51
|
Meng S, Cao Y, Lu L, Li X, Sun S, Jiang F, Lu J, Fan D, Han X, Yao T. Quercetin Promote the Chemosensitivity in Organoids Derived from Patients with Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:993-1004. [PMID: 39720358 PMCID: PMC11668317 DOI: 10.2147/bctt.s494901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
Aim The study aimed to culture organoids from tissues of patients with breast cancer (BC) and use the organoids to measure the sensitivity to quercetin and its combination with chemotherapeutic agents. Methods Four patient-derived organoids (PDOs) of BC were cultured. The proliferative activity and morphology of PDOs were evaluated on different generations and after resuscitation. H&E and immunohistochemical (IHC) staining were used to identify the pathological changes and the expression of biomarkers. The sensitivity to quercetin and chemotherapeutic agents and their combinations were evaluated using adenosine triphosphate (ATP) viability assays. Results We successfully obtained all PDOs from BC tissues. PDOs preserved their activity and morphology during generation passage. In addition, the pathological changes and expression patterns of estrogen receptor (ER), human epidermal growth factor receptor (HER2), and Ki67 of each PDO were consistent with their original tissues. All four PDOs were highly sensitive to quercetin, and their IC50 values were less than 22 μM. PDOs showed better sensitivity to docetaxel and epirubicin hydrochloride, but less sensitivity to cis-platinum. Combination with quercetin promoted the sensitivity to three chemotherapeutic agents. In particular, the IC50 value of cis-platinum greatly decreased. Conclusion We successfully established PDOs from patients with BC and demonstrated that quercetin can promote the sensitivity of chemotherapeutic agents in these PDOs.
Collapse
Affiliation(s)
- Shengwen Meng
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Yifan Cao
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Lei Lu
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Xuanhe Li
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Siyu Sun
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Fangqian Jiang
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Jianfei Lu
- Department of Breast and Thyroid Surgery, Bengbu First People’s Hospital, Bengbu, Anhui Province, People’s Republic of China
| | - Dongwei Fan
- Department of General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Luan, Anhui Province, People’s Republic of China
| | - Xinxin Han
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Tingjing Yao
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| |
Collapse
|
52
|
Senatorov IS, Bowman J, Jansson KH, Alilin AN, Capaldo BJ, Lake R, Riba M, Abbey YC, Mcknight C, Zhang X, Raj S, Beshiri ML, Shinn P, Nguyen H, Thomas CJ, Corey E, Kelly K. Castrate-resistant prostate cancer response to taxane is determined by an HNF1-dependent apoptosis resistance circuit. Cell Rep Med 2024; 5:101868. [PMID: 39657662 PMCID: PMC11722106 DOI: 10.1016/j.xcrm.2024.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metastatic castrate-resistant prostate cancer (mCRPC) is a genetically and phenotypically heterogeneous cancer where advancements are needed in biomarker discovery and targeted therapy. A critical and often effective component of treatment includes taxanes. We perform a high-throughput screen across a cohort of 30 diverse patient-derived castrate-resistant prostate cancer (CRPC) organoids to a library of 78 drugs. Combining quantitative response measures with transcriptomic analyses demonstrates that HNF1 homeobox A (HNF1A) drives a transcriptional program of taxane resistance, commonly dependent upon cellular inhibitor of apoptosis protein 2 (cIAP2). Monotherapy with cIAP2 inhibitor LCL161 is sufficient to treat HNF1A+ models of mCRPC previously resistant to docetaxel. These data may be useful in future clinical trial designs.
Collapse
Affiliation(s)
- Ilya S Senatorov
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Joel Bowman
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Keith H Jansson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aian Neil Alilin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Morgan Riba
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yasmine C Abbey
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Crystal Mcknight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Sonam Raj
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael L Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Paul Shinn
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Holly Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA; Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Bethesda, MD, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
53
|
Rosas J, Campanale JP, Harwood JL, Li L, Bae R, Cheng S, Tsou JM, Kaiser KM, Engle DD, Montell DJ, Pitenis AA. Differential Effects of Confinement on the Dynamics of Normal and Tumor-Derived Pancreatic Ductal Organoids. ACS APPLIED BIO MATERIALS 2024; 7:8489-8502. [PMID: 39576883 PMCID: PMC11653396 DOI: 10.1021/acsabm.4c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer of the epithelia comprising the ductal network of the pancreas. During disease progression, PDAC tumors recruit fibroblasts that promote fibrosis, increasing local tissue stiffness and subjecting epithelial cells to increased compressive forces. Previous in vitro studies have documented cytoskeletal and nuclear adaptation following compressive stresses in two-dimensional (2D) and three-dimensional (3D) environments. However, a comparison of the responses of normal and tumor-derived ductal epithelia to physiologically relevant confinement remains underexplored, especially in 3D organoids. Here we control confinement with an engineered 3D microenvironment composed of Matrigel mixed with a low yield stress granular microgel. Normal and tumor-derived murine pancreas organoids (normal and tumor) were cultured for 48 h within this composite 3D environment or in pure Matrigel to investigate the effects of confinement on morphogenesis and lumen expansion. In confinement, tumor organoids (mT) formed a lumen that expanded rapidly, whereas normal organoids (mN) expanded more slowly. Moreover, a majority of normal organoids in more-confined conditions exhibited an inverted apicobasal polarity compared to those in less-confined conditions. Tumor organoids exhibited a collective "pulsing" behavior that increased in confinement. These pulses generated forces sufficient to locally overcome the yield stress of the microgels in the direction of organoid expansion. Normal organoids more commonly exhibit unidirectional rotation. Our in vitro microgel confinement platform enabled the discovery of two distinct modes of collective force generation in organoids that may shed light on the mutual interactions between tumors and the microenvironment. These insights into in vitro dynamics may deepen our understanding of how the confinement of healthy cells within a fibrotic tumor niche disrupts tissue organization and function in vivo.
Collapse
Affiliation(s)
- Jonah
M. Rosas
- Department
of Biomolecular Science & Engineering Program, University of California, Santa
Barbara, California 93106, United States
| | - Joseph P. Campanale
- Department
of Molecular, Cellular, and Developmental Biology, University of California, Santa
Barbara, California 93106, United States
| | - Jacob L. Harwood
- Department
of Molecular, Cellular, and Developmental Biology, University of California, Santa
Barbara, California 93106, United States
| | - Lufei Li
- Department
of Statistics and Applied Probability, University
of California, Santa Barbara, California 93106, United States
| | - Rachel Bae
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Shujun Cheng
- Department
of Molecular, Cellular, and Developmental Biology, University of California, Santa
Barbara, California 93106, United States
| | - Julia M. Tsou
- Department
of Molecular, Cellular, and Developmental Biology, University of California, Santa
Barbara, California 93106, United States
| | - Kathi M. Kaiser
- Department
of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Dannielle D. Engle
- Salk Institute
for Biological Studies, La Jolla, California 92037, United States
| | - Denise J. Montell
- Department
of Biomolecular Science & Engineering Program, University of California, Santa
Barbara, California 93106, United States
- Department
of Molecular, Cellular, and Developmental Biology, University of California, Santa
Barbara, California 93106, United States
| | - Angela A. Pitenis
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
54
|
Sederman C, Yang CH, Cortes-Sanchez E, Di Sera T, Huang X, Scherer SD, Zhao L, Chu Z, White ER, Atkinson A, Wagstaff J, Varley KE, Lewis MT, Qiao Y, Welm BE, Welm AL, Marth GT. A precision oncology-focused deep learning framework for personalized selection of cancer therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628190. [PMID: 39763776 PMCID: PMC11702554 DOI: 10.1101/2024.12.12.628190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Precision oncology matches tumors to targeted therapies based on the presence of actionable molecular alterations. However, most tumors lack actionable alterations, restricting treatment options to cytotoxic chemotherapies for which few data-driven prioritization strategies currently exist. Here, we report an integrated computational/experimental treatment selection approach applicable for both chemotherapies and targeted agents irrespective of actionable alterations. We generated functional drug response data on a large collection of patient-derived tumor models and used it to train ScreenDL, a novel deep learning-based cancer drug response prediction model. ScreenDL leverages the combination of tumor omic and functional drug screening data to predict the most efficacious treatments. We show that ScreenDL accurately predicts response to drugs with diverse mechanisms, outperforming existing methods and approved biomarkers. In our preclinical study, this approach achieved superior clinical benefit and objective response rates in breast cancer patient-derived xenografts, suggesting that testing ScreenDL in clinical trials may be warranted.
Collapse
Affiliation(s)
- Casey Sederman
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Chieh-Hsiang Yang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Emilio Cortes-Sanchez
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tony Di Sera
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Xiaomeng Huang
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Sandra D Scherer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ling Zhao
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Zhengtao Chu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Eliza R White
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Aaron Atkinson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Jadon Wagstaff
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Katherine E Varley
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael T Lewis
- Departments of Molecular and Cellular Biology and Radiology. Lester and Sue Smith Breast Center. Dan L Duncan Comprehensive Cancer Center. Baylor College of Medicine, Houston, Texas, USA
| | - Yi Qiao
- Department of Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Bryan E Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Gabor T Marth
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
55
|
Santamaria-Martínez A, Epiney J, Srivastava D, Tavernari D, Varrone M, Milowich D, Letovanec I, Krueger T, Duran R, Ciriello G, Cairoli A, Oricchio E. Development of patient-derived lymphomoids with preserved tumor architecture for lymphoma therapy screening. Nat Commun 2024; 15:10650. [PMID: 39653701 PMCID: PMC11628617 DOI: 10.1038/s41467-024-55098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
The efficacy of anti-cancer therapies depends on the genomic composition of the tumor, its microenvironment, spatial organization, and intra-tumor heterogeneity. B-cell lymphomas are a heterogeneous group of tumors emerging from B-cells at different stages of differentiation and exhibiting tumor-specific interactions with the tumor microenvironment. Thus, the effect of drug treatments can be influenced by the tumor composition and functional interactions among immune cells. Here, we develop a platform to maintain small fragments of human lymphoma tissue in culture for several days, and use them to test response to small molecules. We collect 27 patient samples representative of different lymphoma subtypes, and establish ex vivo tissue fragments that retain histological, cellular, and molecular characteristics of the original tissue, here referred to as lymphomoids. Using lymphomoids, we test sensitivity to several clinically approved drugs in parallel and examine tissue remodeling upon treatment. Moreover, when this information is available, we show that the effect of the inhibitors observed in lymphomoids is consistent with the patients' response in the clinic. Thus, lymphomoids represent an innovative ex vivo model to assess the effect of anti-cancer therapies while preserving the tissue structure and its components.
Collapse
Affiliation(s)
- Albert Santamaria-Martínez
- Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
| | - Justine Epiney
- Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Division of Hematology and Central Hematology Laboratory, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Divyanshu Srivastava
- Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Daniele Tavernari
- Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Marco Varrone
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Dina Milowich
- Institut Central des Hôpitaux (ICH), Hôpital du Valais, Sion, Switzerland
| | - Igor Letovanec
- Institut Central des Hôpitaux (ICH), Hôpital du Valais, Sion, Switzerland
| | | | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Giovanni Ciriello
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anne Cairoli
- Division of Hematology and Central Hematology Laboratory, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
| |
Collapse
|
56
|
Zhang Y, Meng R, Sha D, Gao H, Wang S, Zhou J, Wang X, Li F, Li X, Song W. Advances in the application of colorectal cancer organoids in precision medicine. Front Oncol 2024; 14:1506606. [PMID: 39697234 PMCID: PMC11653019 DOI: 10.3389/fonc.2024.1506606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent gastrointestinal tumors globally and poses a significant threat to human health. In recent years, tumor organoids have emerged as ideal models for clinical disease research owing to their ability to closely mimic the original tumor tissue and maintain a stable phenotypic structure. Organoid technology has found widespread application in basic tumor research, precision therapy, and new drug development, establishing itself as a reliable preclinical model in CRC research. This has significantly advanced individualized and precise tumor therapies. Additionally, the integration of single-cell technology has enhanced the precision of organoid studies, offering deeper insights into tumor heterogeneity and treatment response, thereby contributing to the development of personalized treatment approaches. This review outlines the evolution of colorectal cancer organoid technology and highlights its strengths in modeling colorectal malignancies. This review also summarizes the progress made in precision tumor medicine and addresses the challenges in organoid research, particularly when organoid research is combined with single-cell technology. Furthermore, this review explores the future potential of organoid technology in the standardization of culture techniques, high-throughput screening applications, and single-cell multi-omics integration, offering novel directions for future colorectal cancer research.
