51
|
Engel T, Fobker M, Buchmann J, Kannenberg F, Rust S, Nofer JR, Schürmann A, Seedorf U. 3β,5α,6β-Cholestanetriol and 25-hydroxycholesterol accumulate in ATP-binding cassette transporter G1 (ABCG1)-deficiency. Atherosclerosis 2014; 235:122-9. [PMID: 24833118 DOI: 10.1016/j.atherosclerosis.2014.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 04/08/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Oxysterols are oxidized derivatives of sterols that have cytotoxic effects and are potent regulators of diverse cellular functions. Efficient oxysterol removal by the sub-family G member 1 of the ATP-binding cassette transporters (ABCG1) is essential for cell survival and control of cellular processes. However, the specific role of ABCG1 in the transport of various oxysterol species has been not systematically investigated to date. Here, we examined the involvement of ABCG1 in the oxysterol metabolism by studying oxysterol tissue levels in a mouse model of Abcg1-deficiency. METHODS AND RESULTS Analysis of lung tissue of Abcg1(-/-) mice on a standard diet revealed that 3β,5α,6β-cholestanetriol (CT) and 25-hydroxycholesterol (HC) accumulated at more than 100-fold higher levels in comparison to wild-type mice. 24S-HC and 27-HC levels were also elevated, but were minor constituents. A radiolabeled assay employing regulable ABCG1-expressing HeLa cell lines revealed that 25-HC export to albumin was dependent on functional ABCG1 expression and could be blocked by an excess of unlabeled 25-HC or 27-HC. In this cell line, 25-HC at low doses triggered mitochondrial membrane potential, and reactive oxygen species production, which are both indirect indicators of cellular energy expenditure. CONCLUSION Our results suggest that 25-HC and CT are physiologic substrates for ABCG1. Excessive accumulation of these oxysterols may explain the increased rate of cell death and the inflammatory phenotype observed in Abcg1-deficient animals and cells.
Collapse
Affiliation(s)
- Thomas Engel
- Leibniz-Institute for Arteriosclerosis Research at The Westphalian Wilhelms-University, 48149 Muenster, Germany.
| | - Manfred Fobker
- Center for Laboratory Medicine, University Hospital Muenster, 48149 Muenster, Germany
| | - Jana Buchmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, 14558 Potsdam-Rehbruecke, Germany
| | - Frank Kannenberg
- Center for Laboratory Medicine, University Hospital Muenster, 48149 Muenster, Germany
| | - Stephan Rust
- Leibniz-Institute for Arteriosclerosis Research at The Westphalian Wilhelms-University, 48149 Muenster, Germany
| | - Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Muenster, 48149 Muenster, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, 14558 Potsdam-Rehbruecke, Germany
| | - Udo Seedorf
- Leibniz-Institute for Arteriosclerosis Research at The Westphalian Wilhelms-University, 48149 Muenster, Germany
| |
Collapse
|
52
|
Promotion of atherosclerosis by Helicobacter cinaedi infection that involves macrophage-driven proinflammatory responses. Sci Rep 2014; 4:4680. [PMID: 24732347 PMCID: PMC3986732 DOI: 10.1038/srep04680] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 03/17/2014] [Indexed: 01/11/2023] Open
Abstract
Helicobacter cinaedi is the most common enterohepatic Helicobacter species that causes bacteremia in humans, but its pathogenicity is unclear. Here, we investigated the possible association of H. cinaedi with atherosclerosis in vivo and in vitro. We found that H. cinaedi infection significantly enhanced atherosclerosis in hyperlipidaemic mice. Aortic root lesions in infected mice showed increased accumulation of neutrophils and F4/80+ foam cells, which was due, at least partly, to bacteria-mediated increased expression of proinflammatory genes. Although infection was asymptomatic, detection of cytolethal distending toxin RNA of H. cinaedi indicated aorta infection. H. cinaedi infection altered expression of cholesterol receptors and transporters in cultured macrophages and caused foam cell formation. Also, infection induced differentiation of THP-1 monocytes. These data provide the first evidence of a pathogenic role of H. cinaedi in atherosclerosis in experimental models, thereby justifying additional investigations of the possible role of enterohepatic Helicobacter spp. in atherosclerosis and cardiovascular disease.
Collapse
|
53
|
Li G, Gu HM, Zhang DW. ATP-binding cassette transporters and cholesterol translocation. IUBMB Life 2014; 65:505-12. [PMID: 23983199 DOI: 10.1002/iub.1165] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/22/2013] [Indexed: 01/26/2023]
Abstract
Cholesterol, a major component of mammalian cell membranes, plays important structural and functional roles. However, accumulation of excessive cholesterol is toxic to cells. Aberrant cholesterol trafficking and accumulation is the molecular basis for many diseases, such as atherosclerotic cardiovascular disease and Tangier's disease. Accumulation of excessive cholesterol is also believed to contribute to the early onset of Alzheimer's disease. Thus, cellular cholesterol homeostasis is tightly regulated by uptake, de novo synthesis, and efflux. Any surplus of cholesterol must either be stored in the cytosol in the form of esters or released from the cell. Recently, several ATP-binding cassette (ABC) transporters, such as ABCA1, ABCG1, ABCG5, and ABCG8 have been shown to play important roles in the regulation of cellular cholesterol homeostasis by mediating cholesterol efflux. Mutations in ABC transporters are associated with several human diseases. In this review, we discuss the physiological roles of ABC transporters and the underlying mechanisms by which they mediate cholesterol translocation.
Collapse
Affiliation(s)
- Ge Li
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
54
|
Sene A, Apte RS. Eyeballing cholesterol efflux and macrophage function in disease pathogenesis. Trends Endocrinol Metab 2014; 25:107-14. [PMID: 24252662 PMCID: PMC3943676 DOI: 10.1016/j.tem.2013.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/22/2022]
Abstract
Disorders of lipid metabolism are strongly associated with cardiovascular disease. Recently, there has been significant focus on how tissues process lipid deposits. Impaired cholesterol efflux has been shown to be crucial in mediating lipid deposition in atherosclerosis. The inability of macrophages to effectively efflux cholesterol from tissues initiates inflammation, plaque neovascularization, and subsequent rupture. Recent studies suggest that inability to effectively efflux cholesterol from tissues may have global implications far beyond atherosclerosis, extending to the pathophysiology of unrelated diseases. We examine the unifying mechanisms by which impaired cholesterol efflux facilitates tissue-specific inflammation and disease progression in age-related macular degeneration (AMD), a blinding eye disease, and in atherosclerosis, a disease associated with significant cardiovascular morbidity.
Collapse
Affiliation(s)
- Abdoulaye Sene
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA; Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA.
| |
Collapse
|
55
|
Westerterp M, Bochem AE, Yvan-Charvet L, Murphy AJ, Wang N, Tall AR. ATP-Binding Cassette Transporters, Atherosclerosis, and Inflammation. Circ Res 2014; 114:157-70. [DOI: 10.1161/circresaha.114.300738] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Marit Westerterp
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Andrea E. Bochem
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Laurent Yvan-Charvet
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Andrew J. Murphy
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Nan Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Alan R. Tall
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| |
Collapse
|
56
|
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. For close to four decades, we have known that high density lipoprotein (HDL) levels are inversely correlated with the risk of CVD. HDL is a complex particle that consists of proteins, phospholipids, and cholesterol and has the ability to carry micro-RNAs. HDL is constantly undergoing remodelling throughout its life-span and carries out many functions. This review summarizes many of the different aspects of HDL from its assembly, the receptors it interacts with, along with the functions it performs and how it can be altered in disease. While HDL is a key cholesterol efflux particle, this review highlights the many other important functions of HDL in the innate immune system and details the potential therapeutic uses of HDL outside of CVD.
