51
|
Sathyakumar S, Martinez M, Perreault S, Legault G, Bouffet E, Jabado N, Larouche V, Renzi S. Advances in pediatric gliomas: from molecular characterization to personalized treatments. Eur J Pediatr 2024; 183:2549-2562. [PMID: 38558313 DOI: 10.1007/s00431-024-05540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Pediatric gliomas, consisting of both pediatric low-grade (pLGG) and high-grade gliomas (pHGG), are the most frequently occurring brain tumors in children. Over the last decade, several milestone advancements in treatments have been achieved as a result of stronger understanding of the molecular biology behind these tumors. This review provides an overview of pLGG and pHGG highlighting their clinical presentation, molecular characteristics, and latest advancements in therapeutic treatments. Conclusion: The increasing understanding of the molecular biology characterizing pediatric low and high grade gliomas has revolutionized treatment options for these patients, especially in pLGG. The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments. What is Known: • Pediatric Gliomas are the most common brain tumour in children. They are responsible for significant morbidity and mortality in this population. What is New: • Over the last two decades, there has been a significant increase in our global understanding of the molecular background of pediatric low and high grade gliomas. • The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments, with the ultimate goal of improving both the survival and the quality of life of these patients.
Collapse
Affiliation(s)
| | - Matthew Martinez
- Department of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sébastien Perreault
- Division of Pediatric Neurology, Department of Neurosciences, CHU Sainte-Justine, Montreal, Québec, Canada
| | - Geneviève Legault
- Department of Pediatrics, Division of Neurology, Montreal Children's Hospital - McGill University Health Center, Montreal, Québec, Canada
- The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Eric Bouffet
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nada Jabado
- Division of Experimental Medicine, Montreal Children's Hospital, McGill University and McGill University Health Centre, Montreal, Québec, Canada
- Department of Pediatrics, McGill University, Montreal, Québec, Canada
| | - Valérie Larouche
- Division of Hemato-Oncology, Department of Pediatrics, CHU de Québec-Université Laval, 2705 Boulevard, Laurier, G1V 4G2, Québec, Canada
| | - Samuele Renzi
- Division of Hemato-Oncology, Department of Pediatrics, CHU de Québec-Université Laval, 2705 Boulevard, Laurier, G1V 4G2, Québec, Canada.
| |
Collapse
|
52
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
53
|
Weisbrod LJ, Thiraviyam A, Vengoji R, Shonka N, Jain M, Ho W, Batra SK, Salehi A. Diffuse intrinsic pontine glioma (DIPG): A review of current and emerging treatment strategies. Cancer Lett 2024; 590:216876. [PMID: 38609002 PMCID: PMC11231989 DOI: 10.1016/j.canlet.2024.216876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a childhood malignancy of the brainstem with a dismal prognosis. Despite recent advances in its understanding at the molecular level, the prognosis of DIPG has remained unchanged. This article aims to review the current understanding of the genetic pathophysiology of DIPG and to highlight promising therapeutic targets. Various DIPG treatment strategies have been investigated in pre-clinical studies, several of which have shown promise and have been subsequently translated into ongoing clinical trials. Ultimately, a multifaceted therapeutic approach that targets cell-intrinsic alterations, the micro-environment, and augments the immune system will likely be necessary to eradicate DIPG.
Collapse
Affiliation(s)
- Luke J Weisbrod
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Anand Thiraviyam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Winson Ho
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Afshin Salehi
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Division of Pediatric Neurosurgery, Children's Nebraska, Omaha, NE, 68114, USA.
| |
Collapse
|
54
|
Dun MD, Odia Y, Arrillaga-Romany I. Diffuse midline glioma, H3K27-altered: Illuminating the dark side of the moon. Neuro Oncol 2024; 26:S89-S91. [PMID: 38108088 PMCID: PMC11066917 DOI: 10.1093/neuonc/noad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 12/19/2023] Open
Affiliation(s)
- Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Yazmin Odia
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | | |
Collapse
|
55
|
Odia Y, Hall MD, Cloughesy TF, Wen PY, Arrillaga-Romany I, Daghistani D, Mehta MP, Tarapore RS, Ramage SC, Allen JE. Selective DRD2 antagonist and ClpP agonist ONC201 in a recurrent non-midline H3 K27M-mutant glioma cohort. Neuro Oncol 2024; 26:S165-S172. [PMID: 38386699 PMCID: PMC11066928 DOI: 10.1093/neuonc/noae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Diffuse midline glioma, H3 K27-altered (H3 K27M-altered DMG) are invariably lethal, disproportionately affecting the young and without effective treatment besides radiotherapy. The 2016 World Health Organization (WHO) Central Nervous System (CNS) Tumors Classification defined H3 K27M mutations as pathognomonic but restricted diagnosis to diffuse gliomas involving midline structures by 2018. Dordaviprone (ONC201) is an oral investigational small molecule, DRD2 antagonist, and ClpP agonist associated with durable responses in recurrent H3 K27M-mutant DMG. Activity of ONC201 in non-midline H3 K27M-mutant diffuse gliomas has not been reported. METHODS Patients with recurrent non-midline H3 K27M-mutant diffuse gliomas treated with ONC201 were enrolled in 5 trials. Eligibility included measurable disease by Response Assessment in Neuro-Oncology (RANO) high-grade glioma, Karnofsky/Lansky performance score ≥60, and ≥90 days from radiation. The primary endpoint was overall response rate (ORR). RESULTS Five patients with cerebral gliomas (3 frontal, 1 temporal, and 1 parietal) met inclusion. One complete and one partial response were reported by investigators. Blinded independent central review confirmed ORR by RANO criteria for 2, however, 1 deemed nonmeasurable and another stable. A responding patient also noted improved mobility and alertness. CONCLUSIONS H3 K27M-mutant diffuse gliomas occasionally occur in non-midline cerebrum. ONC201 exhibits activity in H3 K27M-mutant gliomas irrespective of CNS location.