Collapse
Affiliation(s)
- Yanan Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Oncology, Zibo Hospital of Traditional Chinese Medicine, Zibo, China
| | - Ruoyu Meng
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Sha
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huiquan Gao
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shengxi Wang
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Zhou
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoshan Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fuxia Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
57
|
Yamaguchi N, Wu YG, Ravetch E, Takahashi M, Khan AG, Hayashi A, Mei W, Hsu D, Umeda S, de Stanchina E, Lorenz IC, Iacobuzio-Donahue CA, Tavazoie SF. A Targetable Secreted Neural Protein Drives Pancreatic Cancer Metastatic Colonization and HIF1α Nuclear Retention. Cancer Discov 2024; 14:2489-2508. [PMID: 39028915 PMCID: PMC11611693 DOI: 10.1158/2159-8290.cd-23-1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer-secreted protein that becomes overexpressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig-like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical, and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia-inducible factor-1α (HIF1α) nuclear retention and function. NPTX1 is overexpressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1α hypoxic response in PDAC. Significance: We identified the NPTX1-AMIGO2 axis as a regulatory mechanism upstream of HIF1α-driven hypoxia response that promotes PDAC liver metastasis. Therapeutic NPTX1 targeting outperformed a common chemotherapy regimen in inhibiting liver metastasis and suppressed primary tumor growth in preclinical models, revealing a novel therapeutic strategy targeting hypoxic response in PDAC.
Collapse
Affiliation(s)
- Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Y Gloria Wu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Ethan Ravetch
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Mai Takahashi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Abdul G. Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Akimasa Hayashi
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Dennis Hsu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Shigeaki Umeda
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ivo C. Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | | | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
58
|
Wei D, Yuan L, Xu X, Wu C, Huang Y, Zhang L, Zhang J, Jing T, Liu Y, Wang B. Exploring epigenetic dynamics unveils a super-enhancer-mediated NDRG1-β-catenin axis in modulating gemcitabine resistance in pancreatic cancer. Cancer Lett 2024; 605:217284. [PMID: 39366545 DOI: 10.1016/j.canlet.2024.217284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Chemoresistance remains a formidable challenge in pancreatic ductal adenocarcinoma (PDAC) treatment, necessitating a comprehensive exploration of underlying molecular mechanisms. This work aims to investigate the dynamic epigenetic landscape during the development of gemcitabine resistance in PDAC, with a specific focus on super-enhancers and their regulatory effects. We employed well-established gemcitabine-resistant (Gem-R) PDAC cell lines to perform high-throughput analyses of the epigenome, enhancer connectome, and transcriptome. Our findings revealed notable alterations in the epigenetic landscape and genome architecture during the transition from gemcitabine-sensitive to -resistant PDAC cells. Remarkably, we observed substantial plasticity in the activation status of super-enhancers, with a considerable proportion of these cis-elements becoming deactivated in chemo-resistant cells. Furthermore, we pinpointed the NDRG1 super-enhancer (NDRG1-SE) as a crucial regulator in gemcitabine resistance among the loss-of-function super-enhancers. NDRG1-SE deactivation induced activation of WNT/β-catenin signaling, thereby conferring gemcitabine resistance. This work underscores a NDRG1 super-enhancer deactivation-driven β-catenin pathway activation as a crucial regulator in the acquisition of gemcitabine-resistance. These findings advance our understanding of PDAC biology and provide valuable insights for the development of effective therapeutic approaches against chemoresistance in this malignant disease.
Collapse
MESH Headings
- Gemcitabine
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Humans
- Drug Resistance, Neoplasm/genetics
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Epigenesis, Genetic
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
- Cell Line, Tumor
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Enhancer Elements, Genetic
- Wnt Signaling Pathway/genetics
- Wnt Signaling Pathway/drug effects
Collapse
Affiliation(s)
- Dianhui Wei
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Lili Yuan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiaoli Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Chengsi Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yiwen Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Lili Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jilong Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| | - Tiantian Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Boshi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
59
|
Zhang X, Liu J, Ni Y, Yang Y, Tian T, Zheng X, Li Z, Huang R. Modeling Clinical Radioiodine Uptake By Using Organoids Derived From Differentiated Thyroid Cancer. Endocrinology 2024; 166:bqae162. [PMID: 39658331 DOI: 10.1210/endocr/bqae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Radioiodine-refractory differentiated thyroid cancer (RAI-R DTC) accounts for the vast majority of thyroid-related mortality and, until recently, there were limited preclinical models for iodine uptake prediction. In the current study, we aim to establish a primary tumor-derived organoid model of DTC and predict radioiodine (RAI) uptake of tumor residue. The genotypic and phenotypic features between organoid and parental tissue were compared. The RAI uptake assay was used to evaluate the organoid's RAI uptake capacity, and related patients' RAI whole-body scans were used to verify the assay's predictive sensitivity. A total of 20 patient-derived DTC organoids have been established. Whole-exome sequencing and immunofluorescence analysis demonstrated that organoids faithfully recapitulated main features of the original tumor tissue. RAI-avid organoids (n = 11) presented significantly higher RAI uptake than the RAI-refractory (RAI-R) group (n = 9; 384.4 ± 102.7 vs 54.2 ± 13.2 cpm/105 cells, P < .0001). A threshold value in organoids of less than 250 cpm/105 cell was found to have a predictive sensitivity of 95.0% for distinguishing RAI-R from RAI-avid patients when paired to clinical information. Notably, we found that several tyrosine kinase inhibitors moderately re-sensitize iodine uptake by using organoids derived from 3 patients with different genetic mutation backgrounds. In conclusion, patient-derived DTC organoids recapitulated the main characteristics of their parental tissues and preserved ability to uptake radioiodine, showing potential in the development of novel drugs to boost iodine avidity.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610000, China
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jiaye Liu
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610000, China
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yinyun Ni
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ying Yang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Tian Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Rui Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
60
|
He YG, Wang Z, Li J, Xi W, Zhao CY, Huang XB, Zheng L. Pathologic complete response to conversion therapy in hepatocellular carcinoma using patient-derived organoids: A case report. World J Gastrointest Oncol 2024; 16:4506-4513. [PMID: 39554753 PMCID: PMC11551630 DOI: 10.4251/wjgo.v16.i11.4506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND For primary liver cancer, the key to conversion therapy depends on the effectiveness of drug treatment. Patient-derived tumor organoids have been demonstrated to improve the efficacy of conversion therapy by identifying individual-targeted effective drugs, but their clinical effects in liver cancer remain unknown. CASE SUMMARY We described a patient with hepatocellular carcinoma (HCC) who achieved pathologic complete response (pCR) to conversion therapy guided by the patient-derived organoid (PDO) drug sensitivity testing. Despite insufficiency of the remaining liver volume after hepatectomy, the patient obtained tumor reduction after treatment with the PDO-sensitive drugs and successfully underwent radical surgical resection. Postoperatively, pCR was observed. CONCLUSION PDOs contributes to screening sensitive drugs for HCC patients to realize the personalized treatment and improve the conversion therapy efficacy.
Collapse
Affiliation(s)
- Yong-Gang He
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Zheng Wang
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Jing Li
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Wang Xi
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Chong-Yu Zhao
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Xiao-Bing Huang
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Lu Zheng
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| |
Collapse
|
61
|
Tong L, Cui W, Zhang B, Fonseca P, Zhao Q, Zhang P, Xu B, Zhang Q, Li Z, Seashore-Ludlow B, Yang Y, Si L, Lundqvist A. Patient-derived organoids in precision cancer medicine. MED 2024; 5:1351-1377. [PMID: 39341206 DOI: 10.1016/j.medj.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Organoids are three-dimensional (3D) cultures, normally derived from stem cells, that replicate the complex structure and function of human tissues. They offer a physiologically relevant model to address important questions in cancer research. The generation of patient-derived organoids (PDOs) from various human cancers allows for deeper insights into tumor heterogeneity and spatial organization. Additionally, interrogating non-tumor stromal cells increases the relevance in studying the tumor microenvironment, thereby enhancing the relevance of PDOs in personalized medicine. PDOs mark a significant advancement in cancer research and patient care, signifying a shift toward more innovative and patient-centric approaches. This review covers aspects of PDO cultures to address the modeling of the tumor microenvironment, including extracellular matrices, air-liquid interface and microfluidic cultures, and organ-on-chip. Specifically, the role of PDOs as preclinical models in gene editing, molecular profiling, drug testing, and biomarker discovery and their potential for guiding personalized treatment in clinical practice are discussed.
Collapse
Affiliation(s)
- Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Weiyingqi Cui
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Boya Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Pedro Fonseca
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Qian Zhao
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Ping Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Beibei Xu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qisi Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
62
|
Zeng G, Yu Y, Wang M, Liu J, He G, Yu S, Yan H, Yang L, Li H, Peng X. Advancing cancer research through organoid technology. J Transl Med 2024; 22:1007. [PMID: 39516934 PMCID: PMC11545094 DOI: 10.1186/s12967-024-05824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The complexity of tumors and the challenges associated with treatment often stem from the limitations of existing models in accurately replicating authentic tumors. Recently, organoid technology has emerged as an innovative platform for tumor research. This bioengineering approach enables researchers to simulate, in vitro, the interactions between tumors and their microenvironment, thereby enhancing the intricate interplay between tumor cells and their surroundings. Organoids also integrate multidimensional data, providing a novel paradigm for understanding tumor development and progression while facilitating precision therapy. Furthermore, advancements in imaging and genetic editing techniques have significantly augmented the potential of organoids in tumor research. This review explores the application of organoid technology for more precise tumor simulations and its specific contributions to cancer research advancements. Additionally, we discuss the challenges and evolving trends in developing comprehensive tumor models utilizing organoid technology.
Collapse
Affiliation(s)
- Guolong Zeng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yifan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Meiting Wang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Sixuan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Huining Yan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, China.
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, China.
| |
Collapse
|
63
|
Liu P, Jacques J, Hwang CI. Epigenetic Landscape of DNA Methylation in Pancreatic Ductal Adenocarcinoma. EPIGENOMES 2024; 8:41. [PMID: 39584964 PMCID: PMC11587027 DOI: 10.3390/epigenomes8040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, characterized by its aggressive progression and dismal prognosis. Advances in epigenetic profiling, specifically DNA methylation analysis, have significantly deepened our understanding of PDAC pathogenesis. This review synthesizes findings from recent genome-wide DNA methylation studies, which have delineated a complex DNA methylation landscape differentiating between normal and cancerous pancreatic tissues, as well as across various stages and molecular subtypes of PDAC. These studies identified specific differentially methylated regions (DMRs) that not only enhance our grasp of the epigenetic drivers of PDAC but also offer potential biomarkers for early diagnosis and prognosis, enabling the customization of therapeutic approaches. The review further explores how DNA methylation profiling could facilitate the development of subtype-tailored therapies, potentially improving treatment outcomes based on precise molecular characterizations. Overall, leveraging DNA methylation alterations as functional biomarkers holds promise for advancing our understanding of disease progression and refining PDAC management strategies, which could lead to improved patient outcomes and a deeper comprehension of the disease's underlying biological mechanisms.
Collapse
Affiliation(s)
- Peiyi Liu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
| | - Juliette Jacques
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
64
|
Merrill NM, Kaffenberger SD, Bao L, Vandecan N, Goo L, Apfel A, Cheng X, Qin Z, Liu CJ, Bankhead A, Wang Y, Kathawate V, Tudrick L, Serhan HA, Farah Z, Ellimoottil C, Hafez KS, Herrel LA, Montgomery JS, Morgan TM, Salami SS, Weizer AZ, Ulintz PJ, Day ML, Soellner MB, Palmbos PL, Merajver SD, Udager AM. Integrative Drug Screening and Multiomic Characterization of Patient-derived Bladder Cancer Organoids Reveal Novel Molecular Correlates of Gemcitabine Response. Eur Urol 2024; 86:434-444. [PMID: 39155193 DOI: 10.1016/j.eururo.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND AND OBJECTIVE Predicting response to therapy for each patient's tumor is critical to improving long-term outcomes for muscle-invasive bladder cancer. This study aims to establish ex vivo bladder cancer patient-derived organoid (PDO) models that are representative of patients' tumors and determine the potential efficacy of standard of care and curated experimental therapies. METHODS Tumor material was collected prospectively from consented bladder cancer patients to generate short-term PDO models, which were screened against a panel of clinically relevant drugs in ex vivo three-dimensional culture. Multiomic profiling was utilized to validate the PDO models, establish the molecular characteristics of each tumor, and identify potential biomarkers of drug response. Gene expression (GEX) patterns between paired primary tissue and PDO samples were assessed using Spearman's rank correlation coefficients. Molecular correlates of therapy response were identified using Pearson correlation coefficients and Kruskal-Wallis tests with Dunn's post hoc pairwise comparison testing. KEY FINDINGS AND LIMITATIONS A total of 106 tumors were collected from 97 patients, with 65 samples yielding sufficient material for complete multiomic molecular characterization and PDO screening with six to 32 drugs/combinations. Short-term PDOs faithfully represent the tumor molecular characteristics, maintain diverse cell types, and avoid shifts in GEX-based subtyping that accompany long-term PDO cultures. Utilizing an integrative approach, novel correlations between ex vivo drug responses and genomic alterations, GEX, and protein expression were identified, including a multiomic signature of gemcitabine response. The positive predictive value of ex vivo drug responses and the novel multiomic gemcitabine response signature need to be validated in future studies. CONCLUSIONS AND CLINICAL IMPLICATIONS Short-term PDO cultures retain the molecular characteristics of tumor tissue and avoid shifts in expression-based subtyping that have plagued long-term cultures. Integration of multiomic profiling and ex vivo drug screening data identifies potential predictive biomarkers, including a novel signature of gemcitabine response. PATIENT SUMMARY Better models are needed to predict patient response to therapy in bladder cancer. We developed a platform that uses short-term culture to best mimic each patient's tumor and assess potential sensitivity to therapeutics.