Collapse
|
57
|
Wang F, Li G, Gu HM, Zhang DW. Characterization of the role of a highly conserved sequence in ATP binding cassette transporter G (ABCG) family in ABCG1 stability, oligomerization, and trafficking. Biochemistry 2013; 52:9497-509. [PMID: 24320932 PMCID: PMC3880014 DOI: 10.1021/bi401285j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
ATP-binding cassette transporter
G1 (ABCG1) mediates cholesterol
and oxysterol efflux onto lipidated lipoproteins and plays an important
role in macrophage reverse cholesterol transport. Here, we identified
a highly conserved sequence present in the five ABCG transporter family
members. The conserved sequence is located between the nucleotide
binding domain and the transmembrane domain and contains five amino
acid residues from Asn at position 316 to Phe at position 320 in ABCG1
(NPADF). We found that cells expressing mutant ABCG1, in which Asn316,
Pro317, Asp319, and Phe320 in the conserved sequence were replaced
with Ala simultaneously, showed impaired cholesterol efflux activity
compared with wild type ABCG1-expressing cells. A more detailed mutagenesis
study revealed that mutation of Asn316 or Phe 320 to Ala significantly
reduced cellular cholesterol and 7-ketocholesterol efflux conferred
by ABCG1, whereas replacement of Pro317 or Asp319 with Ala had no
detectable effect. To confirm the important role of Asn316 and Phe320,
we mutated Asn316 to Asp (N316D) and Gln (N316Q), and Phe320 to Ile
(F320I) and Tyr (F320Y). The mutant F320Y showed the same phenotype
as wild type ABCG1. However, the efflux of cholesterol and 7-ketocholesterol
was reduced in cells expressing ABCG1 mutant N316D, N316Q, or F320I
compared with wild type ABCG1. Further, mutations N316Q and F320I
impaired ABCG1 trafficking while having no marked effect on the stability
and oligomerization of ABCG1. The mutant N316Q and F320I could not
be transported to the cell surface efficiently. Instead, the mutant
proteins were mainly localized intracellularly. Thus, these findings
indicate that the two highly conserved amino acid residues, Asn and
Phe, play an important role in ABCG1-dependent export of cellular
cholesterol, mainly through the regulation of ABCG1 trafficking.
Collapse
Affiliation(s)
- Faqi Wang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, ‡Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
58
|
Xue J, Wei J, Dong X, Zhu C, Li Y, Song A, Liu Z. ABCG1 deficiency promotes endothelial apoptosis by endoplasmic reticulum stress-dependent pathway. J Physiol Sci 2013; 63:435-44. [PMID: 23897420 PMCID: PMC10717156 DOI: 10.1007/s12576-013-0281-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
The present study was focused on whether ABCG1 deficiency was involved in endothelial apoptosis and its possible mechanism. Human umbilical artery endothelial cells were transfected with ABCG1 siRNA and/or ABCG1 expression plasmid. We observed that silencing of endothelial ABCG1 reduced cholesterol efflux to HDL and increased intracellular lipid content. Moreover, reduction of ABCG1 promoted endothelial apoptosis and expression of endoplasmic reticulum (ER) stress-related molecules GRP78 and CHOP. In contrast, transfection of ABCG1 overexpression plasmid reversed endothelial apoptosis and intracellular lipid accumulation as well as decreased expression of GRP78 and CHOP in ABCG1-deficient endothelial cells. Furthermore, endothelial apoptosis and ER stress-related molecules were induced by repletion of endothelial cells with cholesterol-loaded cyclodextrin, otherwise endothelial apoptotic response and expression of GRP78 and CHOP were suppressed by depletion of cellular cholesterol in ABCG1-deficient endothelial cells. The present results suggest that reduction of ABCG1 induces endothelial apoptosis, which seems associated with intracellular free cholesterol accumulation and subsequent ER stress.
Collapse
Affiliation(s)
- Jiahong Xue
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, 157 West Five Road, Xi'an, 710004, Shaanxi, China,
| | | | | | | | | | | | | |
Collapse
|
59
|
Dietary phytosterol does not accumulate in the arterial wall and prevents atherosclerosis of LDLr-KO mice. Atherosclerosis 2013; 231:442-7. [PMID: 24267264 DOI: 10.1016/j.atherosclerosis.2013.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/03/2013] [Accepted: 10/16/2013] [Indexed: 12/16/2022]
Abstract
SCOPE There have been conflicting reports on the usefulness of phytosterols (PS) in preventing atherosclerosis. We evaluated the effects of dietary PS supplementation in LDLr-KO male mice on the plasma and aorta sterol concentrations and on atherosclerotic lesion development. METHODS AND RESULTS Mice were fed a high fat diet (40% of energy) supplemented with or without PS (2% w/w, n = 10). Plasma and arterial wall cholesterol and PS concentrations, lesion area, macrophage infiltration, and mRNA expression from LOX-1, CD36, ABCA1 and ABCG1 in peritoneal macrophages were measured. After 16 weeks, the plasma cholesterol concentration in PS mice was lower than that in the controls (p = 0.02) and in the arterial wall (p = 0.03). Plasma PS concentrations were higher in PS-fed animals than in controls (p < 0.0001); however, the arterial wall PS concentration did not differ between groups. The atherosclerotic lesion area in the PS group (n = 5) was smaller than that in controls (p = 0.0062) and the macrophage area (p = 0.0007). PS correlates negatively with arterial lipid content and macrophage (r = -0.76; p < 0.05). PS supplementation induced lower ABCG1 mRNA expression (p < 0.05). CONCLUSIONS Despite inducing an increase in PS plasma concentration, PS supplementation is not associated with its accumulation in the arterial wall and prevents atherosclerotic lesion development.
Collapse
|
60
|
Yu XH, Fu YC, Zhang DW, Yin K, Tang CK. Foam cells in atherosclerosis. Clin Chim Acta 2013; 424:245-52. [DOI: 10.1016/j.cca.2013.06.006] [Citation(s) in RCA: 457] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 01/11/2023]
|
61
|
Daniil G, Zannis VI, Chroni A. Effect of apoA-I Mutations in the Capacity of Reconstituted HDL to Promote ABCG1-Mediated Cholesterol Efflux. PLoS One 2013; 8:e67993. [PMID: 23826352 PMCID: PMC3694867 DOI: 10.1371/journal.pone.0067993] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 12/29/2022] Open
Abstract
ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69–99% of control by double deletion mutants apoA-I[Δ(1–41)Δ(185–243)] and apoA-I[Δ(1–59)Δ(185–243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.
Collapse
Affiliation(s)
- Georgios Daniil
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens, Greece
| | - Vassilis I. Zannis
- Molecular Genetics, Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens, Greece
- * E-mail:
| |
Collapse
|
62
|
Li G, Gu HM, Zhang DW. ATP-binding cassette transporters and cholesterol translocation. IUBMB Life 2013:n/a-n/a. [PMID: 23625363 DOI: 10.1002/iub.01165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/22/2013] [Indexed: 11/08/2022]
Abstract
Cholesterol, a major component of mammalian cell membranes, plays important structural and functional roles. However, accumulation of excessive cholesterol is toxic to cells. Aberrant cholesterol trafficking and accumulation is the molecular basis for many diseases, such as atherosclerotic cardiovascular disease and Tangier's disease. Accumulation of excessive cholesterol is also believed to contribute to the early onset of Alzheimer's disease. Thus, cellular cholesterol homeostasis is tightly regulated by uptake, de novo synthesis, and efflux. Any surplus of cholesterol must either be stored in the cytosol in the form of esters or released from the cell. Recently, several ATP-binding cassette (ABC) transporters, such as ABCA1, ABCG1, ABCG5, and ABCG8 have been shown to play important roles in the regulation of cellular cholesterol homeostasis by mediating cholesterol efflux. Mutations in ABC transporters are associated with several human diseases. In this review, we discuss the physiological roles of ABC transporters and the underlying mechanisms by which they mediate cholesterol translocation. © 2013 IUBMB Life, 2013.