Collapse
Affiliation(s)
- Yazmin Odia
- Department of Neuro-Oncology, Miami Cancer Institute (MCI), Baptist Health South Florida, Miami, Florida, USA
| | - Matthew D Hall
- Department of Neuro-Oncology, Miami Cancer Institute (MCI), Baptist Health South Florida, Miami, Florida, USA
| | | | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center (DFCC), Harvard Medical School, Boston, Massachusetts, USA
| | - Isabel Arrillaga-Romany
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center (DFCC), Harvard Medical School, Boston, Massachusetts, USA
| | - Doured Daghistani
- Department of Neuro-Oncology, Miami Cancer Institute (MCI), Baptist Health South Florida, Miami, Florida, USA
| | - Minesh P Mehta
- Department of Neuro-Oncology, Miami Cancer Institute (MCI), Baptist Health South Florida, Miami, Florida, USA
| | | | | | | |
Collapse
|
56
|
Arrillaga-Romany I, Lassman A, McGovern SL, Mueller S, Nabors B, van den Bent M, Vogelbaum MA, Allen JE, Melemed AS, Tarapore RS, Wen PY, Cloughesy T. ACTION: a randomized phase 3 study of ONC201 (dordaviprone) in patients with newly diagnosed H3 K27M-mutant diffuse glioma. Neuro Oncol 2024; 26:S173-S181. [PMID: 38445964 PMCID: PMC11066938 DOI: 10.1093/neuonc/noae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND H3 K27M-mutant diffuse glioma primarily affects children and young adults, is associated with a poor prognosis, and no effective systemic therapy is currently available. ONC201 (dordaviprone) has previously demonstrated efficacy in patients with recurrent disease. This phase 3 trial evaluates ONC201 in patients with newly diagnosed H3 K27M-mutant glioma. METHODS ACTION (NCT05580562) is a randomized, double-blind, placebo-controlled, parallel-group, international phase 3 study of ONC201 in newly diagnosed H3 K27M-mutant diffuse glioma. Patients who have completed standard frontline radiotherapy are randomized 1:1:1 to receive placebo, once-weekly dordaviprone, or twice-weekly dordaviprone on 2 consecutive days. Primary efficacy endpoints are overall survival (OS) and progression-free survival (PFS); PFS is assessed by response assessment in neuro-oncology high-grade glioma criteria (RANO-HGG) by blind independent central review. Secondary objectives include safety, additional efficacy endpoints, clinical benefit, and quality of life. Eligible patients have histologically confirmed H3 K27M-mutant diffuse glioma, a Karnofsky/Lansky performance status ≥70, and completed first-line radiotherapy. Eligibility is not restricted by age; however, patients must be ≥10 kg at time of randomization. Patients with a primary spinal tumor, diffuse intrinsic pontine glioma, leptomeningeal disease, or cerebrospinal fluid dissemination are not eligible. ACTION is currently enrolling in multiple international sites.
Collapse
Affiliation(s)
- Isabel Arrillaga-Romany
- Mass General Cancer Center, Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew Lassman
- Columbia University Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, New York-Presbyterian Hospital, New York City, New York, USA
| | - Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sabine Mueller
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Burt Nabors
- Department of Neuro-Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Timothy Cloughesy
- Bowyer Oncology Center, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
57
|
Jackson ER, Persson ML, Fish CJ, Findlay IJ, Mueller S, Nazarian J, Hulleman E, van der Lugt J, Duchatel RJ, Dun MD. A review of current therapeutics targeting the mitochondrial protease ClpP in diffuse midline glioma, H3 K27-altered. Neuro Oncol 2024; 26:S136-S154. [PMID: 37589388 PMCID: PMC11066926 DOI: 10.1093/neuonc/noad144] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/18/2023] Open
Abstract
Diffuse midline gliomas (DMGs) are devastating pediatric brain tumors recognized as the leading cause of cancer-related death in children. DMGs are high-grade gliomas (HGGs) diagnosed along the brain's midline. Euchromatin is the hallmark feature of DMG, caused by global hypomethylation of H3K27 either through point mutations in histone H3 genes (H3K27M), or by overexpression of the enhancer of zeste homolog inhibitory protein. In a clinical trial for adults with progressive HGGs, a 22-year-old patient with a thalamic DMG, H3 K27-altered, showed a remarkable clinical and radiological response to dordaviprone (ONC201). This response in an H3 K27-altered HGG patient, coupled with the lack of response of patients harboring wildtype-H3 tumors, has increased the clinical interest in dordaviprone for the treatment of DMG. Additional reports of clinical benefit have emerged, but research defining mechanisms of action (MOA) fall behind dordaviprone's clinical use, with biomarkers of response unresolved. Here, we summarize dordaviprone's safety, interrogate its preclinical MOA identifying the mitochondrial protease "ClpP" as a biomarker of response, and discuss other ClpP agonists, expanding the arsenal of potential weapons in the fight against DMG. Finally, we discuss combination strategies including ClpP agonists, and their immunomodulatory effects suggestive of a role for the tumor microenvironment in DMG patient response.
