancer development. Mutations which cause ligand-independent, constitutive activation of cytokine receptors are quite frequently found in diseases. Many constitutive-active cytokine receptor variants have been directly connected to disease development and mechanistically analyzed. Nature's solutions to generate constitutive cytokine receptors has been recently adopted by synthetic cytokine receptor biology, with the goal to optimize immune therapeutics. Here, CAR T cell immmunotherapy represents the first example to combine synthetic biology with genetic engineering during therapy. Hence, constitutive-active cytokine receptors are therapeutic targets, but also emerging tools to improve or modulate immunotherapeutic strategies. This review gives a comprehensive insight into the field of naturally occurring and synthetic constitutive-active cytokine receptors.
Collapse
Affiliation(s)
- Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
56
|
Jin J, Wu X, Yin J, Li M, Shen J, Li J, Zhao Y, Zhao Q, Wu J, Wen Q, Cho CH, Yi T, Xiao Z, Qu L. Identification of Genetic Mutations in Cancer: Challenge and Opportunity in the New Era of Targeted Therapy. Front Oncol 2019; 9:263. [PMID: 31058077 PMCID: PMC6477148 DOI: 10.3389/fonc.2019.00263] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/22/2019] [Indexed: 01/01/2023] Open
Abstract
The introduction of targeted therapy is the biggest success in the treatment of cancer in the past few decades. However, heterogeneous cancer is characterized by diverse molecular alterations as well as multiple clinical profiles. Specific genetic mutations in cancer therapy targets may increase drug sensitivity, or more frequently result in therapeutic resistance. In the past 3 years, several novel targeted therapies have been approved for cancer treatment, including drugs with new targets (i.e., anti-PD1/PDL1 therapies and CDK4/6 inhibitors), mutation targeting drugs (i.e., the EGFR T790M targeting osimertinib), drugs with multiple targets (i.e., the EGFR/HER2 dual inhibitor neratinib) and drug combinations (i.e., encorafenib/binimetinib and dabrafenib/trametinib). In this perspective, we focus on the most up-to-date knowledge of targeted therapy and describe how genetic mutations influence the sensitivity of targeted therapy, highlighting the challenges faced within this era of precision medicine. Moreover, the strategies that deal with mutation-driven resistance are further discussed. Advances in these areas would allow for more targeted and effective therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liping Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
57
|
Cocco E, Lopez S, Santin AD, Scaltriti M. Prevalence and role of HER2 mutations in cancer. Pharmacol Ther 2019; 199:188-196. [PMID: 30951733 DOI: 10.1016/j.pharmthera.2019.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022]
Abstract
HER2 activating mutations act as oncogenic drivers in various cancer types. In the clinic, they can be identified by next generation sequencing (NGS) in either tumor biopsies or circulating cell-free DNA (cfDNA). Preclinical data indicate that HER2 "hot spot" mutations are constitutively active, have transforming capacity in vitro and in vivo and show variable sensitivity to anti-HER2 based therapies. Recent clinical trials also revealed activity of HER2-targeted drugs against a variety of tumors harboring HER2 mutations. Here, we review the prevalence and type of HER2 mutations identified in different human cancers, their biochemical and biological characterization, and their sensitivity to anti HER2-based therapies in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Emiliano Cocco
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salvatore Lopez
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, United States of America; Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro 88100, Italy
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, United States of America.
| | - Maurizio Scaltriti
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
58
|
Jiang W, Ji M. Receptor tyrosine kinases in PI3K signaling: The therapeutic targets in cancer. Semin Cancer Biol 2019; 59:3-22. [PMID: 30943434 DOI: 10.1016/j.semcancer.2019.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/09/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway, one of the most commonly activated signaling pathways in human cancers, plays a crucial role in the regulation of cell proliferation, differentiation, and survival. This pathway is usually activated by receptor tyrosine kinases (RTKs), whose constitutive and aberrant activation is via gain-of-function mutations, chromosomal rearrangement, gene amplification and autocrine. Blockage of PI3K pathway by targeted therapy on RTKs with tyrosine kinases inhibitors (TKIs) and monoclonal antibodies (mAbs) has achieved great progress in past decades; however, there still remain big challenges during their clinical application. In this review, we provide an overview about the most frequently encountered alterations in RTKs and focus on current therapeutic agents developed to counteract their aberrant functions, accompanied with discussions of two major challenges to the RTKs-targeted therapy in cancer - resistance and toxicity.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
59
|
Hanker AB, Brewer MR, Sheehan JH, Koch JP, Sliwoski GR, Nagy R, Lanman R, Berger MF, Hyman DM, Solit DB, He J, Miller V, Cutler RE, Lalani AS, Cross D, Lovly CM, Meiler J, Arteaga CL. Correction: An Acquired HER2T798I Gatekeeper Mutation Induces Resistance to Neratinib in a Patient with HER2 Mutant–Driven Breast Cancer. Cancer Discov 2019; 9:303. [DOI: 10.1158/2159-8290.cd-18-1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Hierro C, Matos I, Martin-Liberal J, Ochoa de Olza M, Garralda E. Agnostic-Histology Approval of New Drugs in Oncology: Are We Already There? Clin Cancer Res 2019; 25:3210-3219. [DOI: 10.1158/1078-0432.ccr-18-3694] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/23/2018] [Accepted: 01/18/2019] [Indexed: 11/16/2022]
|
61
|
Christgen M, Bartels S, Radner M, Raap M, Rieger L, Christgen H, Gluz O, Nitz U, Harbeck N, Lehmann U, Kreipe H. ERBB2 mutation frequency in lobular breast cancer with pleomorphic histology or high-risk characteristics by molecular expression profiling. Genes Chromosomes Cancer 2019; 58:175-185. [PMID: 30520184 DOI: 10.1002/gcc.22716] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022] Open
Abstract
HER2-positive breast cancer is defined by amplification or overexpression of the HER2/ERBB2 oncogene and accounts for about 15% of breast cancer cases. Somatic mutation of ERBB2 is an alternative mechanism, by which activation of HER2 signaling can occur. ERBB2 mutation has been associated with invasive lobular breast cancer (ILBC). This study investigates the frequency and phenotype of ILBC harboring mutated ERBB2. The ERBB2 mutation status was determined by next generation sequencing and/or pyrosequencing in n = 106 ILBCs, including n = 86 primary or locally recurrent tumors and n = 20 metastases from visceral organs, soft tissue, or skin. Immunohistochemical characteristics were determined using tissue microarrays. This series was enriched for ILBCs with pleomorphic histology and/or high-risk expression profiles (Oncotype DX, recurrence score RS > 25). Nearly all specimens were E-cadherin-negative (99%), estrogen receptor (ER)-positive (92%), and lacked ERBB2 overexpression (96%). ERBB2 mutations (p.V777L, p.L755S, p.S310F) were identified in 5/106 (5%) cases. ERBB2-mutated cases included 2/86 (2%) primary tumors and 3/20 (15%) metastases (P = 0.045). ERBB2-mutated cases were associated with loss of ER (2/7, 29%, P = 0.035) and histological grade 3 (4/34, 12%, P = 0.023), but not with solid growth (3/31, 10%, P = 0.148) or pleomorphic histology (2/27, 7%, P = 0.599). No ERBB2 mutation was detected in ILBCs with RS > 25 (0/22, 0%). In 10 patients with multiple matched specimens (n = 25), the ERBB2 mutational status was always concordant. In summary, a small subset of ILBCs harbors potentially actionable ERBB2 mutations. In ERBB2-mutated ILBCs, no association with pleomorphic histology was found.