Collapse
Affiliation(s)
- Ge Li
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
63
|
Nagy ZS, Czimmerer Z, Nagy L. Nuclear receptor mediated mechanisms of macrophage cholesterol metabolism. Mol Cell Endocrinol 2013; 368:85-98. [PMID: 22546548 DOI: 10.1016/j.mce.2012.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Macrophages comprise a family of multi-faceted phagocytic effector cells that differentiate "in situ" from circulating monocytes to exert various functions including clearance of foreign pathogens as well as debris derived from host cells. Macrophages also possess the ability to engulf and metabolize lipids and this way connect lipid metabolism and inflammation. The molecular link between these processes is provided by certain members of the nuclear receptor family. For instance, peroxisome proliferator activated receptors (PPAR) and liver X receptors (LXR) are able to sense the dynamically changing lipid environment and translate it to gene expression changes in order to modulate the cellular phenotype. Atherosclerosis embodies both sides of this coin: it is a disease in which macrophages with altered cholesterol metabolism keep the arteries in a chronically inflamed state. A large body of publications has accumulated during the past few decades describing the role of nuclear receptors in the regulation of macrophage cholesterol homeostasis, their contribution to the formation of atherosclerotic plaques and their crosstalk with inflammatory pathways. This review will summarize the most recent findings from this field narrowly focusing on the contribution of various nuclear receptors to macrophage cholesterol metabolism.
Collapse
Affiliation(s)
- Zsuzsanna S Nagy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen Medical and Health Science Center, H-4032 Debrecen, Nagyerdei krt 98, Hungary.
| | | | | |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW To offer a comprehensive review on the role of ABCG1 in cellular sterol homeostasis. RECENT FINDINGS Early studies with Abcg1 mice indicated that ABCG1 was crucial for tissue lipid homeostasis, especially in the lung. More recent studies have demonstrated that loss of ABCG1 has wide-ranging consequences and impacts lymphocyte and stem cell proliferation, endothelial cell function, macrophage foam cell formation, as well as insulin secretion from pancreatic β cells. Recent studies have also demonstrated that ABCG1 functions as an intracellular lipid transporter, localizes to intracellular vesicles/endosomes, and that the transmembrane domains are sufficient for localization and transport function. SUMMARY ABCG1 plays a crucial role in maintaining intracellular sterol and lipid homeostasis. Loss of this transporter has significant, cell-type-specific consequences ranging from effects on cellular proliferation, to surfactant production and/or insulin secretion. Elucidation of the mechanisms by which ABCG1 affects intracellular sterol flux/movement should provide important information that may link ABCG1 to diseases of dysregulated tissue lipid homeostasis.
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Departments of Biological Chemistry and Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1737, USA.
| |
Collapse
|
65
|
Hirayama H, Kimura Y, Kioka N, Matsuo M, Ueda K. ATPase activity of human ABCG1 is stimulated by cholesterol and sphingomyelin. J Lipid Res 2012; 54:496-502. [PMID: 23172659 DOI: 10.1194/jlr.m033209] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP-binding cassette protein G1 (ABCG1) is important for the formation of HDL. However, the biochemical properties of ABCG1 have not been reported, and the mechanism of how ABCG1 is involved in HDL formation remains unclear. We established a procedure to express and purify human ABCG1 using the suspension-adapted human cell FreeStyle293-F. ABCG1, fused at the C terminus with green fluorescent protein and Flag-peptide, was solubilized with n-dodecyl-β-D-maltoside and purified via a single round of Flag-M2 antibody affinity chromatography. The purified ABCG1 was reconstituted in liposome of various lipid compositions, and the ATPase activity was analyzed. ABCG1 reconstituted in egg lecithin showed ATPase activity (150 nmol/min/mg), which was inhibited by beryllium fluoride. The ATPase activity of ABCG1, reconstituted in phosphatidylserine liposome, was stimulated by cholesterol and choline phospholipids (especially sphingomyelin), and the affinity for cholesterol was increased by the addition of sphingomyelin. These results suggest that ABCG1 is an active lipid transporter and possesses different binding sites for cholesterol and sphingomyelin, which may be synergistically coupled.
Collapse
Affiliation(s)
- Hiroshi Hirayama
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, Japan
| | | | | | | | | |
Collapse
|
66
|
Sag D, Wingender G, Nowyhed H, Wu R, Gebre AK, Parks JS, Kronenberg M, Hedrick CC. ATP-binding cassette transporter G1 intrinsically regulates invariant NKT cell development. THE JOURNAL OF IMMUNOLOGY 2012; 189:5129-38. [PMID: 23100511 DOI: 10.4049/jimmunol.1201570] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ATP-binding cassette transporter G1 (ABCG1) plays a role in the intracellular transport of cholesterol. Invariant NKT (iNKT) cells are a subpopulation of T lymphocytes that recognize glycolipid Ags. In this study, we demonstrate that ABCG1 regulates iNKT cell development and functions in a cell-intrinsic manner. Abcg1(-/-) mice displayed reduced frequencies of iNKT cells in thymus and periphery. Thymic iNKT cells deficient in ABCG1 had reduced membrane lipid raft content, and showed impaired proliferation and defective maturation during the early stages of development. Moreover, we found that Abcg1(-/-) mice possess a higher frequency of Vβ7(+) iNKT cells, suggesting alterations in iNKT cell thymic selection. Furthermore, in response to CD3ε/CD28 stimulation, Abcg1(-/-) thymic iNKT cells showed reduced production of IL-4 but increased production of IFN-γ. Our results demonstrate that changes in intracellular cholesterol homeostasis by ABCG1 profoundly impact iNKT cell development and function.
Collapse
Affiliation(s)
- Duygu Sag
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Unsaturated fatty acids repress expression of ATP binding cassette transporter A1 and G1 in RAW 264.7 macrophages. J Nutr Biochem 2012; 23:1271-6. [DOI: 10.1016/j.jnutbio.2011.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 05/28/2011] [Accepted: 07/13/2011] [Indexed: 12/28/2022]
|
68
|
Olivier M, Tanck MW, Out R, Villard EF, Lammers B, Bouchareychas L, Frisdal E, Superville A, Van Berkel T, Kastelein JJ, Eck MV, Jukema JW, Chapman MJ, Dallinga-Thie GM, Guerin M, Le Goff W. Human ATP-binding cassette G1 controls macrophage lipoprotein lipase bioavailability and promotes foam cell formation. Arterioscler Thromb Vasc Biol 2012; 32:2223-31. [PMID: 22772754 DOI: 10.1161/atvbaha.111.243519] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The physiological function of the ATP-binding cassette G1 (ABCG1) transporter in humans is not yet elucidated, as no genetic disease caused by ABCG1 mutations has been documented. The goal of our study was, therefore, to investigate the potential role(s) of ABCG1 in lipid metabolism in humans. METHODS AND RESULTS Here we report that among the 104 polymorphisms present in the ABCG1 gene, the analysis of the frequent functional rs1893590 and rs1378577 single nucleotide polymorphisms located in the regulatory region of ABCG1 in the Regression Growth Evaluation Statin Study population revealed that both ABCG1 single nucleotide polymorphisms were significantly associated with plasma lipoprotein lipase (LPL) activity. Moreover, we observed that plasma LPL activity was modestly reduced in Abcg1(-/-) mice as compared with control mice. Adipose tissue and skeletal muscle are the major tissues accounting for levels and activity of plasma LPL in the body. However, beyond its lipolytic action in the plasma compartment, LPL was also described to act locally at the cellular level. Thus, macrophage LPL was reported to promote foam cell formation and atherosclerosis in vivo. Analysis of the relationship between ABCG1 and LPL in macrophages revealed that the knockdown of ABCG1 expression (ABCG1 knockdown) in primary cultures of human monocyte-derived macrophages using small interfering RNAs led to a marked reduction of both the secretion and activity of LPL. Indeed, LPL was trapped at the cell surface of ABCG1 knockdown human monocyte-derived macrophages, likely in cholesterol-rich domains, thereby reducing the bioavailability and activity of LPL. As a consequence, LPL-mediated lipid accumulation in human macrophage foam cells in the presence of triglyceride-rich lipoproteins was abolished when ABCG1 expression was repressed. CONCLUSIONS We presently report that ABCG1 controls LPL activity and promotes lipid accumulation in human macrophages in the presence of triglyceride-rich lipoproteins, thereby suggesting a potential deleterious role of macrophage ABCG1 in metabolic situations associated with high levels of circulating triglyceride-rich lipoproteins together with the presence of macrophages in the arterial wall.