Collapse
Affiliation(s)
- Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Cameron J Fish
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Izac J Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Sabine Mueller
- DIPG/DMG Center Zurich, University Children’s Hospital Zürich, Zurich, Switzerland
- Department of Neurology, Neurosurgery and Pediatric, UCSF, San Francisco, California, USA
| | - Javad Nazarian
- DIPG/DMG Center Zurich, University Children’s Hospital Zürich, Zurich, Switzerland
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- The George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands, Utrecht, Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands, Utrecht, Netherlands
| | - Ryan J Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
58
|
Patel J, Aittaleb R, Doherty R, Gera A, Lau B, Messinger D, Wadden J, Franson A, Saratsis A, Koschmann C. Liquid biopsy in H3K27M diffuse midline glioma. Neuro Oncol 2024; 26:S101-S109. [PMID: 38096156 PMCID: PMC11066927 DOI: 10.1093/neuonc/noad229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 02/15/2024] Open
Abstract
Diffuse midline glioma (DMG) with H3K27M mutation is an aggressive and difficult to treat pediatric brain tumor. Recurrent gain of function mutations in H3.3 (H3.3A) and H3.1 (H3C2) at the 27th lysine to methionine (H3K27M) are seen in over 2/3 of DMGs, and are associated with a worse prognosis. Due to the anatomical location of DMG, traditional biopsy carries risk for neurologic injury as it requires penetration of vital midline structures. Further, radiographic (MRI) monitoring of DMG often shows nonspecific changes, which makes therapeutic monitoring difficult. This indicates a critical need for more minimally invasive methods, such as liquid biopsy, to understand, diagnose, and monitor H3K27M DMG. Here, we review the use of all modalities to date to detect biomarkers of H3K27M in cerebrospinal fluid (CSF), blood, and urine, and compare their effectiveness in detection, diagnosis, and monitoring treatment response. We provide specific detail of recent efforts to monitor CSF and plasma H3K27M cell-free DNA in patients undergoing therapy with the imipridone ONC201. Lastly, we discuss the future of therapeutic monitoring of H3K27M-DMG, including biomarkers such as mitochondrial DNA, mutant and modified histones, and novel sequencing-based approaches for improved detection methods.
Collapse
Affiliation(s)
- Jina Patel
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rayan Aittaleb
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Robert Doherty
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Ananya Gera
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Benison Lau
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Dana Messinger
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jack Wadden
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Andrea Franson
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | | | - Carl Koschmann
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
59
|
Mueller S, Kline C, Franson A, van der Lugt J, Prados M, Waszak SM, Plasschaert SLA, Molinaro AM, Koschmann C, Nazarian J. Rational combination platform trial design for children and young adults with diffuse midline glioma: A report from PNOC. Neuro Oncol 2024; 26:S125-S135. [PMID: 38124481 PMCID: PMC11066905 DOI: 10.1093/neuonc/noad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 12/23/2023] Open
Abstract
Background Diffuse midline glioma (DMG) is a devastating pediatric brain tumor unresponsive to hundreds of clinical trials. Approximately 80% of DMGs harbor H3K27M oncohistones, which reprogram the epigenome to increase the metabolic profile of the tumor cells. Methods We have previously shown preclinical efficacy of targeting both oxidative phosphorylation and glycolysis through treatment with ONC201, which activates the mitochondrial protease ClpP, and paxalisib, which inhibits PI3K/mTOR, respectively. Results ONC201 and paxalisib combination treatment aimed at inducing metabolic distress led to the design of the first DMG-specific platform trial PNOC022 (NCT05009992). Conclusions Here, we expand on the PNOC022 rationale and discuss various considerations, including liquid biome, microbiome, and genomic biomarkers, quality-of-life endpoints, and novel imaging modalities, such that we offer direction on future clinical trials in DMG.
Collapse
Affiliation(s)
- Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, California, USA
| | - Cassie Kline
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrea Franson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Michael Prados
- Department of Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Sebastian M Waszak
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Laboratory of Computational Neuro-Oncology, Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Annette M Molinaro
- Division of Biomedical Statistics and Informatics, Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children’s National Health System, Washington, District of Columbia, USA
- Brain Tumor Institute, Children’s National Health System, Washington, District of Columbia, USA
- DMG Research Center, Department of Pediatrics, University Children’s Hospital, University of Zurich, Zürich, Switzerland
| |
Collapse
|
60
|
Burton E, Ozer BH, Boris L, Brown D, Theeler B. Imipridones and Dopamine Receptor Antagonism in the Therapeutic Management of Gliomas. ADVANCES IN ONCOLOGY 2024; 4:101-110. [PMID: 38868646 PMCID: PMC11165802 DOI: 10.1016/j.yao.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Affiliation(s)
- Eric Burton
- Neuro-oncology Branch, National Cancer Institute, Bethesda, MD
- NOB, Building 82, Room 221, 9030 Old Georgetown Road, Bethesda, MD 20892
| | - Byram H. Ozer
- Neuro-oncology Branch, National Cancer Institute, Bethesda, MD
- NOB, Building 82, Room 217, 9030 Old Georgetown Road, Bethesda, MD 20892
| | - Lisa Boris
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. Frederick, USA
- NOB, Building 82, Room 203, 9030 Old Georgetown Road, Bethesda, MD 20892
| | - Desmond Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, NINDS, Bethesda, MD
- SNB, Building 10-CRC, Room 3D20, 10 Center Drive, Bethesda, MD 20814
| | - Brett Theeler
- Department of Neurology, Uniform Services University of the Health Sciences, Bethesda, MD.Department of Neurology, USUHS, 4301 Jones Bridge Road, Bethesda, MD. 20814
| |
Collapse
|
61
|
Arrillaga-Romany I, Gardner SL, Odia Y, Aguilera D, Allen JE, Batchelor T, Butowski N, Chen C, Cloughesy T, Cluster A, de Groot J, Dixit KS, Graber JJ, Haggiagi AM, Harrison RA, Kheradpour A, Kilburn LB, Kurz SC, Lu G, MacDonald TJ, Mehta M, Melemed AS, Nghiemphu PL, Ramage SC, Shonka N, Sumrall A, Tarapore RS, Taylor L, Umemura Y, Wen PY. ONC201 (Dordaviprone) in Recurrent H3 K27M-Mutant Diffuse Midline Glioma. J Clin Oncol 2024; 42:1542-1552. [PMID: 38335473 PMCID: PMC11095894 DOI: 10.1200/jco.23.01134] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024] Open
Abstract
PURPOSE Histone 3 (H3) K27M-mutant diffuse midline glioma (DMG) has a dismal prognosis with no established effective therapy beyond radiation. This integrated analysis evaluated single-agent ONC201 (dordaviprone), a first-in-class imipridone, in recurrent H3 K27M-mutant DMG. METHODS Fifty patients (pediatric, n = 4; adult, n = 46) with recurrent H3 K27M-mutant DMG who received oral ONC201 monotherapy in four clinical trials or one expanded access protocol were included. Eligible patients had measurable disease by Response Assessment in Neuro-Oncology (RANO) high-grade glioma (HGG) criteria and performance score (PS) ≥60 and were ≥90 days from radiation; pontine and spinal tumors were ineligible. The primary end point was overall response rate (ORR) by RANO-HGG criteria. Secondary end points included duration of response (DOR), time to response (TTR), corticosteroid response, PS response, and ORR by RANO low-grade glioma (LGG) criteria. Radiographic end points were assessed by dual-reader, blinded independent central review. RESULTS The ORR (RANO-HGG) was 20.0% (95% CI, 10.0 to 33.7). The median TTR was 8.3 months (range, 1.9-15.9); the median DOR was 11.2 months (95% CI, 3.8 to not reached). The ORR by combined RANO-HGG/LGG criteria was 30.0% (95% CI, 17.9 to 44.6). A ≥50% corticosteroid dose reduction occurred in 7 of 15 evaluable patients (46.7% [95% CI, 21.3 to 73.4]); PS improvement occurred in 6 of 34 evaluable patients (20.6% [95% CI, 8.7 to 37.9]). Grade 3 treatment-related treatment-emergent adverse events (TR-TEAEs) occurred in 20.0% of patients; the most common was fatigue (n = 5; 10%); no grade 4 TR-TEAEs, deaths, or discontinuations occurred. CONCLUSION ONC201 monotherapy was well tolerated and exhibited durable and clinically meaningful efficacy in recurrent H3 K27M-mutant DMG.