Collapse
Affiliation(s)
| | - Stephan Bartels
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Martin Radner
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Mieke Raap
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Luisa Rieger
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Oleg Gluz
- West German Study Group, Moenchengladbach, Germany.,Breast Center Niederrhein, Evangelic Bethesda Hospital, Moenchengladbach, Germany.,University Clinics Cologne, Cologne, Germany
| | - Ulrike Nitz
- West German Study Group, Moenchengladbach, Germany.,Breast Center Niederrhein, Evangelic Bethesda Hospital, Moenchengladbach, Germany
| | - Nadia Harbeck
- West German Study Group, Moenchengladbach, Germany.,Breast Center, Department of Obstetrics and Gynecology, University of Munich (LMU), Munich, Germany
| | - Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
62
|
Cheng F, Liang H, Butte AJ, Eng C, Nussinov R. Personal Mutanomes Meet Modern Oncology Drug Discovery and Precision Health. Pharmacol Rev 2019; 71:1-19. [PMID: 30545954 PMCID: PMC6294046 DOI: 10.1124/pr.118.016253] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent remarkable advances in genome sequencing have enabled detailed maps of identified and interpreted genomic variation, dubbed "mutanomes." The availability of thousands of exome/genome sequencing data has prompted the emergence of new challenges in the identification of novel druggable targets and therapeutic strategies. Typically, mutanomes are viewed as one- or two-dimensional. The three-dimensional protein structural view of personal mutanomes sheds light on the functional consequences of clinically actionable mutations revealed in tumor diagnosis and followed up in personalized treatments, in a mutanome-informed manner. In this review, we describe the protein structural landscape of personal mutanomes and provide expert opinions on rational strategies for more streamlined oncological drug discovery and molecularly targeted therapies for each individual and each tumor. We provide the structural mechanism of orthosteric versus allosteric drugs at the atom-level via targeting specific somatic alterations for combating drug resistance and the "undruggable" challenges in solid and hematologic neoplasias. We discuss computational biophysics strategies for innovative mutanome-informed cancer immunotherapies and combination immunotherapies. Finally, we highlight a personal mutanome infrastructure for the emerging development of personalized cancer medicine using a breast cancer case study.
Collapse
Affiliation(s)
- Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| | - Han Liang
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| | - Atul J Butte
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| | - Ruth Nussinov
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| |
Collapse
|
63
|
Nayar U, Cohen O, Kapstad C, Cuoco MS, Waks AG, Wander SA, Painter C, Freeman S, Persky NS, Marini L, Helvie K, Oliver N, Rozenblatt-Rosen O, Ma CX, Regev A, Winer EP, Lin NU, Wagle N. Acquired HER2 mutations in ER + metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat Genet 2018; 51:207-216. [PMID: 30531871 DOI: 10.1038/s41588-018-0287-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
Seventy percent of breast cancers express the estrogen receptor (ER), and agents that target the ER are the mainstay of treatment. However, virtually all people with ER+ breast cancer develop resistance to ER-directed agents in the metastatic setting. Beyond mutations in the ER itself, which occur in 25-30% of people treated with aromatase inhibitors1-4, knowledge about clinical resistance mechanisms remains incomplete. We identified activating HER2 mutations in metastatic biopsies from eight patients with ER+ metastatic breast cancer who had developed resistance to aromatase inhibitors, tamoxifen or fulvestrant. Examination of treatment-naive primary tumors in five patients showed no evidence of pre-existing mutations in four of five patients, suggesting that these mutations were acquired under the selective pressure of ER-directed therapy. The HER2 mutations and ER mutations were mutually exclusive, suggesting a distinct mechanism of acquired resistance to ER-directed therapies. In vitro analysis confirmed that the HER2 mutations conferred estrogen independence as well as-in contrast to ER mutations-resistance to tamoxifen, fulvestrant and the CDK4 and CDK6 inhibitor palbociclib. Resistance was overcome by combining ER-directed therapy with the irreversible HER2 kinase inhibitor neratinib.
Collapse
Affiliation(s)
- Utthara Nayar
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ofir Cohen
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christian Kapstad
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael S Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adrienne G Waks
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Seth A Wander
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Samuel Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lori Marini
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Karla Helvie
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nelly Oliver
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Cynthia X Ma
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute and Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric P Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nikhil Wagle
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
64
|
Martínez-Pérez C, Turnbull AK, Dixon JM. The evolving role of receptors as predictive biomarkers for metastatic breast cancer. Expert Rev Anticancer Ther 2018; 19:121-138. [PMID: 30501540 DOI: 10.1080/14737140.2019.1552138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In breast cancer, estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) are essential biomarkers to predict response to endocrine and anti-HER2 therapies, respectively. In metastatic breast cancer, the use of these receptors and targeted therapies present additional challenges: temporal heterogeneity, together with limited sampling methodologies, hinders receptor status assessment, and the constant evolution of the disease invariably leads to resistance to treatment. Areas covered: This review summarizes the genomic abnormalities in ER and HER2, such as mutations, amplifications, translocations, and alternative splicing, emerging as novel biomarkers that provide an insight into underlying mechanisms of resistance and hold potential predictive value to inform treatment selection. We also describe how liquid biopsies for sampling of circulating markers and ultrasensitive detection technologies have emerged which complement ongoing efforts for biomarker discovery and analysis. Expert commentary: While evidence suggests that genomic aberrations in ER and HER2 could contribute to meeting the pressing need for better predictive biomarkers, efforts need to be made to standardize assessment methods and better understand the resistance mechanisms these markers denote. Taking advantage of emerging technologies, research in upcoming years should include prospective trials incorporating these predictors into the study design to validate their potential clinical value.