Collapse
|
69
|
Münch G, Bültmann A, Li Z, Holthoff HP, Ullrich J, Wagner S, Ungerer M. Overexpression of ABCG1 protein attenuates arteriosclerosis and endothelial dysfunction in atherosclerotic rabbits. Heart Int 2012. [PMID: 23185679 PMCID: PMC3504304 DOI: 10.4081/hi.2012.e12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ABCG1 protein is centrally involved in reverse cholesterol transport from the vessel wall. Investigation of the effects of ABCG1 overexpression or knockdown in vivo has produced controversial results and strongly depended on the gene intervention model in which it was studied. Therefore, we investigated the effect of local overexpression of human ABCG1 in a novel model of vessel wall-directed adenoviral gene transfer in atherosclerotic rabbits. We conducted local, vascular-specific gene transfer by adenoviral delivery of human ABCG1 (Ad-ABCG1-GFP) in cholesterol-fed atherosclerotic rabbits in vivo. Endothelial overexpression of ABCG1 markedly reduced atheroprogression (plaque size) and almost blunted vascular inflammation, as shown by markedly reduced macrophage and smooth muscle cell invasion into the vascular wall. Also endothelial function, as determined by vascular ultrasound in vivo, was improved in rabbits after gene transfer with Ad-ABCG1-GFP. Therefore, both earlier and later stages of atherosclerosis were improved in this model of somatic gene transfer into the vessel wall. In contrast to results in transgenic mice, over-expression of ABCG1 by somatic gene transfer to the atherosclerotic vessel wall results in a significant improvement of plaque morphology and composition, and of vascular function in vivo.
Collapse
Affiliation(s)
- Götz Münch
- Corimmun GmbH, (Procorde GmbH) Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
70
|
Stylianou IM, Bauer RC, Reilly MP, Rader DJ. Genetic basis of atherosclerosis: insights from mice and humans. Circ Res 2012; 110:337-55. [PMID: 22267839 DOI: 10.1161/circresaha.110.230854] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a complex and heritable disease involving multiple cell types and the interactions of many different molecular pathways. The genetic and molecular mechanisms of atherosclerosis have, in part, been elucidated by mouse models; at least 100 different genes have been shown to influence atherosclerosis in mice. Importantly, unbiased genome-wide association studies have recently identified a number of novel loci robustly associated with atherosclerotic coronary artery disease. Here, we review the genetic data elucidated from mouse models of atherosclerosis, as well as significant associations for human coronary artery disease. Furthermore, we discuss in greater detail some of these novel human coronary artery disease loci. The combination of mouse and human genetics has the potential to identify and validate novel genes that influence atherosclerosis, some of which may be candidates for new therapeutic approaches.
Collapse
Affiliation(s)
- Ioannis M Stylianou
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, 654 BRBII/III Labs, 421 Curie Boulevard, Philadelphia, Pennsylvania, 19104-6160, USA
| | | | | | | |
Collapse
|
71
|
Meurs I, Lammers B, Zhao Y, Out R, Hildebrand RB, Hoekstra M, Van Berkel TJ, Van Eck M. The effect of ABCG1 deficiency on atherosclerotic lesion development in LDL receptor knockout mice depends on the stage of atherogenesis. Atherosclerosis 2012; 221:41-7. [DOI: 10.1016/j.atherosclerosis.2011.11.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 10/25/2011] [Accepted: 11/17/2011] [Indexed: 01/01/2023]
|
72
|
Allahverdian S, Pannu PS, Francis GA. Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. Cardiovasc Res 2012; 95:165-72. [PMID: 22345306 DOI: 10.1093/cvr/cvs094] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Smooth muscle cells (SMCs) are the main cell type in intimal thickenings and some stages of human atherosclerosis. Like monocyte-derived macrophages, SMCs accumulate excess lipids and contribute to the total intimal foam cell population. In contrast, apolipoprotein (Apo)E-deficient and LDL receptor-deficient mice develop atherosclerotic lesions that are macrophage- as opposed to SMC-rich. The lesser contribution of SMCs to lesion development in these mouse models has distracted attention away from the importance of SMC cholesterol homeostasis in the artery wall. Intimal SMCs accumulate excess amounts of cholesteryl esters when compared with medial layer SMCs, possibly explained by reduced ATP-binding cassette transporter A1 expression and ApoA-I binding to intimal-type SMCs. The aim of this review is to compare the relative contribution of monocyte-derived macrophages and SMCs to human vs. mouse atherosclerosis, and describe what is known about lipid uptake and removal mechanisms contributing to arterial macrophage and SMC foam cell formation. An increased understanding of the contribution of these cell types to lesion development will help to delineate their relative importance in atherogenesis and as potential therapeutic targets.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, UBC James Hogg Research Centre, Providence Heart + Lung Institute at St Paul's Hospital, Room 166, Burrard Building, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
| | | | | |
Collapse
|
73
|
Park Y, Pham TX, Lee J. Lipopolysaccharide represses the expression of ATP-binding cassette transporter G1 and scavenger receptor class B, type I in murine macrophages. Inflamm Res 2012; 61:465-72. [PMID: 22240665 DOI: 10.1007/s00011-011-0433-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/16/2011] [Accepted: 12/29/2011] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE AND DESIGN To investigate the regulation of cholesterol transporters, including ATP-binding cassette transporter A1 (ABCA1), ABCG1 and scavenger receptor class B, type I (SR-BI), by inflammatory stimuli in macrophages. MATERIALS AND TREATMENTS: RAW 264.7 macrophages and mouse peritoneal macrophages were treated with inflammatory stimuli with or without rosiglitazone, a peroxisome proliferator activated receptor γ (PPARγ) agonist, or T0901317, a liver X receptor (LXR) agonist. METHODS Real-time PCR and Western blotting for cholesterol transporters as well as cellular cholesterol efflux to high-density lipoprotein 2 (HDL(2)) were determined. RESULTS In RAW 264.7 macrophages, lipopolysaccharide (LPS) significantly reduced ABCG1 and PPARγ as well as cholesterol efflux to HDL(2). Rosiglitazone and T0901317 induced ABCA1 and ABCG1 several-fold, but LPS reduced only ABCG1. ABCG1 and SR-BI proteins, but not ABCA1, were decreased by LPS. In mouse peritoneal macrophages, LPS, tumor necrosis factor α and interleukin-1β decreased ABCG1, SR-BI, LXRα and PPARγ mRNA. The agonists increased ABC transporter expression but LPS reduced mRNA of T0901317-induced ABCA1 as well as basal and agonists-induced ABCG1. SR-BI protein was increased by rosiglitazone but LPS decreased the levels. CONCLUSION The data suggest that inflammatory insults repress ABCG1 and SR-BI expression partly dependent on PPARγ with a minimal effect on ABCA1 expression.