Collapse
Affiliation(s)
| | | | - Yazmin Odia
- Miami Cancer Institute, part of Baptist Health South Florida, Miami, FL
| | - Dolly Aguilera
- Children's Healthcare of Atlanta, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA
| | | | | | | | - Clark Chen
- University of Minnesota Medical Center, Minneapolis, MN
| | | | | | | | - Karan S. Dixit
- Northwestern Medical Lou and Jean Malnati Brain Tumor Institute, Chicago, IL
| | | | | | | | | | | | | | | | - Tobey J. MacDonald
- Children's Healthcare of Atlanta, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA
| | - Minesh Mehta
- Miami Cancer Institute, part of Baptist Health South Florida, Miami, FL
| | | | | | | | | | | | | | - Lynne Taylor
- University of Washington Medical Center, Seattle, WA
| | | | - Patrick Y. Wen
- Dana-Farber/Brigham and Women's Cancer Center, Boston, MA
| |
Collapse
|
62
|
Mouysset B, Le Grand M, Camoin L, Pasquier E. Poly-pharmacology of existing drugs: How to crack the code? Cancer Lett 2024; 588:216800. [PMID: 38492768 DOI: 10.1016/j.canlet.2024.216800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Drug development in oncology is highly challenging, with less than 5% success rate in clinical trials. This alarming figure points out the need to study in more details the multiple biological effects of drugs in specific contexts. Indeed, the comprehensive assessment of drug poly-pharmacology can provide insights into their therapeutic and adverse effects, to optimize their utilization and maximize the success rate of clinical trials. Recent technological advances have made possible in-depth investigation of drug poly-pharmacology. This review first highlights high-throughput methodologies that have been used to unveil new mechanisms of action of existing drugs. Then, we discuss how emerging chemo-proteomics strategies allow effectively dissecting the poly-pharmacology of drugs in an unsupervised manner.
Collapse
Affiliation(s)
- Baptiste Mouysset
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| | - Marion Le Grand
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| | - Luc Camoin
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| |
Collapse
|
63
|
Lucke-Wold B, Rangwala BS, Shafique MA, Siddiq MA, Mustafa MS, Danish F, Nasrullah RMU, Zainab N, Haseeb A. Focus on current and emerging treatment options for glioma: A comprehensive review. World J Clin Oncol 2024; 15:482-495. [PMID: 38689623 PMCID: PMC11056857 DOI: 10.5306/wjco.v15.i4.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 04/22/2024] Open
Abstract
This comprehensive review delves into the current updates and challenges associated with the management of low-grade gliomas (LGG), the predominant primary tumors in the central nervous system. With a general incidence rate of 5.81 per 100000, gliomas pose a significant global concern, necessitating advancements in treatment techniques to reduce mortality and morbidity. This review places a particular focus on immunotherapies, discussing promising agents such as Zotiraciclib and Lerapolturev. Zotiraciclib, a CDK9 inhibitor, has demonstrated efficacy in glioblastoma treatment in preclinical and clinical studies, showing its potential as a therapeutic breakthrough. Lerapolturev, a viral immunotherapy, induces inflammation in glioblastoma and displays positive outcomes in both adult and pediatric patients. Exploration of immunotherapy extends to Pembrolizumab, Nivolumab, and Entrectinib, revealing the challenges and variabilities in patient responses. Despite promising preclinical data, the monoclonal antibody Depatuxizumab has proven ineffective in glioblastoma treatment, emphasizing the critical need to understand resistance mechanisms. The review also covers the success of radiation therapy in pediatric LGG, with evolving techniques, such as proton therapy, showing potential improvements in patient quality of life. Surgical treatment is discussed in the context of achieving a balance between preserving the patient's quality of life and attaining gross total resection, with the extent of surgical resection significantly influencing the survival outcomes. In addition to advancements in cancer vaccine development, this review highlights the evolving landscape of LGG treatment, emphasizing a shift toward personalized and targeted therapies. Ongoing research is essential for refining strategies and enhancing outcomes in the management of LGG.