Collapse
Affiliation(s)
- Nathan M Merrill
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Liwei Bao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Laura Goo
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Athena Apfel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xu Cheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhaoping Qin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chia-Jen Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yin Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Varun Kathawate
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lila Tudrick
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Habib A Serhan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zackariah Farah
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chad Ellimoottil
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Khaled S Hafez
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Lindsey A Herrel
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey S Montgomery
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Todd M Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Simpa S Salami
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Alon Z Weizer
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Peter J Ulintz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark L Day
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | | | - Phillip L Palmbos
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sofia D Merajver
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Aaron M Udager
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
65
|
An J, Kurilov R, Peccerella T, Bergmann F, Edderkaoui M, Lim A, Zhou X, Pfütze K, Schulz A, Wolf S, Hu K, Springfeld C, Mughal SS, Zezlina L, Fortunato F, Beyer G, Mayerle J, Roth S, Hulkkonen J, Merz D, Ei S, Mehrabi A, Loos M, Al-Saeedi M, Michalski CW, Büchler MW, Hackert T, Brors B, Pandol SJ, Bailey P, Neoptolemos JP. Metavert synergises with standard cytotoxics in human PDAC organoids and is associated with transcriptomic signatures of therapeutic response. Transl Oncol 2024; 49:102109. [PMID: 39217851 PMCID: PMC11402625 DOI: 10.1016/j.tranon.2024.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Despite some recent advances, pancreatic ductal adenocarcinoma (PDAC) remains a growing oncological challenge. New drugs capable of targeting more than one oncogenic pathway may be one way to improve patient outcomes. This study characterizes the effectiveness of Metavert a first-in-class dual inhibitor of GSK3-β and histone deacetylase in treating PDAC as a single agent or in combination with standard cytotoxics. METHODS Thirty-six Patient-Derived Organoids (hPDOs) characterised by RNASeq and whole exome sequencing were treated with Metavert alone or in combination with standard cytotoxics. Transcriptomic signatures (TS) representing sensitivity to Metavert alone or sensitivity to Metavert + irinotecan (IR) were evaluated in 47 patient samples, chemo-naïve in 26 and post-chemotherapy in 21 (gemcitabine=5; FOLFIRINOX=14, both=2) with companion multiplexed immunofluorescence and RNASeq data. RESULTS Metavert combined with gemcitabine, irinotecan, 5FU, oxaliplatin, and paclitaxel was synergistic in the hPDOs. Basal-subtype hPDOs were more sensitive to Metavert alone whereas the Metavert+IR combination exhibited synergy in Classical-subtype hPDOs with increased apoptosis and autophagy. hPDO-derived TS evaluated in PDAC tissues demonstrated that Metavert-TSHi samples were enriched for mRNA splicing and DNA repair processes; they were associated with Basal-like tissues but also with GATA6+ve-chemo-naïve samples and were higher following gemcitabine but not FOLFIRINOX treatment. In contrast, Metavert+IR-TSHI samples were enriched for TP53 pathways; they were associated with Classical-like pretreatment samples and with GATA6+ve/KRT17+ve hybrid cell types following FOLFIRINOX, but not gemcitabine treatment, and were unrelated to transcriptional subtypes. CONCLUSIONS Metavert as a single agent and in combination with irinotecan offers novel strategies for treating pancreatic cancer.
Collapse
Affiliation(s)
- Jingyu An
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Roma Kurilov
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany
| | - Teresa Peccerella
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Frank Bergmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center and University of California at Los Angeles, Thalians W204 8700 Beverly Blvd. Los Angeles, California CA 90048, United States
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center and University of California at Los Angeles, Thalians W204 8700 Beverly Blvd. Los Angeles, California CA 90048, United States
| | - Xu Zhou
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Katrin Pfütze
- Sample Processing Laboratory, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Angela Schulz
- NGS Core Facility, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Wolf
- NGS Core Facility, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai Hu
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - Sadaf S Mughal
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany
| | - Lenart Zezlina
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany
| | - Franco Fortunato
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Georg Beyer
- Department of Internal Medicine II, Ludwig-Maximilians-University of Munich, Germany
| | - Julia Mayerle
- Department of Internal Medicine II, Ludwig-Maximilians-University of Munich, Germany
| | - Susanne Roth
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Johannes Hulkkonen
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Daniela Merz
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Shigenori Ei
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Arianeb Mehrabi
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Martin Loos
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Mohammed Al-Saeedi
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Christoph W Michalski
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Markus W Büchler
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany; Botton-Champalimaud Pancreatic Cancer Centre, Lisbon, Portugal
| | - Thilo Hackert
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany; Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, Im Neuenheimer Feld 280, Heidelberg 69120, Germany; Medical Faculty and Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, Heidelberg 69120, Germany; National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg 69120, Germany
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center and University of California at Los Angeles, Thalians W204 8700 Beverly Blvd. Los Angeles, California CA 90048, United States
| | - Peter Bailey
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany; Botton-Champalimaud Pancreatic Cancer Centre, Lisbon, Portugal.
| | - John P Neoptolemos
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany; Botton-Champalimaud Pancreatic Cancer Centre, Lisbon, Portugal.
| |
Collapse
|
66
|
Wang X, Yang J, Ren B, Yang G, Liu X, Xiao R, Ren J, Zhou F, You L, Zhao Y. Comprehensive multi-omics profiling identifies novel molecular subtypes of pancreatic ductal adenocarcinoma. Genes Dis 2024; 11:101143. [PMID: 39253579 PMCID: PMC11382047 DOI: 10.1016/j.gendis.2023.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/11/2024] Open
Abstract
Pancreatic cancer, a highly fatal malignancy, is predicted to rank as the second leading cause of cancer-related death in the next decade. This highlights the urgent need for new insights into personalized diagnosis and treatment. Although molecular subtypes of pancreatic cancer were well established in genomics and transcriptomics, few known molecular classifications are translated to guide clinical strategies and require a paradigm shift. Notably, chronically developing and continuously improving high-throughput technologies and systems serve as an important driving force to further portray the molecular landscape of pancreatic cancer in terms of epigenomics, proteomics, metabonomics, and metagenomics. Therefore, a more comprehensive understanding of molecular classifications at multiple levels using an integrated multi-omics approach holds great promise to exploit more potential therapeutic options. In this review, we recapitulated the molecular spectrum from different omics levels, discussed various subtypes on multi-omics means to move one step forward towards bench-to-beside translation of pancreatic cancer with clinical impact, and proposed some methodological and scientific challenges in store.
Collapse
Affiliation(s)
- Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| |
Collapse
|
67
|
Lencioni G, Gregori A, Toledo B, Rebelo R, Immordino B, Amrutkar M, Xavier CPR, Kocijančič A, Pandey DP, Perán M, Castaño JP, Walsh N, Giovannetti E. Unravelling the complexities of resistance mechanism in pancreatic cancer: Insights from in vitro and ex-vivo model systems. Semin Cancer Biol 2024; 106-107:217-233. [PMID: 39299411 DOI: 10.1016/j.semcancer.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis and rising global deaths. Late diagnosis, due to absent early symptoms and biomarkers, limits treatment mainly to chemotherapy, which soon encounters resistance. PDAC treatment innovation is hampered by its complex and heterogeneous resistant nature, including mutations in key genes and a stromal-rich, immunosuppressive tumour microenvironment. Recent studies on PDAC resistance stress the need for suitable in vitro and ex vivo models to replicate its complex molecular and microenvironmental landscape. This review summarises advances in these models, which can aid in combating chemoresistance and serve as platforms for discovering new therapeutics. Immortalised cell lines offer homogeneity, unlimited proliferation, and reproducibility, but while many gemcitabine-resistant PDAC cell lines exist, fewer models are available for resistance to other drugs. Organoids from PDAC patients show promise in mimicking tumour heterogeneity and chemosensitivity. Bioreactors, co-culture systems and organotypic slices, incorporating stromal and immune cells, are being developed to understand tumour-stroma interactions and the tumour microenvironment's role in drug resistance. Lastly, another innovative approach is three-dimensional bioprinting, which creates tissue-like structures resembling PDAC architecture, allowing for drug screening. These advanced models can guide researchers in selecting optimal in vitro tests, potentially improving therapeutic strategies and patient outcomes.
Collapse
Affiliation(s)
- Giulia Lencioni
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | - Alessandro Gregori
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Belén Toledo
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain
| | - Rita Rebelo
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto 4200-135, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto 4200-135, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Benoît Immordino
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Manoj Amrutkar
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto 4200-135, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto 4200-135, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
| | - Anja Kocijančič
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Deo Prakash Pandey
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Naomi Walsh
- Life Sciences Institute, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Elisa Giovannetti
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
68
|
Badder LM, Davies JA, Meniel VS, Marušková M, Salvador-Barbero B, Bayliss RJ, Phesse TJ, Hogan C, Parker AL. The αvβ6 integrin specific virotherapy, Ad5 NULL-A20.FCU1, selectively delivers potent "in-tumour" chemotherapy to pancreatic ductal adenocarcinoma. Br J Cancer 2024; 131:1694-1706. [PMID: 39369056 PMCID: PMC11555051 DOI: 10.1038/s41416-024-02869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) represent an unmet clinical need. Approximately 90% of PDACs express high levels of αvβ6 integrin. We have previously described Ad5NULL-A20, an adenovirus vector with ablated native means of cell entry and retargeted to αvβ6 integrin by incorporation of an A20 peptide. METHODS Here, we incorporate suicide genes FCY1 and FCU1 encoding for cytosine deaminase (CDase) or a combination of CDase and UPRTase, capable of catalysing a non-toxic prodrug, 5-FC into the chemotherapeutic 5-FU and downstream metabolites, into replication-deficient Ad5 and Ad5NULL-A20. RESULTS We show that Ad5NULL-A20 enables the transfer of suicide genes to αvβ6 integrin-positive PDAC cells which, in combination with 5-FC, results in cell death in vitro which is further mediated by a bystander effect in non-transduced cells. Intratumoural delivery of Ad5NULL-A20.FCU1 in combination with intraperitoneal delivery of 5-FC further results in tumour growth inhibition in a cell line xenograft in vivo. Using clinically-relevant 3D organoid models, we show selective transduction and therapeutic efficacy of FCU1 transgenes in combination with 5-FC. CONCLUSION Taken together these data provide the preclinical rationale for combined Ad5NULL-A20.FCU1 plus 5-FC as a promising targeted therapy to mediate "in-tumour chemotherapy" and merits further investigation for the treatment of PDAC patients.
Collapse
Affiliation(s)
- Luned M Badder
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - James A Davies
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Valerie S Meniel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Mahulena Marušková
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Beatriz Salvador-Barbero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Rebecca J Bayliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Toby J Phesse
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine Hogan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
69
|
Archasappawat S, Al-Musawi F, Liu P, Lee E, Hwang CI. Familial Pancreatic Cancer Research: Bridging Gaps in Basic Research and Clinical Application. Biomolecules 2024; 14:1381. [PMID: 39595558 PMCID: PMC11592027 DOI: 10.3390/biom14111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Familial pancreatic cancer (FPC) represents a significant yet underexplored area in pancreatic cancer research. Basic research efforts are notably limited, and when present, they are predominantly centered on the BRCA1 and BRCA2 mutations due to the scarcity of other genetic variants associated with FPC, leading to a limited understanding of the broader genetic landscape of FPC. This review examines the current state of FPC research, focusing on the molecular mechanisms driving pancreatic ductal adenocarcinoma (PDAC) progression. It highlights the role of homologous recombination (HR) and its therapeutic exploitation via synthetic lethality with PARP inhibitors in BRCA1/2-deficient tumors. The review discusses various pre-clinical models of FPC, including conventional two-dimensional (2D) cell lines, patient-derived organoids (PDOs), patient-derived xenografts (PDXs), and genetically engineered mouse models (GEMMs), as well as new advancements in FPC research.