Collapse
Affiliation(s)
- Youngki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
74
|
Shao B. Site-specific oxidation of apolipoprotein A-I impairs cholesterol export by ABCA1, a key cardioprotective function of HDL. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:490-501. [PMID: 22178192 DOI: 10.1016/j.bbalip.2011.11.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 11/18/2011] [Accepted: 11/20/2011] [Indexed: 12/11/2022]
Abstract
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
75
|
Schou J, Frikke-Schmidt R, Kardassis D, Thymiakou E, Nordestgaard BG, Jensen G, Grande P, Tybjærg-Hansen A. Genetic variation in ABCG1 and risk of myocardial infarction and ischemic heart disease. Arterioscler Thromb Vasc Biol 2011; 32:506-15. [PMID: 22155456 DOI: 10.1161/atvbaha.111.234872] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE ATP binding cassette transporter G1 (ABCG1) facilitates cholesterol efflux from macrophages to mature high-density lipoprotein particles. Whether genetic variation in ABCG1 affects risk of atherosclerosis in humans remains to be determined. METHODS AND RESULTS We resequenced the core promoter and coding regions of ABCG1 in 380 individuals from the general population. Next, we genotyped 10 237 individuals from the Copenhagen City Heart Study for the identified variants and determined the effect on lipid and lipoprotein levels and on risk of myocardial infarction (MI) and ischemic heart disease (IHD). g.-376C>T, g.-311T>A, and Ser630Leu predicted risk of MI in the Copenhagen City Heart Study, with hazard ratios of 2.2 (95% confidence interval: 1.2-4.3), 1.7 (1.0-2.9), and 7.5 (1.9-30), respectively. These results were confirmed for g.-376C>T in a case-control study comprising 4983 independently ascertained IHD cases and 7489 controls. Expression levels of ABCG1 mRNA were decreased by approximately 40% in g.-376C>T heterozygotes versus noncarriers (probability values: 0.005-0.009). Finally, in vitro specificity protein 1 (Sp1) bound specifically to a putative Sp1 binding site at position -382 to -373 in the ABCG1 promoter, and the presence of the -376 T allele reduced binding and transactivation of the promoter by Sp1. CONCLUSIONS This is the first report of a functional variant in ABCG1 that associates with increased risk of MI and IHD in the general population.
Collapse
Affiliation(s)
- Jesper Schou
- Department of Clinical Biochemistry KB3011, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
76
|
|
77
|
ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc Natl Acad Sci U S A 2011; 108:19719-24. [PMID: 22095132 DOI: 10.1073/pnas.1113021108] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four members of the mammalian ATP binding cassette (ABC) transporter G subfamily are thought to be involved in transmembrane (TM) transport of sterols. The residues responsible for this transport are unknown. The mechanism of action of ABCG1 is controversial and it has been proposed to act at the plasma membrane to facilitate the efflux of cellular sterols to exogenous high-density lipoprotein (HDL). Here we show that ABCG1 function is dependent on localization to intracellular endosomes. Importantly, localization to the endosome pathway distinguishes ABCG1 and/or ABCG4 from all other mammalian members of this superfamily, including other sterol transporters. We have identified critical residues within the TM domains of ABCG1 that are both essential for sterol transport and conserved in some other members of the ABCG subfamily and/or the insulin-induced gene 2 (INSIG-2). Our conclusions are based on studies in which (i) biotinylation of peritoneal macrophages showed that endogenous ABCG1 is intracellular and undetectable at the cell surface, (ii) a chimeric protein containing the TM of ABCG1 and the cytoplasmic domains of the nonsterol transporter ABCG2 is both targeted to endosomes and functional, and (iii) ABCG1 colocalizes with multiple proteins that mark late endosomes and recycling endosomes. Mutagenesis studies identify critical residues in the TM domains that are important for ABCG1 to alter sterol efflux, induce sterol regulatory element binding protein-2 (SREBP-2) processing, and selectively attenuate the oxysterol-mediated repression of SREBP-2 processing. Our data demonstrate that ABCG1 is an intracellular sterol transporter that localizes to endocytic vesicles to facilitate the redistribution of specific intracellular sterols away from the endoplasmic reticulum (ER).
Collapse
|
78
|
Kellner-Weibel G, de la Llera-Moya M. Update on HDL receptors and cellular cholesterol transport. Curr Atheroscler Rep 2011; 13:233-41. [PMID: 21302003 DOI: 10.1007/s11883-011-0169-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Efflux is central to maintenance of tissue and whole body cholesterol homeostasis. The discovery of cell surface receptors that bind high-density lipoprotein (HDL) with high specificity and affinity to promote cholesterol release has significantly advanced our understanding of cholesterol efflux. We now know that 1) cells have several mechanisms to promote cholesterol release, including a passive mechanism that depends on the physico-chemical properties of cholesterol molecules and their interactions with phospholipids; 2) a variety of HDL particles can interact with receptors to promote cholesterol transport from tissues to the liver for excretion; and 3) interactions between HDL and receptors show functional synergy. Therefore, efflux efficiency depends both on the arrays of receptors on tissue cells and HDL particles in serum.
Collapse
Affiliation(s)
- Ginny Kellner-Weibel
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., ARC1102G, Philadelphia, PA 19104-4318, USA.
| | | |
Collapse
|
79
|
Identification of an amino acid residue in ATP-binding cassette transport G1 critical for mediating cholesterol efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:552-9. [PMID: 21821149 DOI: 10.1016/j.bbalip.2011.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/07/2011] [Accepted: 07/15/2011] [Indexed: 01/31/2023]
Abstract
The ATP-binding cassette transporter G1 (ABCG1) mediates free cholesterol efflux onto lipidated apolipoprotein A-I (apoA-I) and plays an important role in macrophage reverse cholesterol transport thereby reducing atherosclerosis. However, how ABCG1 mediates the efflux of cholesterol onto lipidated apoA-I is unclear. Since the crystal structure of ABCG family is not available, other approaches such as site-directed mutagenesis have been widely used to identify amino acid residues important for protein functions. We noticed that ABCG1 contains a single cysteine residue in its putative transmembrane domains. This cysteine residue locates at position 514 (Cys(514)) within the third putative transmembrane domain and is highly conserved. Replacement of Cys(514) with Ala (C514A) essentially abolished ABCG1-mediated cholesterol efflux onto lipidated apoA-I. Substitution of Cys(514) with more conserved amino acid residues, Ser or Thr, also significantly decreased cholesterol efflux. However, mutation C514A had no detectable effect on protein stability and trafficking. Mutation C514A also did not affect the dimerization of ABCG1. Our findings demonstrated that the sulfhydryl group of Cys residue located at position 514 plays a critical role in ABCG1-mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
|
80
|
Tarling EJ, Edwards PA. Dancing with the sterols: critical roles for ABCG1, ABCA1, miRNAs, and nuclear and cell surface receptors in controlling cellular sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:386-95. [PMID: 21824529 DOI: 10.1016/j.bbalip.2011.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
Abstract
ATP binding cassette (ABC) transporters represent a large and diverse family of proteins that transport specific substrates across a membrane. The importance of these transporters is illustrated by the finding that inactivating mutations within 17 different family members are known to lead to specific human diseases. Clinical data from humans and/or studies with mice lacking functional transporters indicate that ABCA1, ABCG1, ABCG4, ABCG5 and ABCG8 are involved in cholesterol and/or phospholipid transport. This review discusses the multiple mechanisms that control cellular sterol homeostasis, including the roles of microRNAs, nuclear and cell surface receptors and ABC transporters, with particular emphasis on recent findings that have provided insights into the role(s) of ABCG1. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
81
|
Xu Y, Wang W, Zhang L, Qi LP, Li LY, Chen LF, Fang Q, Dang AM, Yan XW. A polymorphism in the ABCG1 promoter is functionally associated with coronary artery disease in a Chinese Han population. Atherosclerosis 2011; 219:648-54. [PMID: 21722899 DOI: 10.1016/j.atherosclerosis.2011.05.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/09/2011] [Accepted: 05/22/2011] [Indexed: 01/02/2023]
Abstract
OBJECTIVE In this study, we examine the association of single nucleotide polymorphisms (SNPs) of the human ATP binding cassette transporter G1 (ABCG1) gene with atherosclerotic coronary artery disease (CAD) in a Chinese Han population. METHODS 1021 patients with CAD and 1013 unaffected control subjects were enrolled. PCR-based ligation detection reaction (PCR-LDR) method was used to genotype four SNPs of ABCG1, three (rs2234714, rs2234715 and rs57137919) in the promoter region and one (rs1044317) in the 3'-untranslated region (UTR). RESULTS The human ABCG1 -367G>A polymorphism (rs57137919) showed a significantly decreased risk for CAD and myocardial infarction (MI) in a dominant model (adjusted OR = 0.73, p = 0.033 for CAD, and adjusted OR = 0.65, p = 0.014 for MI, respectively). The rs57137919 also showed an association with angiographic severity of CAD (multi-vessel vs. single-vessel CAD, adjusted OR = 0.40, p = 0.005). The findings were further supported by luciferase reporter assay, in which the polymorphism impaired reporter gene expression. The ABCG1 -768G>A polymorphism (rs2234714) showed an association with CAD in a recessive model (adjusted OR = 0.64, p = 0.015), but did not demonstrate a functional influence on reporter gene expression in the luciferase reporter assay. CONCLUSIONS The SNP rs57137919 in the ABCG1 promoter region is functionally associated with a reduced risk of CAD in a Chinese Han population.