Collapse
Affiliation(s)
- Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, United States
| | | | | | - Mohammad Arham Siddiq
- Department of Neurosurgery, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | | | - Fnu Danish
- Department of Neurosurgery, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | | | - Noor Zainab
- Department of Neurosurgery, Army Medical College, Rawalpindi 46000, Pakistan
| | - Abdul Haseeb
- Department of Neurosurgery, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| |
Collapse
|
64
|
Donev K, Sundararajan V, Johnson D, Balan J, Chambers M, Paulson VA, Scherpelz KP, Abdullaev Z, Quezado M, Cimino PJ, Pratt D, Valerio E, Alves de Castro JV, Carraro DM, Torrezan GT, Wolff BM, Kulikowski LD, Costa FD, Aldape K, Ida CM. Diffuse hemispheric glioma with H3 p.K28M (K27M) mutation: Unusual non-midline presentation of diffuse midline glioma, H3 K27M-altered? J Neuropathol Exp Neurol 2024; 83:357-364. [PMID: 38447592 PMCID: PMC11029465 DOI: 10.1093/jnen/nlae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Diffuse midline glioma, H3 K27-altered (DMG-H3 K27) is an aggressive group of diffuse gliomas that predominantly occurs in pediatric patients, involves midline structures, and displays loss of H3 p.K28me3 (K27me3) expression by immunohistochemistry and characteristic genetic/epigenetic profile. Rare examples of a diffuse glioma with an H3 p.K28M (K27M) mutation and without involvement of the midline structures, so-called "diffuse hemispheric glioma with H3 p.K28M (K27M) mutation" (DHG-H3 K27), have been reported. Herein, we describe 2 additional cases of radiologically confirmed DHG-H3 K27 and summarize previously reported cases. We performed histological, immunohistochemical, molecular, and DNA methylation analysis and provided clinical follow-up in both cases. Overall, DHG-H3 K27 is an unusual group of diffuse gliomas that shows similar clinical, histopathological, genomic, and epigenetic features to DMG-H3 K27 as well as enrichment for activating alterations in MAPK pathway genes. These findings suggest that DHG-H3 K27 is closely related to DMG-H3 K27 and may represent an unusual presentation of DMG-H3 K27 without apparent midline involvement and with frequent MAPK pathway activation. Detailed reports of additional cases with clinical follow-up will be important to expand our understanding of this unusual group of diffuse gliomas and to better define the clinical outcome and how to classify DHG-H3 K27.
Collapse
Affiliation(s)
- Kliment Donev
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Vanitha Sundararajan
- OhioHealth Riverside Methodist Hospital, Columbus, Ohio, USA
- CORPath Pathology Services, Columbus, Ohio, USA
| | - Derek Johnson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jagadheshwar Balan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Meagan Chambers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Vera A Paulson
- Department of Laboratory Medicine and Pathology, Genetics and Solid Tumor Laboratory, University of Washington, Seattle, Washington, USA
| | - Kathryn P Scherpelz
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick J Cimino
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ediel Valerio
- Department of Pathology, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | | | - Dirce Maria Carraro
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C. Camargo Cancer Center, Sao Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics (INCITO), Sao Paulo, Brazil
| | - Giovana Tardin Torrezan
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C. Camargo Cancer Center, Sao Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics (INCITO), Sao Paulo, Brazil
| | - Beatriz Martins Wolff
- Cytogenomic Laboratory, Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leslie Domenici Kulikowski
- Cytogenomic Laboratory, Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Felipe D’Almeida Costa
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Dasa Laboratories, Sao Paulo, Brazil
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Cristiane M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
65
|
de Boer RJ, van Lidth de Jeude JF, Heijmans J. ER stress and the unfolded protein response in gastrointestinal stem cells and carcinogenesis. Cancer Lett 2024; 587:216678. [PMID: 38360143 DOI: 10.1016/j.canlet.2024.216678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Endoplasmic reticulum (ER) stress and the adaptive response that follows, termed the unfolded protein response (UPR), are crucial molecular mechanisms to maintain cellular integrity by safeguarding proper protein synthesis. Next to being important in protein homeostasis, the UPR is intricate in cell fate decisions such as proliferation, differentiation, and stemness. In the intestine, stem cells are critical in governing epithelial homeostasis and they are the cell of origin of gastrointestinal malignancies. In this review, we will discuss the role of ER stress and the UPR in the gastrointestinal tract, focusing on stem cells and carcinogenesis. Insights in mechanisms that connect ER stress and UPR with stemness and carcinogenesis may broaden our understanding in the development of cancer throughout the gastrointestinal tract and how we can exploit these mechanisms to target these malignancies.
Collapse
Affiliation(s)
- Ruben J de Boer
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Jooske F van Lidth de Jeude
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Jarom Heijmans
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Department of General Internal Medicine and Department of Hematology, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
66
|
Liu C, Kuang S, Huang T, Wu J, Zhang L, Gong X. Radiotherapy plus temozolomide with or without anlotinib in H3K27M-mutant diffuse midline glioma: A retrospective cohort study. CNS Neurosci Ther 2024; 30:e14730. [PMID: 38644565 PMCID: PMC11033330 DOI: 10.1111/cns.14730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 03/31/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Besides the hallmark of H3K27M mutation, aberrant amplifications of receptor tyrosine kinases (RTKs) are commonly observed in diffuse midline glioma (DMG), a highly malignant brain tumor with dismal prognosis. Here, we intended to evaluate the efficacy and safety of a multitarget RTK inhibitor anlotinib in patients with H3K27M-DMG. METHODS A total of 40 newly diagnosed H3K27M-DMG patients including 15 with anlotinib and 25 without anlotinib treatment were retrospectively enrolled in this cohort. Progression-free survival (PFS), overall survival (OS), and toxicities were assessed and compared. RESULTS The median PFS and OS of all patients in this cohort were 8.5 months (95% CI, 6.5-11.3) and 15.5 months (95% CI, 12.6-17.1), respectively. According to the Response Assessment in Neuro-Oncology (RANO) criteria, the disease control rate in the anlotinib group [93.3%, 95% confidence interval (CI), 70.2-98.8] was significantly higher than those without anlotinib (64%, 95% CI: 40.5-79.8, p = 0.039). The median PFS of patients with and without anlotinib was 11.6 months (95% CI, 7.8-14.3) and 6.4 months (95% CI, 4.3-10.3), respectively. Both the median PFS and OS of DMG patients treated with anlotinib were longer than those without anlotinib in the infratentorial patients (PFS: 10.3 vs. 5.4 months, p = 0.006; OS: 16.6 vs. 8.7 months, p = 0.016). Multivariate analysis also indicated anlotinib (HR: 0.243, 95% CI: 0.066-0.896, p = 0.034) was an independent prognosticator for longer OS in the infratentorial subgroup. In addition, the adverse events of anlotinib administration were tolerable in the whole cohort. CONCLUSIONS This study first reported that anlotinib combined with Stupp regimen is a safe and feasible regimen for newly diagnosed patients with H3K27M-DMG. Further, anlotinib showed significant efficacy for H3K27M-DMG located in the infratentorial region.