Collapse
Affiliation(s)
- Suyakarn Archasappawat
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| | - Fatimah Al-Musawi
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
| | - Peiyi Liu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
| | - EunJung Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
| | - Chang-il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
70
|
Wu M, Liao Y, Tang L. Non-small cell lung cancer organoids: Advances and challenges in current applications. Chin J Cancer Res 2024; 36:455-473. [PMID: 39539817 PMCID: PMC11555200 DOI: 10.21147/j.issn.1000-9604.2024.05.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer is emerging as a common malignancy worldwide, with non-small cell lung cancer (NSCLC) accounting for approximately 85% of all cases. Two-dimensional (2D) in vitro cell line cultures and animal models are currently used to study NSCLC. However, 2D cell cultures fail to replicate the medication response and neoplastic heterogeneity of parental tumors. Animal models are expensive and require lengthy modeling cycles. The generation of in vitro three-dimensional (3D) tissue cultures called organoids, which exhibit multicellular, anatomical, and functional properties of real organs, is now achievable owing to advancements in stem cell culturing. The genetic, proteomic, morphological, and pharmacological characteristics of tumors are largely preserved in tumor organoids grown in vitro. The design and physiology of human organs can be precisely reconstructed in tumor organoids, opening new possibilities for complementing the use of animal models and studying human diseases. This review summarizes the development of NSCLC organoids and their applications in basic research, drug testing, immunotherapy, and individualized treatments.
Collapse
Affiliation(s)
- Maoqin Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yi Liao
- Department of Technical Support, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
71
|
Farshadi EA, Wang W, Mohammad F, van der Oost E, Doukas M, van Eijck CHJ, van de Werken HJG, Katsikis PD. Tumor organoids improve mutation detection of pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:25468. [PMID: 39462012 PMCID: PMC11513084 DOI: 10.1038/s41598-024-75888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents challenges in detecting somatic mutations due to its complex cellular composition. This study investigated the utility of patient-derived organoids (PDOs) to overcome these obstacles and enhance somatic mutation identification. Surgically resected PDAC tumors and their paired PDOs from 21 patients were examined. Whole-exome sequencing (WES) of tumor tissue, organoids, and peripheral blood mononuclear cells was performed to identify somatic mutations. Our findings demonstrate that PDOs retained about 80% of the somatic mutations from the original tumors, showing high concordance in mutation types. PDOs exhibited increased tumor purity and uncovered key driver mutations, aiding in identifying clinically relevant genomic alterations. Moreover, eight cycles of FOLFIRINOX treatment did not significantly alter the mutational landscape at the DNA level, indicating the stability of the mutational profile after therapeutic pressure in patients. In conclusion, PDOs are potentially important tools for exploring the somatic mutational landscape of PDAC. While they can reveal mutations that may be challenging to detect through traditional biopsy sequencing due to the inherently low tumor purity of PDAC, it is important to note that PDOs may not always fully recapitulate all mutations found in primary tumors. Despite this limitation, PDOs can still offer critical insights into the genomic complexities of PDAC, which is crucial for the development of personalized vaccines and therapies for this disease.
Collapse
Affiliation(s)
- Elham Aida Farshadi
- Department of Pulmonary Medicine, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Wenya Wang
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Farzana Mohammad
- Department of Pulmonary Medicine, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Elise van der Oost
- Department of Surgery, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Harmen J G van de Werken
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| |
Collapse
|
72
|
Airola C, Pallozzi M, Cesari E, Cerrito L, Stella L, Sette C, Giuliante F, Gasbarrini A, Ponziani FR. Hepatocellular-Carcinoma-Derived Organoids: Innovation in Cancer Research. Cells 2024; 13:1726. [PMID: 39451244 PMCID: PMC11505656 DOI: 10.3390/cells13201726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinomas (HCCs) are highly heterogeneous malignancies. They are characterized by a peculiar tumor microenvironment and dense vascularization. The importance of signaling between immune cells, endothelial cells, and tumor cells leads to the difficult recapitulation of a reliable in vitro HCC model using the conventional two-dimensional cell cultures. The advent of three-dimensional organoid tumor technology has revolutionized our understanding of the pathogenesis and progression of several malignancies by faithfully replicating the original cancer genomic, epigenomic, and microenvironmental landscape. Organoids more closely mimic the in vivo environment and cell interactions, replicating factors such as the spatial organization of cell surface receptors and gene expression, and will probably become an important tool in the choice of therapies and the evaluation of tumor response to treatments. This review aimed to describe the ongoing and potential applications of organoids as an in vitro model for the study of HCC development, its interaction with the host's immunity, the analysis of drug sensitivity tests, and the current limits in this field.
Collapse
Affiliation(s)
- Carlo Airola
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Eleonora Cesari
- GSTeP Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (E.C.); (C.S.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Claudio Sette
- GSTeP Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (E.C.); (C.S.)
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Felice Giuliante
- Department of Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
73
|
Vasiliadou I, Cattaneo C, Chan PYK, Henley-Smith R, Gregson-Williams H, Collins L, Wojewodka G, Guerrero-Urbano T, Jeannon JP, Connor S, Davis J, Pasto A, Mustapha R, Ng T, Kong A. Correlation of the treatment sensitivity of patient-derived organoids with treatment outcomes in patients with head and neck cancer (SOTO): protocol for a prospective observational study. BMJ Open 2024; 14:e084176. [PMID: 39389599 PMCID: PMC11474813 DOI: 10.1136/bmjopen-2024-084176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Organoids have been successfully used in several areas of cancer research and large living biobanks of patient-derived organoids (PDOs) have been developed from various malignancies. The characteristics of the original tumour tissue such as mutation signatures, phenotype and genetic diversity are well preserved in organoids, thus showing promising results for the use of this model in translational research. In this study, we aim to assess whether we can generate PDOs from head and neck squamous cell carcinoma (HNSCC) samples and whether PDOs can be used to predict treatment sensitivity in HNSCC patients as well as to explore potential biomarkers. METHODS AND ANALYSIS This is a prospective observational study at a single centre (Guy's and St Thomas' NHS Foundation Trust) to generate PDOs from patients' samples to assess treatment response and to correlate with patients' treatment outcomes. Patients will be included if they are diagnosed with HNSCC undergoing curative treatment (primary surgery or radiotherapy) or presenting with recurrent or metastatic cancers and they will be categorised into three groups (cohort 1: primary surgery, cohort 2: primary radiotherapy and cohort 3: recurrent/metastatic disease). Research tumour samples will be collected and processed into PDOs and chemosensitivity/radiosensitivity will be assessed using established methods. Moreover, blood and other biological samples (eg, saliva) will be collected at different time intervals during treatment and will be processed in the laboratory for plasma and peripheral blood mononuclear cell (PBMC) isolation. Plasma and saliva will be used for circulating tumour DNA analysis and PBMC will be stored for assessment of the peripheral immune characteristics of the patients as well as to perform co-culture experiments with PDOs. SOTO study (correlation of the treatment Sensitivity of patient-derived Organoids with Treatment Outcomes in patients with head and neck cancer) uses the collaboration of several specialties in head and neck cancer and has the potential to explore multiple areas of research with the aim of offering a valid and effective approach to personalised medicine for cancer patients. ETHICS AND DISSEMINATION This study was approved by North West-Greater Manchester South Research Ethics Committee (REC Ref: 22/NW/0023) on 21 March 2022. An informed consent will be obtained from all participants prior to inclusion in the study. Results will be disseminated via peer-reviewed publications and presentations at international conferences. TRIAL REGISTRATION NUMBER NCT05400239.
Collapse
Affiliation(s)
| | | | | | - Rhonda Henley-Smith
- Head and Neck Pathology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | | | - Lisette Collins
- Head and Neck Pathology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | | | | | | | - Steve Connor
- Head and Neck Radiology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Jessica Davis
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Anna Pasto
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Rami Mustapha
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Tony Ng
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Anthony Kong
- Comprehensive Cancer Centre, King's College London, London, UK
| |
Collapse
|
74
|
Ali HA, Karasinska JM, Topham JT, Johal D, Kalloger S, Metcalfe A, Warren CS, Miyagi A, Tao LV, Kevorkova M, Chafe SC, McDonald PC, Dedhar S, Parker SJ, Renouf DJ, Schaeffer DF. Pancreatic cancer tumor organoids exhibit subtype-specific differences in metabolic profiles. Cancer Metab 2024; 12:28. [PMID: 39363341 PMCID: PMC11448267 DOI: 10.1186/s40170-024-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease characterized by complex metabolic rewiring that enables growth in changing nutrient availability and oxygen conditions. Transcriptome-based prognostic PDAC tumor subtypes, known as 'basal-like' and 'classical' subtypes are associated with differences in metabolic gene expression including genes involved in glycolysis. Tumor subtype-specific metabolism phenotypes may provide new targets for treatment development in PDAC, but their functional relevance has not been fully elucidated. We aimed to investigate differences in metabolic profiles and transcriptomes in tumor models derived from patients with basal-like and classical tumors. METHODS Patient-derived organoids (PDOs) were established from tumor biopsies collected from patients with metastatic PDAC, including three PDOs from basal-like and five PDOs from classical tumors. Metabolic analyses included assessment of differences in metabolic activity using Seahorse Glycolysis and Mito Stress tests and 13C-glucose metabolites tracing analysis. In order to investigate the influence of mitochondrial pyruvate transport on metabolic differences, PDOs were treated with the mitochondrial pyruvate carrier 1 (MPC1) inhibitor UK-5099. Prognostic relevance of MPC1 was determined using a tumor tissue microarray (TMA) in resectable, and proteomics profiling in metastatic PDAC datasets. Whole genome and transcriptome sequencing, differential gene expression and gene set enrichment analyses were performed in PDOs. RESULTS Metastatic PDAC PDOs showed subtype-specific differences in glycolysis and oxidative phosphorylation (OXPHOS). Basal-like tumor-derived PDOs had a lower baseline extracellular acidification rate, but higher glycolytic reserves and oxygen consumption rate (OCR) than classical tumor-derived PDOs. OCR difference was eliminated following treatment with UK-5099. In the 13C-glucose metabolites tracing experiment, a basal-like tumor PDO showed lower fractions of some M + 2 metabolites but higher sensitivity to UK-5099 mediated reduction in M + 2 metabolites than a classical tumor PDO. Protein level analyses revealed lower MPC1 protein levels in basal-like PDAC cases and association of low MPC1 levels with clinicopathologic parameters of tumor aggressiveness in PDAC. PDO differential gene expression analyses identified additional subtype-specific cellular pathways and potential disease outcome biomarkers. CONCLUSIONS Our findings point to distinct metabolic profiles in PDAC subtypes with basal-like tumor PDOs showing higher OXPHOS and sensitivity to MPC1 inhibition. Subtypes-specific metabolic vulnerabilities may be exploited for selective therapeutic targeting.
Collapse
Affiliation(s)
| | | | | | - Danisha Johal
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | - Lan V Tao
- Pancreas Centre BC, Vancouver, BC, Canada
| | | | - Shawn C Chafe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Shoukat Dedhar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Seth J Parker
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, BC, Canada
- Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, BC, Canada.
- Division of Anatomic Pathology, Vancouver General Hospital, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
75
|
Al Shihabi A, Tebon PJ, Nguyen HTL, Chantharasamee J, Sartini S, Davarifar A, Jensen AY, Diaz-Infante M, Cox H, Gonzalez AE, Norris S, Sperry J, Nakashima J, Tavanaie N, Winata H, Fitz-Gibbon ST, Yamaguchi TN, Jeong JH, Dry S, Singh AS, Chmielowski B, Crompton JG, Kalbasi AK, Eilber FC, Hornicek F, Bernthal NM, Nelson SD, Boutros PC, Federman NC, Yanagawa J, Soragni A. The landscape of drug sensitivity and resistance in sarcoma. Cell Stem Cell 2024; 31:1524-1542.e4. [PMID: 39305899 DOI: 10.1016/j.stem.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
Sarcomas are rare malignancies with over 100 distinct histological subtypes. Their rarity and heterogeneity pose significant challenges to identifying effective therapies, and approved regimens show varied responses. Novel, personalized approaches to therapy are needed to improve patient outcomes. Patient-derived tumor organoids (PDTOs) model tumor behavior across an array of malignancies. We leverage PDTOs to characterize the landscape of drug resistance and sensitivity in sarcoma, collecting 194 specimens from 126 patients spanning 24 distinct sarcoma subtypes. Our high-throughput organoid screening pipeline tested single agents and combinations, with results available within a week from surgery. Drug sensitivity correlated with clinical features such as tumor subtype, treatment history, and disease trajectory. PDTO screening can facilitate optimal drug selection and mirror patient outcomes in sarcoma. We could identify at least one FDA-approved or NCCN-recommended effective regimen for 59% of the specimens, demonstrating the potential of our pipeline to provide actionable treatment information.