Collapse
Affiliation(s)
- Carlos Martínez-Pérez
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - Arran K Turnbull
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - J Michael Dixon
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK.,b Edinburgh Breast Unit , Western General Hospital , Edinburgh , UK
| |
Collapse
|
65
|
Meric-Bernstam F, Johnson AM, Dumbrava EEI, Raghav K, Balaji K, Bhatt M, Murthy RK, Rodon J, Piha-Paul SA. Advances in HER2-Targeted Therapy: Novel Agents and Opportunities Beyond Breast and Gastric Cancer. Clin Cancer Res 2018; 25:2033-2041. [PMID: 30442682 DOI: 10.1158/1078-0432.ccr-18-2275] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/10/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
The introduction of HER2-targeted therapy for breast and gastric patients with ERBB2 (HER2) amplification/overexpression has led to dramatic improvements in oncologic outcomes. In the past 20 years, five HER2-targeted therapies have been FDA approved, with four approved in the past 8 years. HER2-targeted therapy similarly was found to improve outcomes in HER2-positive gastric cancer. Over the past decade, with the introduction of next-generation sequencing into clinical practice, our understanding of HER2 biology has dramatically improved. We have recognized that HER2 amplification is not limited to breast and gastric cancer but is also found in a variety of tumor types such as colon cancer, bladder cancer, and biliary cancer. Furthermore, HER2-targeted therapy has signal of activity in several tumor types. In addition to HER2 amplification and overexpression, there is also increased recognition of activating HER2 mutations and their potential therapeutic relevance. Furthermore, there is a rapidly growing number of new therapeutics targeting HER2 including small-molecule inhibitors, antibody-drug conjugates, and bispecific antibodies. Taken together, an increasing number of patients are likely to benefit from approved and emerging HER2-targeted therapies.
Collapse
Affiliation(s)
- Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amber M Johnson
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ecaterina E Ileana Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kavitha Balaji
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle Bhatt
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rashmi K Murthy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
66
|
Receptor Tyrosine Kinase-Targeted Cancer Therapy. Int J Mol Sci 2018; 19:ijms19113491. [PMID: 30404198 PMCID: PMC6274851 DOI: 10.3390/ijms19113491] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
In the past two decades, several molecular targeted inhibitors have been developed and evaluated clinically to improve the survival of patients with cancer. Molecular targeted inhibitors inhibit the activities of pathogenic tyrosine kinases. Particularly, aberrant receptor tyrosine kinase (RTK) activation is a potential therapeutic target. An increased understanding of genetics, cellular biology and structural biology has led to the development of numerous important therapeutics. Pathogenic RTK mutations, deletions, translocations and amplification/over-expressions have been identified and are currently being examined for their roles in cancers. Therapies targeting RTKs are categorized as small-molecule inhibitors and monoclonal antibodies. Studies are underway to explore abnormalities in 20 types of RTK subfamilies in patients with cancer or other diseases. In this review, we describe representative RTKs important for developing cancer therapeutics and predicting or evaluated resistance mechanisms.
Collapse
|
67
|
Bonello M, Sims AH, Langdon SP. Human epidermal growth factor receptor targeted inhibitors for the treatment of ovarian cancer. Cancer Biol Med 2018; 15:375-388. [PMID: 30766749 PMCID: PMC6372909 DOI: 10.20892/j.issn.2095-3941.2018.0062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the second most lethal gynecological cancer worldwide and while most patients respond to initial therapy, they often relapse with resistant disease. Human epidermal growth factor receptors (especially HER1/EGFR and HER2/ERBB2) are involved in disease progression; hence, strategies to inhibit their action could prove advantageous in ovarian cancer patients, especially in patients resistant to first line therapy. Monoclonal antibodies and tyrosine kinase inhibitors are two classes of drugs that act on these receptors. They have demonstrated valuable antitumor activity in multiple cancers and their possible use in ovarian cancer continues to be studied. In this review, we discuss the human epidermal growth factor receptor family; review emerging clinical studies on monoclonal antibodies and tyrosine kinase inhibitors targeting these receptors in ovarian cancer patients; and propose future research possibilities in this area.
Collapse
Affiliation(s)
- Maria Bonello
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew Harvey Sims
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon Peter Langdon
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
68
|
Uitdehaag JCM, Kooijman JJ, de Roos JADM, Prinsen MBW, Dylus J, Willemsen-Seegers N, Kawase Y, Sawa M, de Man J, van Gerwen SJC, Buijsman RC, Zaman GJR. Combined Cellular and Biochemical Profiling to Identify Predictive Drug Response Biomarkers for Kinase Inhibitors Approved for Clinical Use between 2013 and 2017. Mol Cancer Ther 2018; 18:470-481. [PMID: 30381447 DOI: 10.1158/1535-7163.mct-18-0877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/17/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
Abstract
Kinase inhibitors form the largest class of precision medicine. From 2013 to 2017, 17 have been approved, with 8 different mechanisms. We present a comprehensive profiling study of all 17 inhibitors on a biochemical assay panel of 280 kinases and proliferation assays of 108 cancer cell lines. Drug responses of the cell lines were related to the presence of frequently recurring point mutations, insertions, deletions, and amplifications in 15 well-known oncogenes and tumor-suppressor genes. In addition, drug responses were correlated with basal gene expression levels with a focus on 383 clinically actionable genes. Cell lines harboring actionable mutations defined in the FDA labels, such as mutant BRAF(V600E) for cobimetinib, or ALK gene translocation for ALK inhibitors, are generally 10 times more sensitive compared with wild-type cell lines. This sensitivity window is more narrow for markers that failed to meet endpoints in clinical trials, for instance CDKN2A loss for CDK4/6 inhibitors (2.7-fold) and KRAS mutation for cobimetinib (2.3-fold). Our data underscore the rationale of a number of recently opened clinical trials, such as ibrutinib in ERBB2- or ERBB4-expressing cancers. We propose and validate new response biomarkers, such as mutation in FBXW7 or SMAD4 for EGFR and HER2 inhibitors, ETV4 and ETV5 expression for MEK inhibitors, and JAK3 expression for ALK inhibitors. Potentially, these new markers could be combined to improve response rates. This comprehensive overview of biochemical and cellular selectivities of approved kinase inhibitor drugs provides a rich resource for drug repurposing, basket trial design, and basic cancer research.
Collapse
Affiliation(s)
| | | | | | | | - Jelle Dylus
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | | | | | | | - Jos de Man
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | | | - Rogier C Buijsman
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | - Guido J R Zaman
- Netherlands Translational Research Center B.V., Oss, the Netherlands.