Collapse
Affiliation(s)
- Chao Liu
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Shuwen Kuang
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Tianxiang Huang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Jun Wu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Longbo Zhang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Xuan Gong
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
67
|
Tzaridis T, Wechsler-Reya RJ. Just a spoonful of metformin helps the medicine go down. J Clin Invest 2024; 134:e179144. [PMID: 38488006 PMCID: PMC10940077 DOI: 10.1172/jci179144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a devastating brain tumor with a need for novel therapies. So far, monotherapies have failed to prolong survival for these patients, and combinatorial strategies have often shown severe, dose-limiting toxicities. In this issue of the JCI, Duchatel, Jackson, and colleagues address this challenge by introducing a drug combination that mitigates side effects and overcomes resistance. After identifying the PI3K/mTOR pathway as a therapeutic vulnerability, they treated DIPG-bearing mice with paxalisib and saw responses but also observed hyperglycemia as a severe side effect. Combining paxalisib with metformin mitigated this toxicity, but also upregulated protein kinase C (PKC) signaling. To tackle this mechanism of resistance, the authors added the PKC inhibitor enzastaurin to their drug combination and showed that this triple therapy led to improved survival. This approach paves the way for improved outcomes for patients with DIPG and other brain tumors.
Collapse
Affiliation(s)
- Theophilos Tzaridis
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham, Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert J. Wechsler-Reya
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham, Prebys Medical Discovery Institute, La Jolla, California, USA
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
68
|
Otsuji R, Fujioka Y, Hata N, Kuga D, Hatae R, Sangatsuda Y, Nakamizo A, Mizoguchi M, Yoshimoto K. Liquid Biopsy for Glioma Using Cell-Free DNA in Cerebrospinal Fluid. Cancers (Basel) 2024; 16:1009. [PMID: 38473369 PMCID: PMC10930790 DOI: 10.3390/cancers16051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glioma is one of the most common primary central nervous system (CNS) tumors, and its molecular diagnosis is crucial. However, surgical resection or biopsy is risky when the tumor is located deep in the brain or brainstem. In such cases, a minimally invasive approach to liquid biopsy is beneficial. Cell-free DNA (cfDNA), which directly reflects tumor-specific genetic changes, has attracted attention as a target for liquid biopsy, and blood-based cfDNA monitoring has been demonstrated for other extra-cranial cancers. However, it is still challenging to fully detect CNS tumors derived from cfDNA in the blood, including gliomas, because of the unique structure of the blood-brain barrier. Alternatively, cerebrospinal fluid (CSF) is an ideal source of cfDNA and is expected to contribute significantly to the liquid biopsy of gliomas. Several successful studies have been conducted to detect tumor-specific genetic alterations in cfDNA from CSF using digital PCR and/or next-generation sequencing. This review summarizes the current status of CSF-based cfDNA-targeted liquid biopsy for gliomas. It highlights how the approaches differ from liquid biopsies of other extra-cranial cancers and discusses the current issues and prospects.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu 879-5593, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka 810-8563, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
69
|
Duchatel RJ, Jackson ER, Parackal SG, Kiltschewskij D, Findlay IJ, Mannan A, Staudt DE, Thomas BC, Germon ZP, Laternser S, Kearney PS, Jamaluddin MFB, Douglas AM, Beitaki T, McEwen HP, Persson ML, Hocke EA, Jain V, Aksu M, Manning EE, Murray HC, Verrills NM, Sun CX, Daniel P, Vilain RE, Skerrett-Byrne DA, Nixon B, Hua S, de Bock CE, Colino-Sanguino Y, Valdes-Mora F, Tsoli M, Ziegler DS, Cairns MJ, Raabe EH, Vitanza NA, Hulleman E, Phoenix TN, Koschmann C, Alvaro F, Dayas CV, Tinkle CL, Wheeler H, Whittle JR, Eisenstat DD, Firestein R, Mueller S, Valvi S, Hansford JR, Ashley DM, Gregory SG, Kilburn LB, Nazarian J, Cain JE, Dun MD. PI3K/mTOR is a therapeutically targetable genetic dependency in diffuse intrinsic pontine glioma. J Clin Invest 2024; 134:e170329. [PMID: 38319732 PMCID: PMC10940093 DOI: 10.1172/jci170329] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.