Collapse
Affiliation(s)
- Yan Xu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Brufau G, Groen AK, Kuipers F. Reverse cholesterol transport revisited: contribution of biliary versus intestinal cholesterol excretion. Arterioscler Thromb Vasc Biol 2011; 31:1726-33. [PMID: 21571685 DOI: 10.1161/atvbaha.108.181206] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reverse cholesterol transport (RCT) is usually defined as high-density lipoprotein-mediated transport of excess cholesterol from peripheral tissues, including cholesterol-laden macrophages in vessel walls, to the liver. From the liver, cholesterol can then be removed from the body via secretion into the bile for eventual disposal via the feces. According to this paradigm, high plasma high-density lipoprotein levels accelerate RCT and hence are atheroprotective. New insights in individual steps of the RCT pathway, in part derived from innovative mouse models, indicate that the classical concept of RCT may require modification.
Collapse
Affiliation(s)
- Gemma Brufau
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | |
Collapse
|
83
|
|
84
|
A-González N, Castrillo A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Biophys Acta Mol Basis Dis 2010; 1812:982-94. [PMID: 21193033 DOI: 10.1016/j.bbadis.2010.12.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 12/30/2022]
Abstract
The liver X receptors (LXRα and LXRβ) are members of the nuclear receptor family of transcription factors that play essential roles in the transcriptional control of lipid metabolism. LXRs are endogenously activated by modified forms of cholesterol known as oxysterols and control the expression of genes important for cholesterol uptake, efflux, transport, and excretion in multiple tissues. In addition to their role as cholesterol sensors, a number of studies have implicated LXRs in the modulation of innate and adaptive immune responses. Both through activation and repression mechanisms, LXRs regulate diverse aspects of inflammatory gene expression in macrophages. The ability of LXRs to coordinate metabolic and immune responses constitutes an attractive therapeutic target for the treatment of chronic inflammatory disorders. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Noelia A-González
- Department of Biochemistry and Molecular Biology, Universidad de Las Palmas de Gran Canaria, ULPGC, Las Palmas, Spain
| | | |
Collapse
|
85
|
Zhao Y, Pennings M, Hildebrand RB, Ye D, Calpe-Berdiel L, Out R, Kjerrulf M, Hurt-Camejo E, Groen AK, Hoekstra M, Jessup W, Chimini G, Van Berkel TJC, Van Eck M. Enhanced foam cell formation, atherosclerotic lesion development, and inflammation by combined deletion of ABCA1 and SR-BI in Bone marrow-derived cells in LDL receptor knockout mice on western-type diet. Circ Res 2010; 107:e20-31. [PMID: 21071707 DOI: 10.1161/circresaha.110.226282] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE macrophages cannot limit the uptake of lipids and rely on cholesterol efflux mechanisms for maintaining cellular cholesterol homeostasis. Important mediators of macrophage cholesterol efflux are ATP-binding cassette transporter 1 (ABCA1), which mediates the efflux of cholesterol to lipid-poor apolipoprotein AI, and scavenger receptor class B type I (SR-BI), which promotes efflux to mature high-density lipoprotein. OBJECTIVE the aim of the present study was to increase the insight into the putative synergistic roles of ABCA1 and SR-BI in foam cell formation and atherosclerosis. METHODS AND RESULTS low-density lipoprotein receptor knockout (LDLr KO) mice were transplanted with bone marrow from ABCA1/SR-BI double knockout mice, the respective single knockouts, or wild-type littermates. Serum cholesterol levels were lower in ABCA1/SR-BI double knockout transplanted animals, as compared to the single knockout and wild-type transplanted animals on Western-type diet. Despite the lower serum cholesterol levels, massive foam cell formation was found in macrophages from spleen and the peritoneal cavity. Interestingly, ABCA1/SR-BI double knockout transplanted animals also showed a major increase in proinflammatory KC (murine interleukin-8) and interleukin-12p40 levels in the circulation. Furthermore, after 10 weeks of Western-type diet feeding, atherosclerotic lesion development in the aortic root was more extensive in the LDLr KO mice reconstituted with ABCA1/SR-BI double knockout bone marrow. CONCLUSIONS deletion of ABCA1 and SR-BI in bone marrow-derived cells enhances in vivo macrophage foam cell formation and atherosclerotic lesion development in LDLr KO mice on Western diet, indicating that under high dietary lipid conditions, both macrophage ABCA1 and SR-BI contribute significantly to cholesterol homeostasis in the macrophage in vivo and are essential for reducing the risk for atherosclerosis.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Biopharmaceutics, University Medical Center Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Westerterp M, Koetsveld J, Yu S, Han S, Li R, Goldberg IJ, Welch CL, Tall AR. Increased atherosclerosis in mice with vascular ATP-binding cassette transporter G1 deficiency--brief report. Arterioscler Thromb Vasc Biol 2010; 30:2103-5. [PMID: 20705913 DOI: 10.1161/atvbaha.110.212985] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the role of vascular ATP-binding cassette transporter G1 (ABCG1) in atherogenesis without a confounding difference in macrophage ABCG1 expression. ABCG1 is highly expressed in macrophages and endothelial cells. ABCG1 preserves endothelial function by maintaining endothelial NO synthase activity and by reducing adhesion molecule expression and monocyte adhesion. METHODS AND RESULTS To investigate the role of vascular ABCG1 in atherosclerosis in vivo Abcg1(-/-)/Ldlr(-/-) and Ldlr(-/-) mice were transplanted with wild-type bone marrow and fed a Western-type diet for 12 or 23 weeks. The atherosclerotic lesion area was similar in both groups after 12 weeks but was increased in Abcg1(-/-)/Ldlr(-/-) recipients after 23 weeks, especially in the aortic arch (2.2-fold; P<0.01). Endothelial NO synthase-mediated vascular relaxation was impaired in male Abcg1(-/-)/Ldlr(-/-) recipients. CONCLUSIONS Our data show an atheroprotective role of vascular ABCG1, especially in the aortic arch, likely related to its role in the preservation of endothelial NO synthase activity.
Collapse
Affiliation(s)
- Marit Westerterp
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Sturek JM, Castle JD, Trace AP, Page LC, Castle AM, Evans-Molina C, Parks JS, Mirmira RG, Hedrick CC. An intracellular role for ABCG1-mediated cholesterol transport in the regulated secretory pathway of mouse pancreatic beta cells. J Clin Invest 2010; 120:2575-89. [PMID: 20530872 DOI: 10.1172/jci41280] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 04/14/2010] [Indexed: 01/12/2023] Open
Abstract
Cholesterol is a critical component of cell membranes, and cellular cholesterol levels and distribution are tightly regulated in mammals. Recent evidence has revealed a critical role for pancreatic beta cell-specific cholesterol homeostasis in insulin secretion as well as in beta cell dysfunction in diabetes and the metabolic response to thiazolidinediones (TZDs), which are antidiabetic drugs. The ATP-binding cassette transporter G1 (ABCG1) has been shown to play a role in cholesterol efflux, but its role in beta cells is currently unknown. In other cell types, ABCG1 expression is downregulated in diabetes and upregulated by TZDs. Here we have demonstrated an intracellular role for ABCG1 in beta cells. Loss of ABCG1 expression impaired insulin secretion both in vivo and in vitro, but it had no effect on cellular cholesterol content or efflux. Subcellular localization studies showed the bulk of ABCG1 protein to be present in insulin granules. Loss of ABCG1 led to altered granule morphology and reduced granule cholesterol levels. Administration of exogenous cholesterol restored granule morphology and cholesterol content and rescued insulin secretion in ABCG1-deficient islets. These findings suggest that ABCG1 acts primarily to regulate subcellular cholesterol distribution in mouse beta cells. Furthermore, islet ABCG1 expression was reduced in diabetic mice and restored by TZDs, implicating a role for regulation of islet ABCG1 expression in diabetes pathogenesis and treatment.