| |
Collapse
|
69
|
Croessmann S, Formisano L, Kinch LN, Gonzalez-Ericsson PI, Sudhan DR, Nagy RJ, Mathew A, Bernicker EH, Cristofanilli M, He J, Cutler RE, Lalani AS, Miller VA, Lanman RB, Grishin NV, Arteaga CL. Combined Blockade of Activating ERBB2 Mutations and ER Results in Synthetic Lethality of ER+/HER2 Mutant Breast Cancer. Clin Cancer Res 2018; 25:277-289. [PMID: 30314968 DOI: 10.1158/1078-0432.ccr-18-1544] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/05/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE We examined the role of ERBB2-activating mutations in endocrine therapy resistance in estrogen receptor positive (ER+) breast cancer. EXPERIMENTAL DESIGN ERBB2 mutation frequency was determined from large genomic databases. Isogenic knock-in ERBB2 mutations in ER+ MCF7 cells and xenografts were used to investigate estrogen-independent growth. Structural analysis was used to determine the molecular interaction of HER L755S with HER3. Small molecules and siRNAs were used to inhibit PI3Kα, TORC1, and HER3. RESULTS Genomic data revealed a higher rate of ERBB2 mutations in metastatic versus primary ER+ tumors. MCF7 cells with isogenically incorporated ERBB2 kinase domain mutations exhibited resistance to estrogen deprivation and to fulvestrant both in vitro and in vivo, despite maintaining inhibition of ERα transcriptional activity. Addition of the irreversible HER2 tyrosine kinase inhibitor neratinib restored sensitivity to fulvestrant. HER2-mutant MCF7 cells expressed higher levels of p-HER3, p-AKT, and p-S6 than cells with wild-type HER2. Structural analysis of the HER2 L755S variant implicated a more flexible active state, potentially allowing for enhanced dimerization with HER3. Treatment with a PI3Kα inhibitor, a TORC1 inhibitor or HER3 siRNA, but not a MEK inhibitor, restored sensitivity to fulvestrant and to estrogen deprivation. Inhibition of mutant HER2 or TORC1, when combined with fulvestrant, equipotently inhibited growth of MCF7/ERBB2 V777L xenografts, suggesting a role for TORC1 in antiestrogen resistance induced by ERBB2 mutations. CONCLUSIONS ERBB2 mutations hyperactivate the HER3/PI3K/AKT/mTOR axis, leading to antiestrogen resistance in ER+ breast cancer. Dual blockade of the HER2 and ER pathways is required for the treatment of ER+/HER2 mutant breast cancers.
Collapse
Affiliation(s)
- Sarah Croessmann
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Luigi Formisano
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lisa N Kinch
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, Texas
| | - Paula I Gonzalez-Ericsson
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dhivya R Sudhan
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Aju Mathew
- University of Kentucky Markey Cancer Center, Lexington, Kentucky
| | | | | | - Jie He
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | | | | | | | | | - Nick V Grishin
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, Texas.,Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas.,Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Carlos L Arteaga
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee. .,Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
70
|
Wulfkuhle JD, Yau C, Wolf DM, Vis DJ, Gallagher RI, Brown-Swigart L, Hirst G, Voest EE, DeMichele A, Hylton N, Symmans F, Yee D, Esserman L, Berry D, Liu M, Park JW, Wessels LF, van’t Veer L, Petricoin EF. Evaluation of the HER/PI3K/AKT Family Signaling Network as a Predictive Biomarker of Pathologic Complete Response for Patients With Breast Cancer Treated With Neratinib in the I-SPY 2 TRIAL. JCO Precis Oncol 2018; 2:PO.18.00024. [PMID: 32914002 PMCID: PMC7446527 DOI: 10.1200/po.18.00024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE In the I-SPY 2 TRIAL (Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging and Molecular Analysis 2), the pan-erythroblastic oncogene B inhibitor neratinib was available to all hormone receptor (HR)/human epidermal growth factor receptor 2 (HER2) subtypes and graduated in the HR-negative/HER2-positive signature. We hypothesized that neratinib response may be predicted by baseline HER2 epidermal growth factor receptor (EGFR) signaling activation/phosphorylation levels independent of total levels of HER2 or EGFR proteins. MATERIALS AND METHODS Complete experimental and response data were available for between 130 and 193 patients. In qualifying analyses, which used logistic regression and treatment interaction analysis, 18 protein/phosphoprotein, 10 mRNA, and 12 DNA biomarkers that related to HER family signaling were evaluated. Exploratory analyses used Wilcoxon rank sum and t tests without multiple comparison correction. RESULTS HER pathway DNA biomarkers were either low prevalence or nonpredictive. In expression biomarker analysis, only one gene (STMN1) was specifically associated with response to neratinib in the HER2-negative subset. In qualifying protein/phosphoprotein analyses that used reverse phase protein microarrays, six HER family markers were associated with neratinib response. After analysis was adjusted for HR/HER2 status, EGFR Y1173 (pEGFR) showed a significant biomarker-by-treatment interaction (P = .049). Exploratory analysis of HER family signaling in patients with triple-negative (TN) disease found that activation of EGFR Y1173 (P = .005) and HER2 Y1248 (pHER2) (P = .019) were positively associated with pathologic complete response. Exploratory analysis in this pEGFR/pHER2-activated TN subgroup identified elevated levels of estrogen receptor α (P < .006) in these patients. CONCLUSION Activation of HER family phosphoproteins associates with response to neratinib, but only EGFR Y1173 and STMN1 appear to add value to the graduating signature. Activation of HER2 and EGFR in TN tumors may identify patients whose diseases respond to neratinib and implies that there is a subset of patients with TN disease who paradoxically exhibit HER family signaling activation and may achieve clinical benefit with neratinib; this concept must be validated in future studies.
Collapse
Affiliation(s)
- Julia D. Wulfkuhle
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Christina Yau
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Denise M. Wolf
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Daniel J. Vis
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Rosa I. Gallagher
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Lamorna Brown-Swigart
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Gillian Hirst
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Emile E. Voest
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Angela DeMichele
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Nola Hylton
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Fraser Symmans
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Douglas Yee
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Laura Esserman
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Donald Berry
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Minetta Liu
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - John W. Park
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Lodewyk F.A. Wessels
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Laura van’t Veer
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| | - Emanuel F. Petricoin
- Julia D. Wulfkuhle, Rosa I. Gallagher, and Emanuel F. Petricoin III, George Mason University, Manassas, VA; Christina Yau, Denise M. Wolf, Lamorna Brown-Swigart, Gillian Hirst, Nola Hylton, Laura Esserman, John W. Park, and Laura van’t Veer, University of California, San Francisco, San Francisco, CA; Daniel J. Vis, Emile E. Voest, and Lodewyk F.A. Wessels, Netherlands Cancer Institute, Amsterdam, the Netherlands; Angela DeMichele, University of Pennsylvania, Philadelphia, PA; Fraser Symmans, University of Texas MD Anderson Cancer Center, Houston; Donald Berry, Berry Consultants, Austin, TX; Douglas Yee, University of Minnesota, Minneapolis; and Minetta Liu, Mayo Clinic, Rochester, MN
| |
Collapse
|
71
|
Activating human epidermal growth factor receptor 2 (HER2) gene mutation in bone metastases from breast cancer. Virchows Arch 2018; 473:577-582. [PMID: 30094493 DOI: 10.1007/s00428-018-2414-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022]
Abstract
In addition to amplification, point mutations of the human epidermal growth factor receptor 2 (HER2) gene (ERBB2) have been shown to activate the corresponding signaling pathway in breast cancer. The prevalence of ERBB2/HER2 mutation in bone metastasis of breast cancer and the associated phenotype are not known. In this study, bone metastases from breast cancer patients (n = 231) were analyzed for ERBB2/HER2 mutation. In 7 patients (3%; median age 70 years, range 50-83 years), gain-of-function mutations of ERBB2/HER2 were detected. The most frequent mutation was p.L755S (71%). In 29% of mutated cases, p.V777L was found. Lobular breast cancer was present in 71% of mutated cases (n = 5) and in 49% of all samples (n = 231; p = 0.275). Mutation frequency was 4.4% in the lobular subgroup and 17.4% in the pleomorphic subtype of lobular cancer (n = 23), respectively. All but one mutated lobular cancers were of the pleomorphic subtype (p = 0.006). Mutated cancers belonged either to the luminal (n = 4) or to the triple-negative types (n = 3). With regard to protein expression and gene amplification, HER2 was negative in all mutated cases. Among the 14% of metastatic luminal cancers with estrogen receptor gene (ESR1) mutation, conveying resistance against aromatase inhibitors, no concomitant ERBB2/HER2 mutation occurred. We conclude that activating HER2 mutation is present in about 3% of bone metastases from breast cancers, with significantly higher rates in the pleomorphic subtype of lobular cancer. Since mutated cases appear to be HER2-negative by conventional testing, the opportunity for specific anti-HER2 therapy may be missed.