Collapse
Affiliation(s)
- Ryan J. Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Evangeline R. Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Sarah G. Parackal
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Dylan Kiltschewskij
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Izac J. Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Abdul Mannan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dilana E. Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Bryce C. Thomas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Zacary P. Germon
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Sandra Laternser
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, Zurich, Switzerland
| | - Padraic S. Kearney
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - M. Fairuz B. Jamaluddin
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alicia M. Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Tyrone Beitaki
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Holly P. McEwen
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mika L. Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Emily A. Hocke
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael Aksu
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elizabeth E. Manning
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Heather C. Murray
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Nicole M. Verrills
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Claire Xin Sun
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Ricardo E. Vilain
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - David A. Skerrett-Byrne
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Susan Hua
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Charles E. de Bock
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Yolanda Colino-Sanguino
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Fatima Valdes-Mora
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Maria Tsoli
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| | - Murray J. Cairns
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eric H. Raabe
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas A. Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, Washington, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Carl Koschmann
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank Alvaro
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- John Hunter Children’s Hospital, New Lambton Heights, New South Wales, Australia
| | - Christopher V. Dayas
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Christopher L. Tinkle
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Helen Wheeler
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- The Brain Cancer group, St Leonards, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - James R. Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David D. Eisenstat
- Children’s Cancer Centre, The Royal Children’s Hospital Melbourne, Parkville, Victoria, Australia
- Neuro-Oncology Laboratory, Murdoch Children’s Research Institute, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Sabine Mueller
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, Zurich, Switzerland
- Department of Neurology, Neurosurgery, and Pediatrics, University of California, San Francisco, California, USA
| | - Santosh Valvi
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, Washington, Australia
- Brain Tumour Research Laboratory, Telethon Kids Institute, Nedlands, Washington, Australia
- Division of Paediatrics, University of Western Australia Medical School, Nedlands, Western Australia, Australia
| | - Jordan R. Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - David M. Ashley
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Lindsay B. Kilburn
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Javad Nazarian
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, Zurich, Switzerland
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Jason E. Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| |
Collapse
|
70
|
Vasan K, Chandel NS. Molecular and cellular mechanisms underlying the failure of mitochondrial metabolism drugs in cancer clinical trials. J Clin Invest 2024; 134:e176736. [PMID: 38299592 PMCID: PMC10836798 DOI: 10.1172/jci176736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
|
71
|
Yang Z, Sun L, Chen H, Sun C, Xia L. New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon 2024; 10:e24877. [PMID: 38312649 PMCID: PMC10835306 DOI: 10.1016/j.heliyon.2024.e24877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse midline glioma with H3K27 M alteration is a primary malignant tumor located along the linear structure of the brain, predominantly manifesting in children and adolescents. The mortality rate is exceptionally high, with a mere 1 % 5-year survival rate for newly diagnosed patients. Beyond conventional surgery, radiotherapy, and chemotherapy, novel approaches are imperative to enhance patient prognosis. This article comprehensively reviews current innovative treatment modalities and provides updates on the latest research advancements in preclinical studies and clinical trials focusing on H3K27M-altered diffuse midline glioma. The goal is to contribute positively to clinical treatment strategies.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Haibin Chen
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Caixing Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Xia
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| |
Collapse
|
72
|
Chattopadhyay C, Roszik J, Bhattacharya R, Alauddin M, Mahmud I, Yadugiri S, Ali MM, Khan FS, Prabhu VV, Lorenzi P, Burton E, Morey RR, Lazcano R, Davies MA, Patel SP, Grimm EA. Imipridones inhibit tumor growth and improve survival in an orthotopic liver metastasis mouse model of human uveal melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575058. [PMID: 38293232 PMCID: PMC10827043 DOI: 10.1101/2024.01.12.575058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Purpose Uveal melanoma (UM) is a highly aggressive disease with very few treatment options. We previously demonstrated that mUM is characterized by high oxidative phosphorylation (OXPHOS). Here we tested the anti-tumor, signaling and metabolic effects of imipridones, CLPP activators which reduce OXPHOS indirectly and have demonstrated safety in patients. Experimental Design We assessed CLPP expression in UM patient samples. We tested the effects of imipridones (ONC201, ONC212) on the growth, survival, signaling and metabolism of UM cell lines in vitro, and for therapeutic effects in vivo in UM liver metastasis models. Results CLPP expression was confirmed in primary and mUM patient samples. ONC201/212 treatment of UM cell lines in vitro decreased OXPHOS effectors, inhibited cell growth and migration, and induced apoptosis. ONC212 increased metabolic stress and apoptotic pathways, inhibited amino acid metabolism, and induced cell death-related lipids. ONC212 also decreased tumor burden and increased survival in vivo in two UM liver metastasis models. Conclusion Imipridones are a promising strategy for further testing and development in mUM.
Collapse
|
73
|
Koschmann C, Al-Holou WN, Alonso MM, Anastas J, Bandopadhayay P, Barron T, Becher O, Cartaxo R, Castro MG, Chung C, Clausen M, Dang D, Doherty R, Duchatel R, Dun M, Filbin M, Franson A, Galban S, Garcia Moure M, Garton H, Gowda P, Marques JG, Hawkins C, Heath A, Hulleman E, Ji S, Jones C, Kilburn L, Kline C, Koldobskiy MA, Lim D, Lowenstein PR, Lu QR, Lum J, Mack S, Magge S, Marini B, Martin D, Marupudi N, Messinger D, Mody R, Morgan M, Mota M, Muraszko K, Mueller S, Natarajan SK, Nazarian J, Niculcea M, Nuechterlein N, Okada H, Opipari V, Pai MP, Pal S, Peterson E, Phoenix T, Prensner JR, Pun M, Raju GP, Reitman ZJ, Resnick A, Rogawski D, Saratsis A, Sbergio SG, Souweidane M, Stafford JM, Tzaridis T, Venkataraman S, Vittorio O, Wadden J, Wahl D, Wechsler-Reya RJ, Yadav VN, Zhang X, Zhang Q, Venneti S. A road map for the treatment of pediatric diffuse midline glioma. Cancer Cell 2024; 42:1-5. [PMID: 38039965 PMCID: PMC11067690 DOI: 10.1016/j.ccell.2023.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023]
Abstract
Recent clinical trials for H3K27-altered diffuse midline gliomas (DMGs) have shown much promise. We present a consensus roadmap and identify three major barriers: (1) refinement of experimental models to include immune and brain-specific components; (2) collaboration among researchers, clinicians, and industry to integrate patient-derived data through sharing, transparency, and regulatory considerations; and (3) streamlining clinical efforts including biopsy, CNS-drug delivery, endpoint determination, and response monitoring. We highlight the importance of comprehensive collaboration to advance the understanding, diagnostics, and therapeutics for DMGs.