Collapse
Affiliation(s)
- Jeffrey M Sturek
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Yin K, Liao DF, Tang CK. ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Mol Med 2010; 16:438-49. [PMID: 20485864 DOI: 10.2119/molmed.2010.00004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is characterized by a chronic inflammatory condition that involves numerous cellular and molecular inflammatory components. A wide array of inflammatory mediators, such as cytokines and proteins produced by macrophages and other cells, play a critical role in the development and progression of the disease. ATP-binding membrane cassette transporter A1 (ABCA1) is crucial for cellular cholesterol efflux and reverse cholesterol transport (RCT) and is also identified as an important target in antiatherosclerosis treatment. Evidence from several recent studies indicates that inflammation, along with other atherogenic-related mediators, plays distinct regulating roles in ABCA1 expression. Proatherogenic cytokines such as interferon (IFN)-γ and interleukin (IL)-1β have been shown to inhibit the expression of ABCA1, while antiatherogenic cytokines, including IL-10 and transforming growth factor (TGF)-β1, have been shown to promote the expression of ABCA1. Moreover, some cytokines such as tumor necrosis factor (TNF)-α seem to regulate ABCA1 expression in species-specific and dose-dependent manners. Inflammatory proteins such as C-reactive protein (CRP) and cyclooxygenase (COX)-2 are likely to inhibit ABCA1 expression during inflammation, and inflammation induced by lipopolysaccharide (LPS) was also found to block the expression of ABCA1. Interestingly, recent experiments revealed ABCA1 can function as an antiinflammatory receptor to suppress the expression of inflammatory factors, suggesting that ABCA1 may be the molecular basis for the interaction between inflammation and RCT. This review aims to summarize recent findings on the role of inflammatory cytokines, inflammatory proteins, inflammatory lipids, and the endotoxin-mediated inflammatory process in expression of ABCA1. Also covered is the current understanding of the function of ABCA1 in modulating the immune response and inflammation through its direct and indirect antiinflammatory mechanisms including lipid transport, high-density lipoprotein (HDL) formation and apoptosis.
Collapse
Affiliation(s)
- Kai Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, China
| | | | | |
Collapse
|
89
|
Yvan-Charvet L, Pagler TA, Seimon TA, Thorp E, Welch CL, Witztum JL, Tabas I, Tall AR. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ Res 2010; 106:1861-9. [PMID: 20431058 DOI: 10.1161/circresaha.110.217281] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Antiatherogenic effects of plasma high-density lipoprotein (HDL) include the ability to inhibit apoptosis of macrophage foam cells. The ATP-binding cassette transporters ABCA1 and ABCG1 have a major role in promoting cholesterol efflux from macrophages to apolipoprotein A-1 and HDL and are upregulated during the phagocytosis of apoptotic cells (efferocytosis). OBJECTIVE The goal of this study was to determine the roles of ABCA1 and ABCG1 in preserving the viability of macrophages during efferocytosis. METHODS AND RESULTS We show that despite similar clearance of apoptotic cells, peritoneal macrophages from Abca1(-/-)Abcg1(-/-), Abcg1(-/-), and, to a lesser extent, Abca1(-/-) mice are much more prone to apoptosis during efferocytosis compared to wild-type cells. Similar findings were observed following incubations with oxidized phospholipids, and the ability of HDL to protect against oxidized phospholipid-induced apoptosis was markedly reduced in Abca1(-/-)Abcg1(-/-) and Abcg1(-/-) cells. These effects were independent of any role of ABCA1 and ABCG1 in mediating oxidized phospholipid efflux but were reversed by cyclodextrin-mediated cholesterol efflux. The apoptotic response observed in Abca1(-/-)Abcg1(-/-) macrophages after oxidized phospholipid exposure or engulfment of apoptotic cells was dependent on an excessive oxidative burst secondary to enhanced assembly of NADPH oxidase (NOX)2 complexes, leading to sustained Jnk activation which turned on the apoptotic cell death program. Increased NOX2 assembly required Toll-like receptors 2/4 and MyD88 signaling, which are known to be enhanced in transporter deficient cells in a lipid raft-dependent fashion. CONCLUSIONS We identified a new beneficial role of ABCA1, ABCG1 and HDL in dampening the oxidative burst and preserving viability of macrophages following exposure to oxidized phospholipids and/or apoptotic cells.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Division of Molecular Medicine, Department of Medicine, 630 W 168th St, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Tarling EJ, Bojanic DD, Tangirala RK, Wang X, Lovgren-Sandblom A, Lusis AJ, Bjorkhem I, Edwards PA. Impaired development of atherosclerosis in Abcg1-/- Apoe-/- mice: identification of specific oxysterols that both accumulate in Abcg1-/- Apoe-/- tissues and induce apoptosis. Arterioscler Thromb Vasc Biol 2010; 30:1174-80. [PMID: 20299684 DOI: 10.1161/atvbaha.110.205617] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To generate Abcg1(-/-) Apoe(-/-) mice to understand the mechanism and cell types involved in changes in atherosclerosis after loss of ABCG1. METHODS AND RESULTS ABCG1 is highly expressed in macrophages and endothelial cells, 2 cell types that play important roles in the development of atherosclerosis. Abcg1(-/-) Apoe(-/-) and Apoe(-/-) mice and recipient Apoe(-/-) mice that had undergone transplantation with bone marrow from Apoe(-/-) or Abcg1(-/-) Apoe(-/-) mice were fed a Western diet for 12 or 16 weeks before quantification of atherosclerotic lesions. These studies demonstrated that loss of ABCG1 from all tissues, or from only hematopoietic cells, was associated with significantly smaller lesions that contained increased numbers of TUNEL- and cleaved caspase 3-positive apoptotic Abcg1(-/-) macrophages. We also identified specific oxysterols that accumulate in the brains and macrophages of the Abcg1(-/-) Apoe(-/-) mice. These oxysterols promoted apoptosis and altered the expression of proapoptotic genes when added to macrophages in vitro. CONCLUSIONS Loss of ABCG1 from all tissues or from only hematopoietic cells results in smaller atherosclerotic lesions populated with increased apoptotic macrophages, by processes independent of ApoE. Specific oxysterols identified in tissues of Abcg1(-/-) Apoe(-/-) mice may be critical because they induce macrophage apoptosis and the expression of proapoptotic genes.