Collapse
|
72
|
Nagano M, Kohsaka S, Ueno T, Kojima S, Saka K, Iwase H, Kawazu M, Mano H. High-Throughput Functional Evaluation of Variants of Unknown Significance in ERBB2. Clin Cancer Res 2018; 24:5112-5122. [PMID: 29967253 DOI: 10.1158/1078-0432.ccr-18-0991] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 11/16/2022]
Abstract
Purpose: The advent of next-generation sequencing technologies has enabled the identification of several activating mutations of Erb-B2 receptor tyrosine kinase 2 (ERBB2) among various cancers. However, the significance of infrequent mutations has not been fully investigated. Herein, we comprehensively assessed the functional significance of the ERBB2 mutations in a high-throughput manner.Experimental Design: We evaluated the transforming activities and drug sensitivities of 55 nonsynonymous ERBB2 mutations using the mixed-all-nominated-in-one (MANO) method.Results: G776V, G778_S779insG, and L841V were newly revealed to be activating mutations. Although afatinib, neratinib, and osimertinib were shown to be effective against most of the ERBB2 mutations, only osimertinib demonstrated good efficacy against L755P and L755S mutations, the most common mutations in breast cancer. In contrast, afatinib and neratinib were predicted to be more effective than other inhibitors for the A775_776insYVMA mutation, the most frequent ERBB2 mutation in lung cancer. We surveyed the prevalence of concurrent ERBB2 mutation with gene amplification and found that approximately 30% of ERBB2-amplified urothelial carcinomas simultaneously carried ERBB2 mutations, altering their sensitivity to trastuzumab, an mAb against ERBB2. Furthermore, the MANO method was applied to evaluate the functional significance of 17 compound mutations within ERBB2 reported in the COSMIC database, revealing that compound mutations involving L755S were sensitive to osimertinib but insensitive to afatinib and neratinib.Conclusions: Several ERBB2 mutations showed varying sensitivities to ERBB2-targeted inhibitors. Our comprehensive assessment of ERBB2 mutations offers a fundamental database to help customize therapy for ERBB2-driven cancers.We identified several ERBB2 mutations as activating mutations related to tumorigenesis. In addition, our comprehensive evaluation revealed that several ERBB2 mutations showed varying sensitivities to ERBB2-targeted inhibitors, and thus, the functional significance of each variant should be interpreted precisely to design the best treatment for each patient. Clin Cancer Res; 24(20); 5112-22. ©2018 AACR.
Collapse
Affiliation(s)
- Masaaki Nagano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of General Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Toshihide Ueno
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinya Kojima
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanju Saka
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirotaro Iwase
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahito Kawazu
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
73
|
Personalized medicine in non-small cell lung cancer: a review from a pharmacogenomics perspective. Acta Pharm Sin B 2018; 8:530-538. [PMID: 30109178 PMCID: PMC6089847 DOI: 10.1016/j.apsb.2018.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/01/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer is a prevalent and rapidly-expanding challenge to modern medicine. While generalized medicine with traditional chemotherapy yielded comparatively poor response rates and treatment results, the cornerstone of personalized medicine using genetic profiling to direct treatment has exalted the successes seen in the field and raised the standard for patient treatment in lung and other cancers. Here, we discuss the current state and advances in the field of personalized medicine for lung cancer, reviewing several of the mutation-targeting strategies that are approved for clinical use and how they are guided by patient genetic information. These classes include inhibitors of tyrosine kinase (TKI), anaplastic lymphoma kinase (ALK), and monoclonal antibodies. Selecting from these treatment plans and determining the optimal dosage requires in-depth genetic guidance with consideration towards not only the underlying target genes but also other factors such as individual metabolic capability and presence of resistance-conferring mutations both directly on the target gene and along its cascade(s). Finally, we provide our viewpoints on the future of personalized medicine in lung cancer, including target-based drug combination, mutation-guided drug design and the necessity for data of population genetics, to provide rough guidance on treating patients who are unable to get genetic testing.
Collapse
|
74
|
Cousin S, Khalifa E, Crombe A, Laizet Y, Lucchesi C, Toulmonde M, Le Moulec S, Auzanneau C, Soubeyran I, Italiano A. Targeting ERBB2 mutations in solid tumors: biological and clinical implications. J Hematol Oncol 2018; 11:86. [PMID: 29941010 PMCID: PMC6019715 DOI: 10.1186/s13045-018-0630-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/13/2018] [Indexed: 11/10/2022] Open
Abstract
Preclinical data have shown that ERBB2 activating mutations are responsive to HER2 tyrosine kinase inhibitors. The aim of this study is to characterize the landscape of ERBB2 mutations in solid tumors and the potential efficacy of ERBB2 targeting.We analyzed the next-generation sequencing results from 17,878 patients with solid tumors and reported the outcome of 4 patients with advanced ERBB2-mutated tumors treated with a combination of trastuzumab and lapatinib.ERBB2 mutations occurred in 510 patients (2.85%). The tumor types with the highest incidence of ERBB2 mutations were the following: bladder (16.6%), small bowel (8.6%), ampullar (6.5%), skin non-melanoma (6.1%), and cervical cancer (5.5%). 49.4% (n = 282) were known as activating mutations. ERBB2 mutation was not mutually exclusive of ERBB2 amplification which occurred in up to 10% of cases. PI3KCA activating mutations were associated with ERBB2 mutations in 12.4% of cases mainly in breast and lung cancer. Four patients (endometrial, colorectal, cholangiocarcinoma, and adenosarcoma of the uterus) were treated with a combination of trastuzumab and lapatinib. All of them experienced tumor shrinkage resulting in stable disease in three cases and partial response in one case. One patient developed secondary resistance. Sequencing of the progressing metastasis allowed the identification of the ERBB2 L869R mutation previously associated with resistance to lapatinib in vitro.These results support further clinical investigation aiming to demonstrate that ERBB2-mutational driven therapy can improve patient care irrespective of histology.