Collapse
Affiliation(s)
- Ahmad Al Shihabi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peyton J Tebon
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jomjit Chantharasamee
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sara Sartini
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ardalan Davarifar
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexandra Y Jensen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miranda Diaz-Infante
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hannah Cox
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Summer Norris
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Nasrin Tavanaie
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Helena Winata
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sorel T Fitz-Gibbon
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jae H Jeong
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Dry
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arun S Singh
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bartosz Chmielowski
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph G Crompton
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Division of Surgical Oncology David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anusha K Kalbasi
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fritz C Eilber
- Division of Surgical Oncology David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francis Hornicek
- Department of Orthopedic Surgery, University of Miami, Miami, FL, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah C Federman
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane Yanagawa
- Department of Surgery, Division of Thoracic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
76
|
Chen LY, Chou YT, Liew PL, Chu LH, Wen KC, Lin SF, Weng YC, Wang HC, Su PH, Lai HC. In vitro drug testing using patient-derived ovarian cancer organoids. J Ovarian Res 2024; 17:194. [PMID: 39358778 PMCID: PMC11445862 DOI: 10.1186/s13048-024-01520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecological cancer. As the primary treatment, chemotherapy has a response rate of only 60-70% in advanced stages, and even lower as a second-line treatment. Despite guideline recommendations, which drugs will be most effective remains unclear. Thus, a strategy to prioritize chemotherapy options is urgently needed. Cancer organoids have recently emerged as a method for in vitro drug testing. However, limited clinical correlations have been assessed with test results from cancer organoids, particularly in gynecological cancers. We therefore aimed to generate patient-derived organoids (PDOs) of ovarian cancer, to assess their drug sensitivities and correlations with patient clinical outcomes. METHODS PDOs were generated from fresh tumors obtained during surgical resection, which was then cultured under matrix gel and appropriate growth factors. Morphological and molecular characterization of PDOs were assessed by phase contrast microscopy and paraffin-embedded histopathology. Expressions of PAX8, TP53, WT1, CK7, and CK20 were tested by immunohistochemical staining and compared with parental tumor tissues and the human protein atlas database. PDOs were subjected to in vitro drug testing to determine drug sensitivity using Titer-Glo® 3D Cell Viability Assay. PDO viability was measured, and area under the curve calculated, to compare responses to various compounds. Correlations were calculated between selected patients' clinical outcomes and in vitro drug testing results. RESULTS We established 31 PDOs. Among them, 28 PDOs can be expanded, including 15, 11, and 2 from ovarian, endometrial, and cervical cancers, respectively. The PDOs preserved the histopathological profiles of their originating tumors. In vitro drug testing of 10 ovarian cancer PDOs revealed individual differential responses to recommended drugs, and interpersonal heterogeneity in drug sensitivity, even with the same histology type. Among four patients who were platinum sensitive, resistant, or refractory, PDO drug responses correlated well with their clinical courses. CONCLUSION In vitro drug testing using ovarian cancer organoids is feasible and correlates well with patient clinical responses. These results may facilitate development of precision chemotherapy and personalized screening for repurposed or new drugs.
Collapse
Affiliation(s)
- Lin-Yu Chen
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yu-Ting Chou
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Phui-Ly Liew
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ling-Hui Chu
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Kuo-Chang Wen
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shiou-Fu Lin
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yu-Chun Weng
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Hui-Chen Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Po-Hsuan Su
- College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei, 11219, Taiwan
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
77
|
Heinzelmann E, Piraino F, Costa M, Roch A, Norkin M, Garnier V, Homicsko K, Brandenberg N. iPSC-derived and Patient-Derived Organoids: Applications and challenges in scalability and reproducibility as pre-clinical models. Curr Res Toxicol 2024; 7:100197. [PMID: 40276485 PMCID: PMC12020925 DOI: 10.1016/j.crtox.2024.100197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 04/26/2025] Open
Abstract
Recent advancements in stem cell technology have led to the development of organoids - three-dimensional (3D) cell cultures that closely mimic the structural and functional characteristics of human organs. These organoids represent a significant improvement over traditional two-dimensional (2D) cell cultures by preserving native tissue architecture and cellular interactions critical for physiological relevance. This review provides a comprehensive comparison between two main types of organoids: induced Pluripotent Stem Cell (iPSC)-derived and Adult Stem Cell (ASC)-derived (also known as Patient-Derived Organoids, PDOs). iPSC-derived organoids, derived from reprogrammed cells, exhibit remarkable plasticity, and can model a wide range of tissues and developmental stages. They are particularly valuable for studying early human development, genetic disorders, and complex diseases. However, challenges such as prolonged differentiation protocols and variability in maturation levels remain significant hurdles. In contrast, ASC-derived organoids, generated directly from patient tissues, faithfully recapitulate tissue-specific characteristics and disease phenotypes. This fidelity makes them indispensable for personalized medicine applications, including drug screening, disease modeling, and understanding individualized treatment responses. The review highlights the unique advantages and limitations of each organoid type, emphasizing their roles in advancing biomedical research and drug discovery. It addresses key challenges in organoid technology, such as scalability, reproducibility, and the need for standardized culture protocols. Furthermore, it explores recent innovations in scaffold-guided organoid engineering and the integration of organoids with advanced technologies like artificial intelligence and high-throughput screening. The integration of organoids with cutting-edge technologies holds promise for enhancing their utility in modeling complex human diseases and accelerating drug discovery and development. By providing more physiologically relevant models of human organs, organoid technology is poised to revolutionize biomedical research, offering new insights into disease mechanisms and personalized therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Maxim Norkin
- Department of Oncology, CHUV, Lausanne, Switzerland
| | | | | | | |
Collapse
|
78
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
79
|
Xie G, Zhang L, Usman OH, Kumar S, Modak C, Patel D, Kavanaugh M, Mallory X, Wang YJ, Irianto J. Phenotypic, Genomic, and Transcriptomic Heterogeneity in a Pancreatic Cancer Cell Line. Pancreas 2024; 53:e748-e759. [PMID: 38710020 PMCID: PMC11384550 DOI: 10.1097/mpa.0000000000002371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
OBJECTIVE To evaluate the suitability of the MIA PaCa-2 cell line for studying pancreatic cancer intratumor heterogeneity, we aim to further characterize the nature of MIA PaCa-2 cells' phenotypic, genomic, and transcriptomic heterogeneity. MATERIALS AND METHODS MIA PaCa-2 single-cell clones were established through flow cytometry. For the phenotypic study, we quantified the cellular morphology, proliferation rate, migration potential, and drug sensitivity of the clones. The chromosome copy number and transcriptomic profiles were quantified using SNPa and RNA-seq, respectively. RESULTS Four MIA PaCa-2 clones showed distinctive phenotypes, with differences in cellular morphology, proliferation rate, migration potential, and drug sensitivity. We also observed a degree of genomic variations between these clones in form of chromosome copy number alterations and single nucleotide variations, suggesting the genomic heterogeneity of the population, and the intrinsic genomic instability of MIA PaCa-2 cells. Lastly, transcriptomic analysis of the clones also revealed gene expression profile differences between the clones, including the uniquely regulated ITGAV , which dictates the morphology of MIA PaCa-2 clones. CONCLUSIONS MIA PaCa-2 is comprised of cells with distinctive phenotypes, heterogeneous genomes, and differential transcriptomic profiles, suggesting its suitability as a model to study the underlying mechanisms behind pancreatic cancer heterogeneity.
Collapse
Affiliation(s)
- Gengqiang Xie
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Liting Zhang
- Department of Computer Science, Florida State University, Tallahassee, FL
| | - Olalekan H Usman
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Sampath Kumar
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Chaity Modak
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Dhenu Patel
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Megan Kavanaugh
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Xian Mallory
- Department of Computer Science, Florida State University, Tallahassee, FL
| | - Yue Julia Wang
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Jerome Irianto
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| |
Collapse
|
80
|
Grützmeier SE, Sodal HMM, Kovacevic B, Vilmann P, Karstensen JG, Klausen P. EUS-guided biopsies versus surgical specimens for establishing patient-derived pancreatic cancer organoids: a systematic review and meta-analysis. Gastrointest Endosc 2024; 100:750-755. [PMID: 38593932 DOI: 10.1016/j.gie.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND AND AIMS Patient-derived tumor organoids (PDTOs) are a promising new disease model in pancreatic cancer for use in personalized medicine. However, the overall success rate (SR) of establishing these cultures from EUS-guided biopsies is unknown. METHODS We searched relevant database publications reporting SRs of PDTO establishment from pancreatic cancer. The primary outcome was SR stratified on tissue acquisition method (EUS-guided biopsies, percutaneous biopsies, and surgical specimens). RESULTS Twenty-four studies were identified that included 1053 attempts at establishing PDTOs. Overall SR was 63% (95% confidence interval [CI], 54%-72%). Pooled SRs of PDTO establishment from EUS-guided biopsies, percutaneous biopsies, and surgical specimens were 60% (95% CI, 43%-76%), 36% (95% CI, 14%-61%), and 62% (95% CI, 48%-75%), respectively, and did not differ significantly (P = .1975). CONCLUSION The SR of PDTO establishment from EUS-guided biopsies is comparable to that from surgical specimens. Both techniques are suitable for tissue acquisition for PDTOs in clinical and research settings. (PROSPERO registration number: CRD42023425121.).
Collapse
Affiliation(s)
- Simon Ezban Grützmeier
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark.
| | - Hafsa Mahad Mahamud Sodal
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Bojan Kovacevic
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark; Department of Surgery and Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Peter Vilmann
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - John Gásdal Karstensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Pancreatitis Centre East, Gastro Unit, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Pia Klausen
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark; Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
81
|
Than MT, O'Hara M, Stanger BZ, Reiss KA. KRAS-Driven Tumorigenesis and KRAS-Driven Therapy in Pancreatic Adenocarcinoma. Mol Cancer Ther 2024; 23:1378-1388. [PMID: 39118358 PMCID: PMC11444872 DOI: 10.1158/1535-7163.mct-23-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with significant morbidity and mortality and is projected to be the second leading cause of cancer-related deaths by 2030. Mutations in KRAS are found in the vast majority of PDAC cases and plays an important role in the development of the disease. KRAS drives tumor cell proliferation and survival through activating the MAPK pathway to drive cell cycle progression and to lead to MYC-driven cellular programs. Moreover, activated KRAS promotes a protumorigenic microenvironment through forming a desmoplastic stroma and by impairing antitumor immunity. Secretion of granulocyte-macrophage colony-stimulating factor and recruitment of myeloid-derived suppressor cells and protumorigenic macrophages results in an immunosuppressive environment while secretion of secrete sonic hedgehog and TGFβ drive fibroblastic features characteristic of PDAC. Recent development of several small molecules to directly target KRAS marks an important milestone in precision medicine. Many molecules show promise in preclinical models of PDAC and in early phase clinical trials. In this review, we discuss the underlying cell intrinsic and extrinsic roles of KRAS in PDAC tumorigenesis, the pharmacologic development of KRAS inhibition, and therapeutic strategies to target KRAS in PDAC.
Collapse
Affiliation(s)
- Minh T Than
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark O'Hara
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kim A Reiss
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
82
|
Tamagawa H, Fujii M, Togasaki K, Seino T, Kawasaki S, Takano A, Toshimitsu K, Takahashi S, Ohta Y, Matano M, Kawasaki K, Machida Y, Sekine S, Machinaga A, Sasai K, Kodama Y, Kakiuchi N, Ogawa S, Hirano T, Seno H, Kitago M, Kitagawa Y, Iwasaki E, Kanai T, Sato T. Wnt-deficient and hypoxic environment orchestrates squamous reprogramming of human pancreatic ductal adenocarcinoma. Nat Cell Biol 2024; 26:1759-1772. [PMID: 39232216 DOI: 10.1038/s41556-024-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Human pancreatic cancer is characterized by the molecular diversity encompassing native duct-like and squamous cell-like identities, but mechanisms underlying squamous transdifferentiation have remained elusive. To comprehensively capture the molecular diversity of human pancreatic cancer, we here profiled 65 patient-derived pancreatic cancer organoid lines, including six adenosquamous carcinoma lines. H3K27me3-mediated erasure of the ductal lineage specifiers and hijacking of the TP63-driven squamous-cell programme drove squamous-cell commitment, providing survival benefit in a Wnt-deficient environment and hypoxic conditions. Gene engineering of normal pancreatic duct organoids revealed that GATA6 loss and a Wnt-deficient environment, in concert with genetic or hypoxia-mediated inactivation of KDM6A, facilitate squamous reprogramming, which in turn enhances environmental fitness. EZH2 inhibition counterbalanced the epigenetic bias and curbed the growth of adenosquamous cancer organoids. Our results demonstrate how an adversarial microenvironment dictates the molecular and histological evolution of human pancreatic cancer and provide insights into the principles and significance of lineage conversion in human cancer.