Collapse
Affiliation(s)
| | | | | | | | | | - Tara Barron
- Stanford University, Stanford, CA 94305, USA
| | - Oren Becher
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Chan Chung
- Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | | | - Derek Dang
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Ryan Duchatel
- University of Newcastle, Callaghan, NSW 2308, Australia
| | - Matthew Dun
- University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | | - Hugh Garton
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - Allison Heath
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Sunjong Ji
- University of Michigan, Ann Arbor, MI 48109, USA
| | - Chris Jones
- Division of Molecular Pathology, Institute for Cancer Research, London SM2 5NG, UK
| | | | - Cassie Kline
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Daniel Lim
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Q Richard Lu
- Cincinnati Children's Hospital Medical Center, and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Joanna Lum
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Suresh Magge
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Donna Martin
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Rajen Mody
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Mateus Mota
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sabine Mueller
- University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of Zurich, Zurich, Switzerland
| | | | - Javad Nazarian
- Children's National, Washington, DC 20010, USA; University of Zurich, Zurich, Switzerland
| | | | - Nicholas Nuechterlein
- University of Michigan, Ann Arbor, MI 48109, USA; National Institutes of Health, Bethesda, MD, USA
| | - Hideho Okada
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | - Timothy Phoenix
- Cincinnati Children's Hospital Medical Center, and University of Cincinnati, Cincinnati, OH 45229, USA
| | | | - Matthew Pun
- University of Michigan, Ann Arbor, MI 48109, USA
| | - G Praveen Raju
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Adam Resnick
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | - Mark Souweidane
- Weill Cornell Medicine, New York Presbyterian and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James M Stafford
- Weill Cornell Medicine, New York Presbyterian and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Theophilos Tzaridis
- Herbert Irving Comprehensive Cancer Center and Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Orazio Vittorio
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jack Wadden
- University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Wahl
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Xu Zhang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Qiang Zhang
- University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
74
|
Zhao Z, Song Z, Wang Z, Zhang F, Ding Z, Fan T. Advances in Molecular Pathology, Diagnosis and Treatment of Spinal Cord Astrocytomas. Technol Cancer Res Treat 2024; 23:15330338241262483. [PMID: 39043042 PMCID: PMC11271101 DOI: 10.1177/15330338241262483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Spinal cord astrocytoma (SCA) is a rare subtype of astrocytoma, posing challenges in diagnosis and treatment. Low-grade SCA can achieve long-term survival solely through surgery, while high-grade has a disappointing prognosis even with comprehensive treatment. Diagnostic criteria and standard treatment of intracranial astrocytoma have shown obvious limitations in SCA. Research on the molecular mechanism in SCA is lagging far behind that on intracranial astrocytoma. In recent years, huge breakthroughs have been made in molecular pathology of astrocytoma, and novel techniques have emerged, including DNA methylation analysis and radiomics. These advances are now making it possible to provide a precise diagnosis and develop corresponding treatment strategies in SCA. Our aim is to review the current status of diagnosis and treatment of SCA, and summarize the latest research advancement, including tumor subtype, molecular characteristics, diagnostic technology, and potential therapy strategies, thus deepening our understanding of this uncommon tumor type and providing guidance for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Zijun Zhao
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zihan Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zairan Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fan Zhang
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ze Ding
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tao Fan
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
75
|
Erez N, Furth N, Fedyuk V, Wadden J, Aittaleb R, Schwark K, Niculcea M, Miclea M, Mody R, Franson A, Eze A, Nourmohammadi N, Nazarian J, Venneti S, Koschmann C, Shema E. Single-molecule systems for detection and monitoring of plasma circulating nucleosomes and oncoproteins in Diffuse Midline Glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568019. [PMID: 38045418 PMCID: PMC10690213 DOI: 10.1101/2023.11.21.568019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The analysis of cell-free tumor DNA (ctDNA) and proteins in the blood of cancer patients potentiates a new generation of non-invasive diagnostics and treatment monitoring approaches. However, confident detection of these tumor-originating markers is challenging, especially in the context of brain tumors, in which extremely low amounts of these analytes circulate in the patient's plasma. Here, we applied a sensitive single-molecule technology to profile multiple histone modifications on millions of individual nucleosomes from the plasma of Diffuse Midline Glioma (DMG) patients. The system reveals epigenetic patterns that are unique to DMG, significantly differentiating this group of patients from healthy subjects or individuals diagnosed with other cancer types. We further develop a method to directly capture and quantify the tumor-originating oncoproteins, H3-K27M and mutant p53, from the plasma of children diagnosed with DMG. This single-molecule system allows for accurate molecular classification of patients, utilizing less than 1ml of liquid-biopsy material. Furthermore, we show that our simple and rapid detection strategy correlates with MRI measurements and droplet-digital PCR (ddPCR) measurements of ctDNA, highlighting the utility of this approach for non-invasive treatment monitoring of DMG patients. This work underscores the clinical potential of single-molecule-based, multi-parametric assays for DMG diagnosis and treatment monitoring.
Collapse
|
76
|
Al Sharie S, Abu Laban D, Al-Hussaini M. Decoding Diffuse Midline Gliomas: A Comprehensive Review of Pathogenesis, Diagnosis and Treatment. Cancers (Basel) 2023; 15:4869. [PMID: 37835563 PMCID: PMC10571999 DOI: 10.3390/cancers15194869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Diffuse midline gliomas (DMGs) are a group of aggressive CNS tumors, primarily affecting children and young adults, which have historically been associated with dismal outcomes. As the name implies, they arise in midline structures in the CNS, primarily in the thalamus, brainstem, and spinal cord. In more recent years, significant advances have been made in our understanding of DMGs, including molecular features, with the identification of potential therapeutic targets. We aim to provide an overview of the most recent updates in the field of DMGs, including classification, molecular subtypes, diagnostic techniques, and emerging therapeutic strategies including a review of the ongoing clinical trials, thus providing the treating multidisciplinary team with a comprehensive understanding of the current landscape and potential therapeutic strategies for this devastating group of tumors.
Collapse
Affiliation(s)
- Sarah Al Sharie
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Dima Abu Laban
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|