Collapse
Affiliation(s)
- Sophie Cousin
- Early Phase Trials Unit, Institut Bergonié, 229 Cours de l'Argonne, 33000, Bordeaux, France.,Department of Medicine, Institut Bergonié, Bordeaux, France
| | - Emmanuel Khalifa
- Early Phase Trials Unit, Institut Bergonié, 229 Cours de l'Argonne, 33000, Bordeaux, France.,Department of Biopathology, Institut Bergonié, Bordeaux, France
| | - Amandine Crombe
- Department of Radiology, Institut Bergonié, Bordeaux, France
| | - Yech'an Laizet
- Department of Bioinformatics, Institue Bergonié, Bordeaux, France
| | - Carlo Lucchesi
- Department of Bioinformatics, Institue Bergonié, Bordeaux, France
| | - Maud Toulmonde
- Early Phase Trials Unit, Institut Bergonié, 229 Cours de l'Argonne, 33000, Bordeaux, France.,Department of Medicine, Institut Bergonié, Bordeaux, France
| | - Sylvestre Le Moulec
- Early Phase Trials Unit, Institut Bergonié, 229 Cours de l'Argonne, 33000, Bordeaux, France.,Department of Medicine, Institut Bergonié, Bordeaux, France
| | - Céline Auzanneau
- Early Phase Trials Unit, Institut Bergonié, 229 Cours de l'Argonne, 33000, Bordeaux, France.,Department of Biopathology, Institut Bergonié, Bordeaux, France
| | - Isabelle Soubeyran
- Early Phase Trials Unit, Institut Bergonié, 229 Cours de l'Argonne, 33000, Bordeaux, France.,Department of Biopathology, Institut Bergonié, Bordeaux, France
| | - Antoine Italiano
- Early Phase Trials Unit, Institut Bergonié, 229 Cours de l'Argonne, 33000, Bordeaux, France. .,Department of Medicine, Institut Bergonié, Bordeaux, France.
| |
Collapse
|
75
|
Zill OA, Banks KC, Fairclough SR, Mortimer SA, Vowles JV, Mokhtari R, Gandara DR, Mack PC, Odegaard JI, Nagy RJ, Baca AM, Eltoukhy H, Chudova DI, Lanman RB, Talasaz A. The Landscape of Actionable Genomic Alterations in Cell-Free Circulating Tumor DNA from 21,807 Advanced Cancer Patients. Clin Cancer Res 2018; 24:3528-3538. [DOI: 10.1158/1078-0432.ccr-17-3837] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/19/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022]
|
76
|
Karakas B, Ozmay Y, Basaga H, Gul O, Kutuk O. Distinct apoptotic blocks mediate resistance to panHER inhibitors in HER2+ breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1073-1087. [PMID: 29733883 DOI: 10.1016/j.bbamcr.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/25/2023]
Abstract
Despite the development of novel targeted therapies, de novo or acquired chemoresistance remains a significant factor for treatment failure in breast cancer therapeutics. Neratinib and dacomitinib are irreversible panHER inhibitors, which block their autophosphorylation and downstream signaling. Moreover, neratinib and dacomitinib have been shown to activate cell death in HER2-overexpressing cell lines. Here we showed that increased MCL1 and decreased BIM and PUMA mediated resistance to neratinib in ZR-75-30 and SKBR3 cells while increased BCL-XL and BCL-2 and decreased BIM and PUMA promoted neratinib resistance in BT474 cells. Cells were also cross-resistant to dacomitinib. BH3 profiles of HER2+ breast cancer cells efficiently predicted antiapoptotic protein dependence and development of resistance to panHER inhibitors. Reactivation of ERK1/2 was primarily responsible for acquired resistance in SKBR3 and ZR-75-30 cells. Adding specific ERK1/2 inhibitor SCH772984 to neratinib or dacomitinib led to increased apoptotic response in neratinib-resistant SKBR3 and ZR-75-30 cells, but we did not detect a similar response in neratinib-resistant BT474 cells. Accordingly, suppression of BCL-2/BCL-XL by ABT-737 was required in addition to ERK1/2 inhibition for neratinib- or dacomitinib-induced apoptosis in neratinib-resistant BT474 cells. Our results showed that different mitochondrial apoptotic blocks mediated acquired panHER inhibitor resistance in HER2+ breast cancer cell lines as well as highlighted the potential of BH3 profiling assay in prediction of panHER inhibitor resistance in breast cancer cells.
Collapse
Affiliation(s)
- Bahriye Karakas
- Sabanci University, Molecular Biology, Genetics and Bioengineering Program, Istanbul, Turkey
| | - Yeliz Ozmay
- Baskent University School of Medicine, Dept. of Medical Genetics, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Huveyda Basaga
- Sabanci University, Molecular Biology, Genetics and Bioengineering Program, Istanbul, Turkey
| | - Ozgur Gul
- Bilgi University, Dept. of Genetics and Bioengineering, Istanbul, Turkey
| | - Ozgur Kutuk
- Baskent University School of Medicine, Dept. of Medical Genetics, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey.
| |
Collapse
|
77
|
HER2 Activating Mutations in Estrogen Receptor Positive Breast Cancer. CURRENT BREAST CANCER REPORTS 2018. [DOI: 10.1007/s12609-018-0265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
78
|
Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer 2018; 17:34. [PMID: 29455658 PMCID: PMC5817867 DOI: 10.1186/s12943-018-0797-x] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a multifactorial disease and driven by aberrant regulation of cell signaling pathways due to the acquisition of genetic and epigenetic changes. An array of growth factors and their receptors is involved in cancer development and metastasis. Receptor Tyrosine Kinases (RTKs) constitute a class of receptors that play important role in cancer progression. RTKs are cell surface receptors with specialized structural and biological features which respond to environmental cues by initiating appropriate signaling cascades in tumor cells. RTKs are known to regulate various downstream signaling pathways such as MAPK, PI3K/Akt and JAK/STAT. These pathways have a pivotal role in the regulation of cancer stemness, angiogenesis and metastasis. These pathways are also imperative for a reciprocal interaction of tumor and stromal cells. Multi-faceted role of RTKs renders them amenable to therapy in breast cancer. However, structural mutations, gene amplification and alternate pathway activation pose challenges to anti-RTK therapy.
Collapse
Affiliation(s)
- Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Sumit Das
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Vinoth Prasanna Gunasekaran
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Amit Singh Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77054, USA
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India.
| |
Collapse
|
79
|
Mishra R, Hanker AB, Garrett JT. Genomic alterations of ERBB receptors in cancer: clinical implications. Oncotarget 2017; 8:114371-114392. [PMID: 29371993 PMCID: PMC5768410 DOI: 10.18632/oncotarget.22825] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/09/2017] [Indexed: 12/28/2022] Open
Abstract
The ERBB family of receptor tyrosine kinases has been implicated in carcinogenesis for over three decades with rigorous attention to EGFR and HER2. ERBB receptors, consisting of EGFR, HER2, HER3, and HER4 are part of a complicated signaling network that activates downstream signaling pathways including PI3K/AKT, Ras/Raf/MAPK, JAK/STAT and PKC. It is well established that EGFR is amplified and/or mutated in gliomas and non-small-cell lung carcinoma while HER2 is amplified and/or over-expressed in breast, gastric, ovarian, non-small cell lung carcinoma, and several other tumor types. With the advent of next generation sequencing and large scale efforts to explore the entire spectrum of genomic alterations involved in human cancer progression, it is now appreciated that somatic ERBB receptor mutations occur at relatively low frequencies across multiple tumor types. Some of these mutations may represent oncogenic driver events; clinical studies are underway to determine whether tumors harboring these alterations respond to small molecule EGFR/HER2 inhibitors. Recent evidence suggests that some somatic ERBB receptor mutations render resistance to FDA-approved EGFR and HER2 inhibitors. In this review, we focus on the landscape of genomic alterations of EGFR, HER2, HER3 and HER4 in cancer and the clinical implications for patients harboring these alterations.