Collapse
Affiliation(s)
- Hiroki Tamagawa
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Kazuhiro Togasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Seino
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Kawasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Ai Takano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Kohta Toshimitsu
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Kenta Kawasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Yujiro Machida
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Eisuke Iwasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
83
|
Hendley AM, Ashe S, Urano A, Ng M, Phu TA, Peng XL, Luan C, Finger AM, Jang GH, Kerper NR, Berrios DI, Jin D, Lee J, Riahi IR, Gbenedio OM, Chung C, Roose JP, Yeh JJ, Gallinger S, Biankin AV, O'Kane GM, Ntranos V, Chang DK, Dawson DW, Kim GE, Weaver VM, Raffai RL, Hebrok M. nSMase2-mediated exosome secretion shapes the tumor microenvironment to immunologically support pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614610. [PMID: 39399775 PMCID: PMC11468832 DOI: 10.1101/2024.09.23.614610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pleiotropic roles of nSMase2-generated ceramide include regulation of intracellular ceramide signaling and exosome biogenesis. We investigated the effects of eliminating nSMase2 on early and advanced PDA, including its influence on the microenvironment. Employing the KPC mouse model of pancreatic cancer, we demonstrate that pancreatic epithelial nSMase2 ablation reduces neoplasia and promotes a PDA subtype switch from aggressive basal-like to classical. nSMase2 elimination prolongs survival of KPC mice, hinders vasculature development, and fosters a robust immune response. nSMase2 loss leads to recruitment of cytotoxic T cells, N1-like neutrophils, and abundant infiltration of anti-tumorigenic macrophages in the pancreatic preneoplastic microenvironment. Mechanistically, we demonstrate that nSMase2-expressing PDA cell small extracellular vesicles (sEVs) reduce survival of KPC mice; PDA cell sEVs generated independently of nSMase2 prolong survival of KPC mice and reprogram macrophages to a proinflammatory phenotype. Collectively, our study highlights previously unappreciated opposing roles for exosomes, based on biogenesis pathway, during PDA progression. Graphical abstract
Collapse
|
84
|
Sun H, Wang Y, Sun M, Ke X, Li C, Jin B, Pang M, Wang Y, Jiang S, Du L, Du S, Zhong S, Zhao H, Pang Y, Sun Y, Yang Z, Yang H, Mao Y. Developing Patient-Derived 3D-Bioprinting models of pancreatic cancer. J Adv Res 2024:S2090-1232(24)00413-2. [PMID: 39278567 DOI: 10.1016/j.jare.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024] Open
Abstract
INTRODUCTION Pancreatic cancer (PC) remains a challenging malignancy, and adjuvant chemotherapy is critical in improving patient survival post-surgery. However, the intrinsic heterogeneity of PC necessitates personalized treatment strategies, highlighting the need for reliable preclinical models. OBJECTIVES This study aimed to develop novel patient-derived preclinical PC models using three-dimensional bioprinting (3DP) technology. METHODS Patient-derived PC models were established using 3DP technology. Genomic and histological analyses were performed to characterize these models and compare them with corresponding patient tissues. Chemotherapeutic drug sensitivity tests were conducted on the PC 3DP models, and correlations with clinical outcomes were analyzed. RESULTS The study successfully established PC 3DP models with a modeling success rate of 86.96%. These models preserved genomic and histological features consistent with patient tissues. Drug sensitivity testing revealed significant heterogeneity among PC 3DP models, mirroring clinical variability, and potential correlations with clinical outcomes. CONCLUSION The PC 3DP models demonstrated their utility as reliable preclinical tools, retaining key genomic and histological characteristics. Importantly, drug sensitivity profiles in these models showed potential correlations with clinical outcomes, indicating their promise in customizing treatment strategies and predicting patient prognoses. Further validation with larger patient cohorts is warranted to confirm their potential clinical utility.
Collapse
Affiliation(s)
- Hang Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China; Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100730, China
| | - Yan Wang
- Eight-year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Minghao Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Xindi Ke
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China; Eight-year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Changcan Li
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Mingchang Pang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Yanan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Shangze Jiang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Liwei Du
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Shouxian Zhong
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China; Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, China
| | - Yongliang Sun
- First Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Zhiying Yang
- First Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China.
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China.
| |
Collapse
|
85
|
Fraunhoffer N, Teyssedou C, Pessaux P, Bigonnet M, Dusetti N, Iovanna J. Development of transcriptomic tools for predicting the response to individual drug of the mFOLFIRINOX regimen in patients with metastatic pancreatic cancer. Front Oncol 2024; 14:1437200. [PMID: 39323995 PMCID: PMC11422012 DOI: 10.3389/fonc.2024.1437200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Background The utilization of modified FOLFIRINOX (mFFX) therapy has shown notable advancements in patient outcomes in both localized and metastatic PDAC. Nevertheless, the effectiveness of mFFX treatment comes at the cost of elevated toxicity, leading to its restriction to patients with adequate performance status. Consequently, the administration of mFFX is contingent upon patient performance rather than rational criteria. The ideal scenario would involve the ability to assess the sensitivity of each drug within the mFFX regimen, minimizing unnecessary toxicity without compromising clinical benefits. Methods We developed transcriptomic signatures for each drug of the mFFX regimen (5FU, oxaliplatin and irinotecan) by integrating transcriptomic data from PDC, PDO and PDX with their corresponding chemo-response profiles to capture the biological components responsible for the response to each drug. We further validated the signatures in a cohort of 167 patients with advanced and metastatic PDAC. Results All three signatures captured high responder patients for OS and PFS in the mFFX arm exclusively. We then studied the response of patients to 0, 1, 2 and 3 drugs and we identified a positive correlation between the number of drugs predicted as sensitive and the OS and PFS, and the with objective response rate. Conclusions We developed three novel transcriptome-based signatures which define sensitivity for each mFFX components that can be used to rationalize the administration of the mFFX regimen in patients with metastatic pancreatic cancer and could help to avoid unnecessary toxic effects.
Collapse
Affiliation(s)
- Nicolas Fraunhoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Buenos Aires, Argentina
| | - Carlos Teyssedou
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Endocrine and Visceral Surgery Department, University Hospital Angers, Angers, France
| | - Patrick Pessaux
- Department of General, Digestive, and Endocrine Surgery, Nouvel Hôpital Civil, Strasbourg, France
| | - Martin Bigonnet
- PredictingMed, Luminy Science and Technology Park, Marseille, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| |
Collapse
|
86
|
Dinić J, Jovanović Stojanov S, Dragoj M, Grozdanić M, Podolski-Renić A, Pešić M. Cancer Patient-Derived Cell-Based Models: Applications and Challenges in Functional Precision Medicine. Life (Basel) 2024; 14:1142. [PMID: 39337925 PMCID: PMC11433531 DOI: 10.3390/life14091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
The field of oncology has witnessed remarkable progress in personalized cancer therapy. Functional precision medicine has emerged as a promising avenue for achieving superior treatment outcomes by integrating omics profiling and sensitivity testing of patient-derived cancer cells. This review paper provides an in-depth analysis of the evolution of cancer-directed drugs, resistance mechanisms, and the role of functional precision medicine platforms in revolutionizing individualized treatment strategies. Using two-dimensional (2D) and three-dimensional (3D) cell cultures, patient-derived xenograft (PDX) models, and advanced functional assays has significantly improved our understanding of tumor behavior and drug response. This progress will lead to identifying more effective treatments for more patients. Considering the limited eligibility of patients based on a genome-targeted approach for receiving targeted therapy, functional precision medicine provides unprecedented opportunities for customizing medical interventions according to individual patient traits and individual drug responses. This review delineates the current landscape, explores limitations, and presents future perspectives to inspire ongoing advancements in functional precision medicine for personalized cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (S.J.S.); (M.D.); (M.G.); (A.P.-R.)
| |
Collapse
|
87
|
Shimonosono M, Morimoto M, Hirose W, Tomita Y, Matsuura N, Flashner S, Ebadi MS, Okayasu EH, Lee CY, Britton WR, Martin C, Wuertz BR, Parikh AS, Sachdeva UM, Ondrey FG, Atigadda VR, Elmets CA, Abrams JA, Muir AB, Klein-Szanto AJ, Weinberg KI, Momen-Heravi F, Nakagawa H. Modeling Epithelial Homeostasis and Perturbation in Three-Dimensional Human Esophageal Organoids. Biomolecules 2024; 14:1126. [PMID: 39334892 PMCID: PMC11430971 DOI: 10.3390/biom14091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco's Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state. Methods: We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids. To optimize the ADF-based medium, we evaluated the requirement of exogenous epidermal growth factor (EGF) and inhibition of transforming growth factor-(TGF)-β receptor-mediated signaling, both key regulators of the proliferation of human esophageal keratinocytes. We have modeled human esophageal epithelial pathology by stimulating esophageal 3D organoids with interleukin (IL)-13, an inflammatory cytokine, or UAB30, a novel pharmacological activator of retinoic acid signaling. Results: The formation of normal human esophageal 3D organoids was limited by excessive EGF and intrinsic TGFβ-receptor-mediated signaling. Optimized HOME0 improved normal human esophageal organoid formation. In the HOME0-grown organoids, IL-13 and UAB30 induced epithelial changes reminiscent of basal cell hyperplasia, a common histopathologic feature in broad esophageal disease conditions including eosinophilic esophagitis. Conclusions: HOME0 allows modeling of the homeostatic differentiation gradient and perturbation of the human esophageal epithelium while permitting a comparison of organoids from mice and other organs grown in ADF-based media.
Collapse
Affiliation(s)
- Masataka Shimonosono
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Masaki Morimoto
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Wataru Hirose
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Yasuto Tomita
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Norihiro Matsuura
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Mesra S. Ebadi
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Emilea H. Okayasu
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Christian Y. Lee
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - William R. Britton
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Cecilia Martin
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Organoid & Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, New York, NY 10032, USA
| | - Beverly R. Wuertz
- Department of Otolaryngology, Head and Neck Surgery, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (B.R.W.); (F.G.O.)
| | - Anuraag S. Parikh
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Department of Otolaryngology, Head and Neck Surgery, Columbia University, New York, NY 10032, USA
| | - Uma M. Sachdeva
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Frank G. Ondrey
- Department of Otolaryngology, Head and Neck Surgery, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (B.R.W.); (F.G.O.)
| | - Venkatram R. Atigadda
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA; (V.R.A.); (C.A.E.)
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA; (V.R.A.); (C.A.E.)
| | - Julian A. Abrams
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | | | - Kenneth I. Weinberg
- Department of Pediatrics, Maternal & Child Health Research Institute, Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA;
| | - Fatemeh Momen-Heravi
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Organoid & Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
88
|
Nicolson NG, Tandurella JA, Wu LW, Patel J, Morris E, Seppälä TT, Guinn S, Zlomke H, Shubert CR, Lafaro KJ, Burns WR, Cameron JL, He J, Fertig EJ, Jaffee EM, Zimmerman JW, Burkhart RA. Patient-derived Organoid Pharmacotyping As A Predictive Tool for Therapeutic Selection in Pancreatic Ductal Adenocarcinoma. Ann Surg 2024:00000658-990000000-01060. [PMID: 39229726 PMCID: PMC11876464 DOI: 10.1097/sla.0000000000006517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
OBJECTIVE We integrate a new approach to chemosensitivity data for clinically-relevant regimen matching, and demonstrate the relationship with clinical outcomes in a large PDO biobank. SUMMARY BACKGROUND DATA Pancreatic ductal adenocarcinoma (PDAC) usually recurs following potentially curative resection. Prior studies related patient-derived organoid (PDO) chemosensitivity with clinical responses. METHODS PDOs were established from pre-treatment biopsies in a multi-institution clinical trial (n=21) and clinical specimens at a high-volume pancreatectomy center (n=74, of which 48 were pre-treated). PDO in vitro chemosensitivities to standard-of-care chemotherapeutics (pharmacotypes) were matched to potential clinically-relevant regimens by a weighted nearest-neighbors analysis. Clinical outcomes were then compared for patients who had well-matched versus poorly-matched treatment according to this metric. RESULTS Our function matched 91% of PDOs to a standard-of-care regimen (9% pan-resistant). PDOs poorly-matched to the neoadjuvant regimen received would have matched to an alternative in 34% of cases. Patients receiving neoadjuvant chemotherapy well-matched to their pharmacotype experienced improved CA 19-9 response (60% decreased to normal when well-matched, 29% when poorly-matched, P<0.05) and lymph node down-staging (33% N0 after poorly-matched, 69% after well-matched, P<0.05). Patients receiving both well-matched neoadjuvant and adjuvant chemotherapy experienced improved recurrence-free- and overall survival (median RFS 8.5 mo poorly-matched, 15.9 mo well-matched, P<0.05; median OS 19.5 vs. 30.3 mo, P<0.05). CONCLUSION In vitro PDO pharmacotyping can inform PDAC therapy selection. We demonstrate improved outcomes including survival for patients treated with regimens well-matched to their PDO chemosensitivities. A subsequent prospective study using PDO pharmacotype matching could improve oncologic outcomes and improve quality of life by avoiding therapies not expected to be effective.
Collapse
Affiliation(s)
| | - Joseph A. Tandurella
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cell and Molecular Biology Cancer Biology Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Lawrence W. Wu
- Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
- Division of Hematology and Medical Oncology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jignasha Patel
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital
| | - Eli Morris
- Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Toni T. Seppälä
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital
| | - Samantha Guinn
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Haley Zlomke
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Kelly J. Lafaro
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - William R. Burns
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - John L. Cameron
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Jin He
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Elana J. Fertig
- Division of Quantitative Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jacquelyn W. Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Richard A. Burkhart
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
- Cancer Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
89
|
Fraunhoffer N, Hammel P, Conroy T, Nicolle R, Bachet JB, Harlé A, Rebours V, Turpin A, Ben Abdelghani M, Mitry E, Biagi J, Chanez B, Bigonnet M, Lopez A, Evesque L, Lecomte T, Assenat E, Bouché O, Renouf DJ, Lambert A, Monard L, Mauduit M, Cros J, Iovanna J, Dusetti N. Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma. Ann Oncol 2024; 35:780-791. [PMID: 38906254 DOI: 10.1016/j.annonc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND After surgical resection of pancreatic ductal adenocarcinoma (PDAC), patients are predominantly treated with adjuvant chemotherapy, commonly consisting of gemcitabine (GEM)-based regimens or the modified FOLFIRINOX (mFFX) regimen. While mFFX regimen has been shown to be more effective than GEM-based regimens, it is also associated with higher toxicity. Current treatment decisions are based on patient performance status rather than on the molecular characteristics of the tumor. To address this gap, the goal of this study was to develop drug-specific transcriptomic signatures for personalized chemotherapy treatment. PATIENTS AND METHODS We used PDAC datasets from preclinical models, encompassing chemotherapy response profiles for the mFFX regimen components. From them we identified specific gene transcripts associated with chemotherapy response. Three transcriptomic artificial intelligence signatures were obtained by combining independent component analysis and the least absolute shrinkage and selection operator-random forest approach. We integrated a previously developed GEM signature with three newly developed ones. The machine learning strategy employed to enhance these signatures incorporates transcriptomic features from the tumor microenvironment, leading to the development of the 'Pancreas-View' tool ultimately clinically validated in a cohort of 343 patients from the PRODIGE-24/CCTG PA6 trial. RESULTS Patients who were predicted to be sensitive to the administered drugs (n = 164; 47.8%) had longer disease-free survival (DFS) than the other patients. The median DFS in the mFFX-sensitive group treated with mFFX was 50.0 months [stratified hazard ratio (HR) 0.31, 95% confidence interval (CI) 0.21-0.44, P < 0.001] and 33.7 months (stratified HR 0.40, 95% CI 0.17-0.59, P < 0.001) in the GEM-sensitive group when treated with GEM. Comparatively patients with signature predictions unmatched with the treatments (n = 86; 25.1%) or those resistant to all drugs (n = 93; 27.1%) had shorter DFS (10.6 and 10.8 months, respectively). CONCLUSIONS This study presents a transcriptome-based tool that was developed using preclinical models and machine learning to accurately predict sensitivity to mFFX and GEM.
Collapse
Affiliation(s)
- N Fraunhoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France; Laboratory of Immunomodulators, School of Medicine, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - P Hammel
- Digestive and Medical Oncology, Paul Brousse Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Villejuif
| | - T Conroy
- Medical Oncology Department, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy; Université de Lorraine, INSERM, INSPIIRE, Nancy
| | - R Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris
| | - J-B Bachet
- Service d'Hépato-Gastro-Entérologie, Hôpital Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris
| | - A Harlé
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR 7039 CRAN, Vandoeuvre-lès-Nancy, France
| | - V Rebours
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris; Pancreatology and Digestive Oncology Department, Beaujon Hospital-AP-HP, Clichy
| | - A Turpin
- Department of Oncology, Lille University Hospital, Lille; CNRS UMR9020, INSERM UMR1277, University of Lille, Institut Pasteur, Lille
| | - M Ben Abdelghani
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, Strasbourg
| | - E Mitry
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France; Department of Medical Oncology, Paoli-Calmettes Institute, Marseille, France
| | - J Biagi
- Department of Oncology, Queen's University, Kingston, Canada
| | - B Chanez
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France; Department of Medical Oncology, Paoli-Calmettes Institute, Marseille, France
| | - M Bigonnet
- PredictingMed, Luminy Science and Technology Park, Marseille
| | - A Lopez
- Hepatogastroenterology Department, University Hospital of Nancy, Nancy
| | - L Evesque
- Department of Medical Oncology, Antoine Lacassagne Center, Nice
| | - T Lecomte
- Hepatogastroenterology Department, Hôpital Trousseau, Tours; INSERM UMR 1069, Tours University, Tours
| | - E Assenat
- Medical Oncology Department, Centre Hospitalier Universitaire de Saint-Eloi, Montpellier
| | - O Bouché
- Université Reims Champagne Ardenne, CHU Reims, Reims, France
| | - D J Renouf
- Division of Medical Oncology, BC Cancer, Vancouver; Department of Medicine, University of British Columbia, Vancouver, Canada
| | - A Lambert
- Medical Oncology Department, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy; Université de Lorraine, INSERM, INSPIIRE, Nancy
| | | | | | - J Cros
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris; Université Paris Cité, Department of Pathology, FHU MOSAIC, Beaujon/Bichat University Hospital (AP-HP), Paris, France
| | - J Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France; Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires; University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina.
| | - N Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France.
| |
Collapse
|
90
|
Maeng JE, Ku JL. In-depth organoid profiling of pancreatic cancer. Nat Rev Cancer 2024; 24:596. [PMID: 38982147 DOI: 10.1038/s41568-024-00726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Affiliation(s)
- Ju Eun Maeng
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ja-Lok Ku
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
91
|
Zhu X, Trehan R, Xie C. Primary liver cancer organoids and their application to research and therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:195-202. [PMID: 39281720 PMCID: PMC11401492 DOI: 10.1016/j.jncc.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 06/13/2024] [Indexed: 09/18/2024] Open
Abstract
Primary liver cancer is a leading cause of death worldwide. To create advanced treatments for primary liver cancer, studies have utilized models such as 2D cell culture and in vivo animal models. Recent developments in cancer organoids have created the possibility for 3D in vitro cultures that recapitulates the cancer cell structure and operation as well as the tumor microenvironment (TME). However, before organoids can be directly translated to clinical use, tissue processing and culture medium must be standardized with unified protocols to decrease variability in results. Herein, we present the wide variety of published methodologies used to derive liver cancer organoids from patient tumor tissues. Additionally, we summarize validation methodologies for organoids in terms of marker expression levels with immunohistochemistry as well as the presence of mutations and variants through RNA-sequencing. Primary liver cancer organoids have exciting applications allowing for faster drug testing at a larger scale. Primary liver cancer organoids also assisit in uncovering new mechanisms. Through the coculture of different immune cells and cancer organoids, organoids are now better able to recapitulate the liver cancer TME. In addition, it further aids in the investigation of drug development and drug resistance. Lastly, we posit that the usage of liver cancer organoids in animal models provides researchers a methodology to overcome the current limitations of culture systems.
Collapse
Affiliation(s)
- Xiaobin Zhu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Rajiv Trehan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
92
|
Roh TT, Alex A, Chandramouleeswaran PM, Sorrells JE, Ho A, Iyer RR, Spillman DR, Marjanovic M, Ekert JE, Sridharan B, Prabhakarpandian B, Hood SR, Boppart SA. Predicting DNA damage response in non-small cell lung cancer organoids via simultaneous label-free autofluorescence multiharmonic microscopy. Redox Biol 2024; 75:103280. [PMID: 39083897 PMCID: PMC11340607 DOI: 10.1016/j.redox.2024.103280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024] Open
Abstract
The DNA damage response (DDR) is a fundamental readout for evaluating efficacy of cancer therapeutics, many of which target DNA associated processes. Current techniques to evaluate DDR rely on immunostaining for phosphorylated histone H2AX (γH2AX), which is an indicator of DNA double-strand breaks. While γH2AX immunostaining can provide a snapshot of DDR in fixed cell and tissue samples, this method is technically cumbersome due to temporal monitoring of DDR requiring timepoint replicates, extensive assay development efforts for 3D cell culture samples such as organoids, and time-consuming protocols for γH2AX immunostaining and its evaluation. The goal of this current study is to reduce overall burden on assay duration and development in non-small cell lung cancer (NSCLC) organoids by leveraging label-free multiphoton imaging. In this study, simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy was used to provide rich intracellular information based on endogenous contrasts. SLAM microscopy enables imaging of live samples eliminating the need to generate sacrificial sample replicates and has improved image acquisition in 3D space over conventional confocal microscopy. Predictive modeling between label-free SLAM microscopy and γH2AX immunostained images confirmed strong correlation between SLAM image features and γH2AX signal. Across multiple DNA targeting chemotherapeutics and multiple patient-derived NSCLC organoid lines, the optical redox ratio and third harmonic generation channels were used to robustly predict DDR. Imaging via SLAM microscopy can be used to more rapidly predict DDR in live 3D NSCLC organoids with minimal sample handling and without labeling.
Collapse
Affiliation(s)
- Terrence T Roh
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; In Vitro In Vivo Translation, GSK plc, Collegeville, PA, 19426, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; In Vitro In Vivo Translation, GSK plc, Collegeville, PA, 19426, USA
| | | | - Janet E Sorrells
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alexander Ho
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rishyashring R Iyer
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; NIH/NIBIB Center for Label-free Imaging and Multi-scale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; NIH/NIBIB Center for Label-free Imaging and Multi-scale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jason E Ekert
- In Vitro In Vivo Translation, GSK plc, Collegeville, PA, 19426, USA
| | | | | | - Steve R Hood
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; In Vitro In Vivo Translation, GSK plc, Stevenage, SG1 2NY, UK
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; NIH/NIBIB Center for Label-free Imaging and Multi-scale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
93
|
Binkowski B, Klamer Z, Gao C, Staal B, Repesh A, Tran HL, Brass DM, Bartlett P, Gallinger S, Blomqvist M, Morrow JB, Allen P, Shi C, Singhi A, Brand R, Huang Y, Hostetter G, Haab BB. Multiplexed Glycan Immunofluorescence Identification of Pancreatic Cancer Cell Subpopulations in Both Tumor and Blood Samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609143. [PMID: 39229066 PMCID: PMC11370594 DOI: 10.1101/2024.08.22.609143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumor heterogeneity impedes the development of biomarker assays suitable for early disease detection that would improve patient outcomes. The CA19-9 glycan is currently used as a standalone biomarker for PDAC. Furthermore, previous studies have shown that cancer cells may display aberrant membrane-associated glycans. We therefore hypothesized that PDAC cancer cell subpopulations could be distinguished by aberrant glycan signatures. We used multiplexed glycan immunofluorescence combined with pathologist annotation and automated image processing to distinguish between PDAC cancer cell subpopulations within tumor tissue. Using a training-set/test-set approach, we found that PDAC cancer cells may be identified by signatures comprising 4 aberrant glycans (VVL, CA19-9, sTRA, and GM2) and that there are three glycan-defined PDAC tumor types: sTRA type, CA19-9 type, and intermixed. To determine whether the aberrant glycan signatures could be detected in blood samples, we developed hybrid glycan sandwich assays for membrane-associated glycans. In both patient-matched tumor and blood samples, the proportion of aberrant glycans detected was consistent. Furthermore, our multiplexed glycan immunofluorescent approach proved to be more sensitive and more specific than CA19-9 alone. Our results provide proof of concept for a novel methodology to improve early PDAC detection and patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Ben Staal
- Van Andel Institute, Grand Rapids, Michigan, USA
| | - Anna Repesh
- Van Andel Institute, Grand Rapids, Michigan, USA
| | | | | | | | | | - Maria Blomqvist
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Peter Allen
- Duke University School of Medicine, Durham, NC, USA
| | - Chanjuan Shi
- Duke University School of Medicine, Durham, NC, USA
| | - Aatur Singhi
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Randall Brand
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ying Huang
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | |
Collapse
|
94
|
Qu B, Mu Q, Bi H, Chen Y, Wang Q, Ma X, Lu L. Interpretation of the past, present, and future of organoid technology: an updated bibliometric analysis from 2009 to 2024. Front Cell Dev Biol 2024; 12:1433111. [PMID: 39193361 PMCID: PMC11347291 DOI: 10.3389/fcell.2024.1433111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Organoid technology has been developed rapidly in the past decade, which involves the exploration of the mechanism of development, regeneration and various diseases, and intersects among multiple disciplines. Thousands of literature on 3D-culture or organoids have been published in the research areas of cell biology tissue engineering, nanoscience, oncology and so on, resulting in it being challenging for researchers to timely summarize these studies. Bibliometric statistics is a helpful way to help researchers clarify the above issues efficiently and manage the whole landscape systematically. In our study, all original articles on organoids were included in the Web of Science database from January 2009 to May 2024, and related information was collected and analyzed using Excel software, "bibliometrix" packages of the R software, VOSviewer and CiteSpace. As results, a total of 6222 papers were included to classify the status quo of the organoids and predict future research areas. Our findings highlight a growing trend in publications related to organoids, with the United States and Netherlands leading in this field. The University of California System, Harvard University, Utrecht University and Utrecht University Medical Center have emerged as pivotal contributors and the key authors in the field include Clevers, H, Beekman, JM and Spence JR. Our results also revealed that the research hotspots and trends of organoids mainly focused on clinical treatment, drug screening, and the application of materials and technologies such as "hydrogel" and "microfluidic technology" in organoids. Next, we had an in-depth interpretation of the development process of organoid research area, including the emergence of technology, the translation from bench to bedsides, the profiles of the most widely studied types of organoids, the application of materials and technologies, and the emerging organoid-immune co-cultures trends. Furthermore, we also discussed the pitfalls, challenges and prospects of organoid technology. In conclusion, this study provides readers straightforward and convenient access to the organoid research field.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Qiang Mu
- The First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Huanhuan Bi
- College of Medicine, Qingdao University, Qingdao, China
| | - Yuxian Chen
- College of Medicine, Qingdao University, Qingdao, China
| | - Qitang Wang
- The First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
95
|
Yang R, Qi Y, Kwan W, Du Y, Yan R, Zang L, Yao X, Li C, Zhu Z, Zhang X, Gao H, Cheong IH, Kozlakidis Z, Yu Y. Paired organoids from primary gastric cancer and lymphatic metastasis are useful for personalized medicine. J Transl Med 2024; 22:754. [PMID: 39135062 PMCID: PMC11318189 DOI: 10.1186/s12967-024-05512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Organoids are approved by the US FDA as an alternative to animal experiments to guide drug development and for sensitivity screening. Stable organoids models of gastric cancer are desirable for personalized medicine and drug screening. METHODS Tumor tissues from a primary cancer of the stomach and metastatic cancer of the lymph node were collected for 3D culture. By long-term culture for over 50 generations in vitro, we obtained stably growing organoid lines. We analyzed short tandem repeats (STRs) and karyotypes of cancer cells, and tumorigenesis of the organoids in nude mice, as well as multi-omics profiles of the organoids. A CCK8 method was used to determine the drugs sensitivity to fluorouracil (5-Fu), platinum and paclitaxel. RESULTS Paired organoid lines from primary cancer (SPDO1P) and metastatic lymph node (SPDO1LM) were established with unique STRs and karyotypes. The organoid lines resulted in tumorigenesis in vivo and had clear genetic profiles. Compared to SPDO1P from primary cancer, upregulated genes of SPDO1LM from the metastatic lymph node were enriched in pathways of epithelial-mesenchymal transition and angiogenesis with stronger abilities of cell migration, invasion, and pro-angiogenesis. Based on drug sensitivity analysis, the SOX regimen (5-Fu plus oxaliplatin) was used for chemotherapy with an optimal clinical outcome. CONCLUSIONS The organoid lines recapitulate the drug sensitivity of the parental tissues. The paired organoid lines present a step-change toward living biobanks for further translational usage.