Collapse
Affiliation(s)
- Rosalin Mishra
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Ariella B Hanker
- Department of Medicine, Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Joan T Garrett
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, U.S.A
| |
Collapse
|
80
|
Connell CM, Doherty GJ. Activating HER2 mutations as emerging targets in multiple solid cancers. ESMO Open 2017; 2:e000279. [PMID: 29209536 PMCID: PMC5708307 DOI: 10.1136/esmoopen-2017-000279] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family of transmembrane receptor tyrosine kinases activates signalling pathways regulating cellular proliferation and survival. HER2 is a non-ligand-binding member of this family and exerts its activity through heterodimerisation with other EGFR family members. HER2 functional activation promotes oncogenesis, leading to the investigation of HER2-directed agents in cancers with HER2 alterations. This has been best characterised in the context of HER2 gene amplification in breast and gastro-oesophageal cancers, for which HER2-directed drugs form part of standard treatment regimens. More recently, somatic HER2 gene mutations have been detected in a range of human cancer types. Preclinical data suggest that functionally activating HER2 mutations may drive and maintain cancers in a manner analogous to HER2 gene amplification and that HER2 mutations may similarly confer sensitivity to HER2-directed drugs. Here, we critically review the emerging roles for HER2-directed drugs in HER2 mutant cancers. We review data from experimental models, where our knowledge of the underlying biology of HER2 mutational activation remains incomplete. We discuss clinical data from Phase I and II clinical trials which evaluate HER2-directed agents (tyrosine kinase inhibitors and antibody-based drugs) in several cancer types. We highlight the heterogeneity of HER2 mutations in human cancers, differences in the clinical efficacy of HER2-directed drugs between cancer types and possible mechanisms of primary and acquired resistance, in order to guide clinical practice and future drug development.
Collapse
Affiliation(s)
- Claire M Connell
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Gary J Doherty
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
81
|
Xu X, De Angelis C, Burke KA, Nardone A, Hu H, Qin L, Veeraraghavan J, Sethunath V, Heiser LM, Wang N, Ng CKY, Chen ES, Renwick A, Wang T, Nanda S, Shea M, Mitchell T, Rajendran M, Waters I, Zabransky DJ, Scott KL, Gutierrez C, Nagi C, Geyer FC, Chamness GC, Park BH, Shaw CA, Hilsenbeck SG, Rimawi MF, Gray JW, Weigelt B, Reis-Filho JS, Osborne CK, Schiff R. HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-targeted Therapy in HER2 + Breast Cancer. Clin Cancer Res 2017; 23:5123-5134. [PMID: 28487443 PMCID: PMC5762201 DOI: 10.1158/1078-0432.ccr-16-2191] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/16/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023]
Abstract
Purpose: Resistance to anti-HER2 therapies in HER2+ breast cancer can occur through activation of alternative survival pathways or reactivation of the HER signaling network. Here we employed BT474 parental and treatment-resistant cell line models to investigate a mechanism by which HER2+ breast cancer can reactivate the HER network under potent HER2-targeted therapies.Experimental Design: Resistant derivatives to lapatinib (L), trastuzumab (T), or the combination (LR/TR/LTR) were developed independently from two independent estrogen receptor ER+/HER2+ BT474 cell lines (AZ/ATCC). Two derivatives resistant to the lapatinib-containing regimens (BT474/AZ-LR and BT474/ATCC-LTR lines) that showed HER2 reactivation at the time of resistance were subjected to massive parallel sequencing and compared with parental lines. Ectopic expression and mutant-specific siRNA interference were applied to analyze the mutation functionally. In vitro and in vivo experiments were performed to test alternative therapies for mutant HER2 inhibition.Results: Genomic analyses revealed that the HER2L755S mutation was the only common somatic mutation gained in the BT474/AZ-LR and BT474/ATCC-LTR lines. Ectopic expression of HER2L755S induced acquired lapatinib resistance in the BT474/AZ, SK-BR-3, and AU565 parental cell lines. HER2L755S-specific siRNA knockdown reversed the resistance in BT474/AZ-LR and BT474/ATCC-LTR lines. The HER1/2-irreversible inhibitors afatinib and neratinib substantially inhibited both resistant cell growth and the HER2 and downstream AKT/MAPK signaling driven by HER2L755S in vitro and in vivoConclusions: HER2 reactivation through acquisition of the HER2L755S mutation was identified as a mechanism of acquired resistance to lapatinib-containing HER2-targeted therapy in preclinical HER2-amplified breast cancer models, which can be overcome by irreversible HER1/2 inhibitors. Clin Cancer Res; 23(17); 5123-34. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaowei Xu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Carmine De Angelis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Kathleen A Burke
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Agostina Nardone
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Huizhong Hu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Lanfang Qin
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Vidyalakshmi Sethunath
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Laura M Heiser
- Department of Biomedical Engineering and Oregon Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon
| | - Nicholas Wang
- Department of Biomedical Engineering and Oregon Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edward S Chen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Alexander Renwick
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Tao Wang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Sarmistha Nanda
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Martin Shea
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Tamika Mitchell
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Mahitha Rajendran
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Ian Waters
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Daniel J Zabransky
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Kenneth L Scott
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Carolina Gutierrez
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Chandandeep Nagi
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gary C Chamness
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Ben H Park
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Chad A Shaw
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Mothaffar F Rimawi
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Joe W Gray
- Department of Biomedical Engineering and Oregon Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - C Kent Osborne
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
82
|
Kourie HR, El Rassy E, Clatot F, de Azambuja E, Lambertini M. Emerging treatments for HER2-positive early-stage breast cancer: focus on neratinib. Onco Targets Ther 2017; 10:3363-3372. [PMID: 28744140 PMCID: PMC5513878 DOI: 10.2147/ott.s122397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Over the last decades, a better understanding of breast cancer heterogeneity provided tools for a biologically based personalization of anticancer treatments. In particular, the overexpression of the human epidermal growth factor receptor 2 (HER2) by tumor cells provided a specific target in these HER2-positive tumors. The development of the monoclonal antibody trastuzumab, and its approval in 1998 for the treatment of patients with metastatic disease, radically changed the natural history of this aggressive subtype of breast cancer. These findings provided strong support for the continuous research in targeting the HER2 pathway and implementing the development of new anti-HER2 targeted agents. Besides trastuzumab, a series of other anti-HER2 agents have been developed and are currently being explored for the treatment of breast cancer patients, including those diagnosed with early-stage disease. Among these agents, neratinib, an oral tyrosine kinase inhibitor that irreversibly inhibits HER1, HER2, and HER4 at the intracellular level, has shown promising results, including when administered to patients previously exposed to trastuzumab-based treatment. This article aims to review the available data on the role of the HER2 pathway in breast cancer and on the different targeted agents that have been studied or are currently under development for the treatment of patients with early-stage HER2-positive disease with a particular focus on neratinib.