Collapse
Affiliation(s)
- Ruixin Yang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yao Qi
- Shanghai Engineering Center for Molecular Medicine, Zhangjiang, Shanghai, 200120, China
| | - Wingyan Kwan
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yutong Du
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ranlin Yan
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Zang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xuexin Yao
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chen Li
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhenggang Zhu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyan Zhang
- Shanghai Engineering Center for Molecular Medicine, Zhangjiang, Shanghai, 200120, China
| | - Hengjun Gao
- Shanghai Engineering Center for Molecular Medicine, Zhangjiang, Shanghai, 200120, China
| | - Io Hong Cheong
- Healthy Macau New-Generation Association, Macau, 999078, China
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group of International Agency for Research on Cancer, World Health Organization, 25 avenue Tony Garnier, LYON CEDEX 07, CS 90627, 69366, France.
| | - Yingyan Yu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
96
|
Yang Z, Yu J, Wong CC. Gastrointestinal Cancer Patient Derived Organoids at the Frontier of Personalized Medicine and Drug Screening. Cells 2024; 13:1312. [PMID: 39195202 PMCID: PMC11352269 DOI: 10.3390/cells13161312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Around one-third of the total global cancer incidence and mortality are related to gastrointestinal (GI) cancers. Over the past few years, rapid developments have been made in patient-derived organoid (PDO) models for gastrointestinal cancers. By closely mimicking the molecular properties of their parent tumors in vitro, PDOs have emerged as powerful tools in personalized medicine and drug discovery. Here, we review the current literature on the application of PDOs of common gastrointestinal cancers in the optimization of drug treatment strategies in the clinic and their rising importance in pre-clinical drug development. We discuss the advantages and limitations of gastrointestinal cancer PDOs and outline the microfluidics-based strategies that improve the throughput of PDO models in order to extract the maximal benefits in the personalized medicine and drug discovery process.
Collapse
Affiliation(s)
- Zhenjie Yang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
97
|
Abedellatif SE, Hosni R, Waha A, Gielen GH, Banat M, Hamed M, Güresir E, Fröhlich A, Sirokay J, Wulf AL, Kristiansen G, Pietsch T, Vatter H, Hölzel M, Schneider M, Toma MI. Melanoma Brain Metastases Patient-Derived Organoids: An In Vitro Platform for Drug Screening. Pharmaceutics 2024; 16:1042. [PMID: 39204387 PMCID: PMC11360789 DOI: 10.3390/pharmaceutics16081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND AIMS Brain metastases are prevalent in the late stages of malignant melanoma. Multimodal therapy remains challenging. Patient-derived organoids (PDOs) represent a valuable pre-clinical model, faithfully recapitulating key aspects of the original tumor, including the heterogeneity and the mutational status. This study aimed to establish PDOs from melanoma brain metastases (MBM-PDOs) and to test the feasibility of using them as a model for in vitro targeted-therapy drug testing. METHODS Surgical resection samples from eight patients with melanoma brain metastases were used to establish MBM-PDOs. The samples were enzymatically dissociated followed by seeding into low-attachment plates to generate floating organoids. The MBM-PDOs were characterized genetically, histologically, and immunohistologically and compared with the parental tissue. The MBM-PDO cultures were exposed to dabrafenib (BRAF inhibitor) and trametinib (MEK inhibitor) followed by a cell viability assessment. RESULTS Seven out of eight cases were successfully cultivated, maintaining the histological, immunohistological phenotype, and the mutational status of the parental tumors. Five out of seven cases harbored BRAF V600E mutations and were responsive to BRAF and MEK inhibitors in vitro. Two out of seven cases were BRAF wild type: one case harboring an NRAS mutation and the other harboring a KIT mutation, and both were resistant to BRAF and MEK inhibitor therapy. CONCLUSIONS We successfully established PDOs from melanoma brain metastases surgical specimens, which exhibited a consistent histological and mutational profile with the parental tissue. Using FDA-approved BRAF and MEK inhibitors, our data demonstrate the feasibility of employing MBM-PDOs for targeted-therapy in vitro testing.
Collapse
Affiliation(s)
- Saif-Eldin Abedellatif
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (R.H.); (A.-L.W.); (G.K.)
| | - Racha Hosni
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (R.H.); (A.-L.W.); (G.K.)
| | - Andreas Waha
- Institute for Neuropathology, University Hospital Bonn, 53127 Bonn, Germany; (A.W.); (G.H.G.); (T.P.)
| | - Gerrit H. Gielen
- Institute for Neuropathology, University Hospital Bonn, 53127 Bonn, Germany; (A.W.); (G.H.G.); (T.P.)
| | - Mohammed Banat
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.B.); (M.H.); (E.G.); (H.V.); (M.S.)
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.B.); (M.H.); (E.G.); (H.V.); (M.S.)
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.B.); (M.H.); (E.G.); (H.V.); (M.S.)
| | - Anne Fröhlich
- Department of Dermatology, University Hospital Bonn, 53127 Bonn, Germany; (A.F.); (J.S.)
| | - Judith Sirokay
- Department of Dermatology, University Hospital Bonn, 53127 Bonn, Germany; (A.F.); (J.S.)
| | - Anna-Lena Wulf
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (R.H.); (A.-L.W.); (G.K.)
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (R.H.); (A.-L.W.); (G.K.)
| | - Torsten Pietsch
- Institute for Neuropathology, University Hospital Bonn, 53127 Bonn, Germany; (A.W.); (G.H.G.); (T.P.)
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.B.); (M.H.); (E.G.); (H.V.); (M.S.)
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.B.); (M.H.); (E.G.); (H.V.); (M.S.)
| | - Marieta Ioana Toma
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (R.H.); (A.-L.W.); (G.K.)
| |
Collapse
|
98
|
Polak R, Zhang ET, Kuo CJ. Cancer organoids 2.0: modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer 2024; 24:523-539. [PMID: 38977835 DOI: 10.1038/s41568-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 07/10/2024]
Abstract
The development of neoplasia involves a complex and continuous interplay between malignantly transformed cells and the tumour microenvironment (TME). Cancer immunotherapies targeting the immune TME have been increasingly validated in clinical trials but response rates vary substantially between tumour histologies and are often transient, idiosyncratic and confounded by resistance. Faithful experimental models of the patient-specific tumour immune microenvironment, capable of recapitulating tumour biology and immunotherapy effects, would greatly improve patient selection, target identification and definition of resistance mechanisms for immuno-oncology therapeutics. In this Review, we discuss currently available and rapidly evolving 3D tumour organoid models that capture important immune features of the TME. We highlight diverse opportunities for organoid-based investigations of tumour immunity, drug development and precision medicine.
Collapse
Affiliation(s)
- Roel Polak
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa T Zhang
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
99
|
Wan L, Kral AJ, Voss D, Schäfer B, Sudheendran K, Danielsen M, Caruthers MH, Krainer AR. Screening Splice-Switching Antisense Oligonucleotides in Pancreas-Cancer Organoids. Nucleic Acid Ther 2024; 34:188-198. [PMID: 38716830 PMCID: PMC11387002 DOI: 10.1089/nat.2023.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Aberrant alternative splicing is emerging as a cancer hallmark and a potential therapeutic target. It is the result of dysregulated or mutated splicing factors, or genetic alterations in splicing-regulatory cis-elements. Targeting individual altered splicing events associated with cancer-cell dependencies is a potential therapeutic strategy, but several technical limitations need to be addressed. Patient-derived organoids are a promising platform to recapitulate key aspects of disease states, and to facilitate drug development for precision medicine. Here, we report an efficient antisense-oligonucleotide (ASO) lipofection method to systematically evaluate and screen individual splicing events as therapeutic targets in pancreatic ductal adenocarcinoma organoids. This optimized delivery method allows fast and efficient screening of ASOs, e.g., those that reverse oncogenic alternative splicing. In combination with advances in chemical modifications of oligonucleotides and ASO-delivery strategies, this method has the potential to accelerate the discovery of antitumor ASO drugs that target pathological alternative splicing.
Collapse
Affiliation(s)
- Ledong Wan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
| | - Alexander J. Kral
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
| | - Dillon Voss
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
| | - Balázs Schäfer
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | | - Mathias Danielsen
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | | | |
Collapse
|
100
|
LeSavage BL, Zhang D, Huerta-López C, Gilchrist AE, Krajina BA, Karlsson K, Smith AR, Karagyozova K, Klett KC, Huang MS, Long C, Kaber G, Madl CM, Bollyky PL, Curtis C, Kuo CJ, Heilshorn SC. Engineered matrices reveal stiffness-mediated chemoresistance in patient-derived pancreatic cancer organoids. NATURE MATERIALS 2024; 23:1138-1149. [PMID: 38965405 DOI: 10.1038/s41563-024-01908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/30/2024] [Indexed: 07/06/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its fibrotic and stiff extracellular matrix. However, how the altered cell/extracellular-matrix signalling contributes to the PDAC tumour phenotype has been difficult to dissect. Here we design and engineer matrices that recapitulate the key hallmarks of the PDAC tumour extracellular matrix to address this knowledge gap. We show that patient-derived PDAC organoids from three patients develop resistance to several clinically relevant chemotherapies when cultured within high-stiffness matrices mechanically matched to in vivo tumours. Using genetic barcoding, we find that while matrix-specific clonal selection occurs, cellular heterogeneity is not the main driver of chemoresistance. Instead, matrix-induced chemoresistance occurs within a stiff environment due to the increased expression of drug efflux transporters mediated by CD44 receptor interactions with hyaluronan. Moreover, PDAC chemoresistance is reversible following transfer from high- to low-stiffness matrices, suggesting that targeting the fibrotic extracellular matrix may sensitize chemoresistant tumours. Overall, our findings support the potential of engineered matrices and patient-derived organoids for elucidating extracellular matrix contributions to human disease pathophysiology.
Collapse
Affiliation(s)
- Bauer L LeSavage
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daiyao Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Carla Huerta-López
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Aidan E Gilchrist
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Brad A Krajina
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Kasper Karlsson
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Amber R Smith
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kremena Karagyozova
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katarina C Klett
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Christopher Long
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M Madl
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Curtis
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|