Collapse
Affiliation(s)
- Hampig Raphael Kourie
- Department of Oncology, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Elie El Rassy
- Department of Oncology, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Florian Clatot
- Department of Medical Oncology and IRON/U1245, Centre Henri Becquerel, Rouen, France.,Breast Cancer Translational Research Laboratory
| | - Evandro de Azambuja
- Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Matteo Lambertini
- Breast Cancer Translational Research Laboratory.,Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
83
|
Ma CX, Bose R, Gao F, Freedman RA, Telli ML, Kimmick G, Winer E, Naughton M, Goetz MP, Russell C, Tripathy D, Cobleigh M, Forero A, Pluard TJ, Anders C, Niravath PA, Thomas S, Anderson J, Bumb C, Banks KC, Lanman RB, Bryce R, Lalani AS, Pfeifer J, Hayes DF, Pegram M, Blackwell K, Bedard PL, Al-Kateb H, Ellis MJC. Neratinib Efficacy and Circulating Tumor DNA Detection of HER2 Mutations in HER2 Nonamplified Metastatic Breast Cancer. Clin Cancer Res 2017; 23:5687-5695. [PMID: 28679771 DOI: 10.1158/1078-0432.ccr-17-0900] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/23/2017] [Accepted: 06/28/2017] [Indexed: 01/11/2023]
Abstract
Purpose: Based on promising preclinical data, we conducted a single-arm phase II trial to assess the clinical benefit rate (CBR) of neratinib, defined as complete/partial response (CR/PR) or stable disease (SD) ≥24 weeks, in HER2mut nonamplified metastatic breast cancer (MBC). Secondary endpoints included progression-free survival (PFS), toxicity, and circulating tumor DNA (ctDNA) HER2mut detection.Experimental Design: Tumor tissue positive for HER2mut was required for eligibility. Neratinib was administered 240 mg daily with prophylactic loperamide. ctDNA sequencing was performed retrospectively for 54 patients (14 positive and 40 negative for tumor HER2mut).Results: Nine of 381 tumors (2.4%) sequenced centrally harbored HER2mut (lobular 7.8% vs. ductal 1.6%; P = 0.026). Thirteen additional HER2mut cases were identified locally. Twenty-one of these 22 HER2mut cases were estrogen receptor positive. Sixteen patients [median age 58 (31-74) years and three (2-10) prior metastatic regimens] received neratinib. The CBR was 31% [90% confidence interval (CI), 13%-55%], including one CR, one PR, and three SD ≥24 weeks. Median PFS was 16 (90% CI, 8-31) weeks. Diarrhea (grade 2, 44%; grade 3, 25%) was the most common adverse event. Baseline ctDNA sequencing identified the same HER2mut in 11 of 14 tumor-positive cases (sensitivity, 79%; 90% CI, 53%-94%) and correctly assigned 32 of 32 informative negative cases (specificity, 100%; 90% CI, 91%-100%). In addition, ctDNA HER2mut variant allele frequency decreased in nine of 11 paired samples at week 4, followed by an increase upon progression.Conclusions: Neratinib is active in HER2mut, nonamplified MBC. ctDNA sequencing offers a noninvasive strategy to identify patients with HER2mut cancers for clinical trial participation. Clin Cancer Res; 23(19); 5687-95. ©2017 AACR.
Collapse
Affiliation(s)
- Cynthia X Ma
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Ron Bose
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Feng Gao
- Division of Public Health Science, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Rachel A Freedman
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Melinda L Telli
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Gretchen Kimmick
- Department of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Eric Winer
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael Naughton
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | - Christy Russell
- Medical Oncology, University of Southern California, Los Angeles, California
| | - Debu Tripathy
- Medical Oncology, University of Southern California, Los Angeles, California
| | - Melody Cobleigh
- Medical Oncology, Rush University Medical Center, Chicago, Illinois
| | - Andres Forero
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Timothy J Pluard
- Department of Oncology-Hematology, St. Luke's Cancer Institute, Kansas City, Missouri
| | - Carey Anders
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Polly Ann Niravath
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Shana Thomas
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jill Anderson
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Caroline Bumb
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | - John Pfeifer
- Genomic and Pathology Service, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel F Hayes
- Department of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Mark Pegram
- Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | | | - Philippe L Bedard
- Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Hussam Al-Kateb
- Genomic and Pathology Service, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew J C Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
84
|
Bettaieb A, Paul C, Plenchette S, Shan J, Chouchane L, Ghiringhelli F. Precision medicine in breast cancer: reality or utopia? J Transl Med 2017. [PMID: 28623955 PMCID: PMC5474301 DOI: 10.1186/s12967-017-1239-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many cancers, including breast cancer, have demonstrated prognosis and support advantages thanks to the discovery of targeted therapies. The advent of these new approaches marked the rise of precision medicine, which leads to improve the diagnosis, prognosis and treatment of cancer. Precision medicine takes into account the molecular and biological specificities of the patient and their tumors that will influence the treatment determined by physicians. This new era of medicine is accessible through molecular genetics platforms, the development of high-speed sequencers and means of analysis of these data. Despite the spectacular results in the treatment of cancers including breast cancer, described in this review, not all patients however can benefit from this new strategy. This seems to be related to the many genetic mutations, which may be different from one patient to another or within the same patient. It comes to give new impetus to the research—both from a technological and biological point of view—to make the hope of precision medicine accessible to all.
Collapse
Affiliation(s)
- Ali Bettaieb
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000, Paris, France. .,LIIC, EA7269, Université de Bourgogne Franche Comté, 21000, Dijon, France. .,Immunology and Immunotherapy of Cancer Laboratory, EA7269, Université de Bourgogne, EPHE 7 Bd Jeanne d'Arc, 21079, Dijon, France.
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000, Paris, France.,LIIC, EA7269, Université de Bourgogne Franche Comté, 21000, Dijon, France
| | - Stéphanie Plenchette
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000, Paris, France.,LIIC, EA7269, Université de Bourgogne Franche Comté, 21000, Dijon, France
| | - Jingxuan Shan
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Lotfi Chouchane
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - François Ghiringhelli
- Département d'Oncologie Médicale, Centre Georges-François-Leclerc, 21000, Dijon, France.,Plateforme de Transfert en Biologie Cancérologique, Centre Georges-François-Leclerc, 21000, Dijon, France.,UMR 1231 Inserm-Université de Bourgogne Franche Comté, UFR des Sciences de Santé, 21000, Dijon, France.,Université de Bourgogne, 21000, Dijon, France
| |
Collapse
|