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Fitzgerald ML, Mujawar Z, Tamehiro N. ABC transporters, atherosclerosis and inflammation. Atherosclerosis 2010; 211:361-70. [PMID: 20138281 DOI: 10.1016/j.atherosclerosis.2010.01.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 10/19/2022]
Abstract
Atherosclerosis, driven by inflamed lipid-laden lesions, can occlude the coronary arteries and lead to myocardial infarction. This chronic disease is a major and expensive health burden. However, the body is able to mobilize and excrete cholesterol and other lipids, thus preventing atherosclerosis by a process termed reverse cholesterol transport (RCT). Insight into the mechanism of RCT has been gained by the study of two rare syndromes caused by the mutation of ABC transporter loci. In Tangier disease, loss of ABCA1 prevents cells from exporting cholesterol and phospholipid, thus resulting in the build-up of cholesterol in the peripheral tissues and a loss of circulating HDL. Consistent with HDL being an athero-protective particle, Tangier patients are more prone to develop atherosclerosis. Likewise, sitosterolemia is another inherited syndrome associated with premature atherosclerosis. Here mutations in either the ABCG5 or G8 loci, prevents hepatocytes and enterocytes from excreting cholesterol and plant sterols, including sitosterol, into the bile and intestinal lumen. Thus, ABCG5 and G8, which from a heterodimer, constitute a transporter that excretes cholesterol and dietary sterols back into the gut, while ABCA1 functions to export excess cell cholesterol and phospholipid during the biogenesis of HDL. Interestingly, a third protein, ABCG1, that has been shown to have anti-atherosclerotic activity in mice, may also act to transfer cholesterol to mature HDL particles. Here we review the relationship between the lipid transport activities of these proteins and their anti-atherosclerotic effect, particularly how they may reduce inflammatory signaling pathways. Of particular interest are recent reports that indicate both ABCA1 and ABCG1 modulate cell surface cholesterol levels and inhibit its partitioning into lipid rafts. Given lipid rafts may provide platforms for innate immune receptors to respond to inflammatory signals, it follows that loss of ABCA1 and ABCG1 by increasing raft content will increase signaling through these receptors, as has been experimentally demonstrated. Moreover, additional reports indicate ABCA1, and possibly SR-BI, another HDL receptor, may directly act as anti-inflammatory receptors independent of their lipid transport activities. Finally, we give an update on the progress and pitfalls of therapeutic approaches that seek to stimulate the flux of lipids through the RCT pathway.
Collapse
Affiliation(s)
- Michael L Fitzgerald
- Lipid Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.
| | | | | |
Collapse
|
92
|
Armstrong AJ, Gebre AK, Parks JS, Hedrick CC. ATP-binding cassette transporter G1 negatively regulates thymocyte and peripheral lymphocyte proliferation. THE JOURNAL OF IMMUNOLOGY 2009; 184:173-83. [PMID: 19949102 DOI: 10.4049/jimmunol.0902372] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cholesterol is a key component of cell membranes and is essential for cell growth and proliferation. How the accumulation of cellular cholesterol affects lymphocyte development and function is not well understood. We demonstrate that ATP-binding cassette transporter G1 (ABCG1) regulates cholesterol homeostasis in thymocytes and peripheral CD4 T cells. Our work is the first to describe a cell type in Abcg1-deficient mice with such a robust change in cholesterol content and the expression of cholesterol metabolism genes. Abcg1-deficient mice display increased thymocyte cellularity and enhanced proliferation of thymocytes and peripheral T lymphocytes in vivo. The absence of ABCG1 in CD4 T cells results in hyperproliferation in vitro, but only when cells are stimulated through the TCR. We hypothesize that cholesterol accumulation in Abcg1(-/-) T cells alters the plasma membrane structure, resulting in enhanced TCR signaling for proliferation. Supporting this idea, we demonstrate that B6 T cells pretreated with soluble cholesterol have a significant increase in proliferation. Cholesterol accumulation in Abcg1(-/-) CD4 T cells results in enhanced basal phosphorylation levels of ZAP70 and ERK1/2. Furthermore, inhibition of ERK phosphorylation in TCR-stimulated Abcg1(-/-) T cells rescues the hyperproliferative phenotype. We describe a novel mechanism by which cholesterol can alter signaling from the plasma membrane to affect downstream signaling pathways and proliferation. These results implicate ABCG1 as an important negative regulator of lymphocyte proliferation through the maintenance of cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Allison J Armstrong
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
93
|
Abstract
Cholesterol ester transfer protein (CETP) deficiency or inhibition results in dramatic elevations of high-density lipoprotein (HDL) levels, but there has been concern that HDL might be dysfunctional in its ability to promote efflux of cholesterol from macrophage foam cells or to mediate reverse cholesterol transport. Using cholesterol-loaded cultured macrophages, HDL that was isolated from subjects with homozygous CETP deficiency or who had been treated with high levels of CETP inhibitor (120 mg torcetrapib) had an increased cholesterol efflux potential when matched for unit mass of HDL in media. This correlated with the accumulation of HDL(2) species enriched in apolipoprotein E and lecithin-cholesterol acyltransferase. At lower levels of inhibition (60 mg torcetrapib), HDL had a similar ability to promote cholesterol efflux as pretreatment HDL but showed increased cholesterol efflux in parallel with the increase in plasma HDL concentration. Cholesterol efflux measurements appear to correlate with the finding that subjects who attained the highest levels of HDL on torcetrapib showed regression of coronary atheroma as determined by intravascular ultrasound. Although these in vitro measurements may not fully capture the in vivo complexities of HDL metabolism, they suggest that increased HDL attributable to CETP inhibition results in particles that have normal or enhanced ability to promote cholesterol efflux from macrophage foam cells.
Collapse
Affiliation(s)
- Alan R Tall
- Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
94
|
Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 2009; 30:139-43. [PMID: 19797709 DOI: 10.1161/atvbaha.108.179283] [Citation(s) in RCA: 511] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Atherosclerosis has been characterized as a chronic inflammatory response to cholesterol deposition in arteries, but the mechanisms linking cholesterol accumulation in macrophage foam cells to inflammation are poorly understood. Macrophage cholesterol efflux occurs at all stages of atherosclerosis and protects cells from free cholesterol and oxysterol-induced toxicity. The ATP-binding cassette transporters ABCA1 and ABCG1 are responsible for the major part of macrophage cholesterol efflux to serum or HDL in macrophage foam cells, but other less efficient pathways such as passive efflux are also involved. Recent studies have shown that the sterol efflux activities of ABCA1 and ABCG1 modulate macrophage expression of inflammatory cytokines and chemokines as well as lymphocyte proliferative responses. In macrophages, transporter deficiency causes increased signaling via various Toll-like receptors including TLR4. These studies have shown that the traditional roles of HDL and ABC transporters in cholesterol efflux and reverse cholesterol transport are mechanistically linked to antiinflammatory and immunosuppressive functions of HDL. The underlying mechanisms may involve modulation of sterol levels and lipid organization in cell membranes.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 W 168th St, New York, NY 10032, USA.
| | | | | |
Collapse
|
95
|
Lack of Abcg1 results in decreased plasma HDL cholesterol levels and increased biliary cholesterol secretion in mice fed a high cholesterol diet. Atherosclerosis 2009; 206:141-7. [DOI: 10.1016/j.atherosclerosis.2009.02.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 01/26/2023]
|
96
|
Liu J, Huan C, Chakraborty M, Zhang H, Lu D, Kuo MS, Cao G, Jiang XC. Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ Res 2009; 105:295-303. [PMID: 19590047 DOI: 10.1161/circresaha.109.194613] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Sphingomyelin synthase (SMS)2 contributes to de novo sphingomyelin (SM) biosynthesis and plasma membrane SM levels. SMS2 deficiency in macrophages diminishes nuclear factor kappaB and mitogen-activated protein kinase activation induced by inflammatory stimuli. OBJECTIVE The effects of SMS2 deficiency on the development of atherosclerosis are investigated. METHODS AND RESULTS We measured cholesterol efflux from macrophages of wild-type (WT) and SMS2 knockout (KO) mice. We transplanted SMS2 KO mouse bone marrow into low-density lipoprotein (LDL) receptor (LDLr) knockout mice (SMS2(-/-)-->LDLr(-/-)), creating a mouse model of SMS2 deficiency in the macrophages. We found that SMS2 deficiency caused significant induction of cholesterol efflux in vitro and in vivo. Moreover, we found that SMS2 KO mice had less interleukin-6 and tumor necrosis factor alpha in the circulation before and after endotoxin stimulation, compared with controls. More importantly, after 3 months on a western-type diet, SMS2(-/-)-->LDLr(-/-) mice showed decreased atherosclerotic lesions in the aortic arch, root (57%, P<0.001), and the entire aorta (42%, P<0.01), compared with WT-->LDLr(-/-) mice. Analysis of plaque morphology revealed that SMS2(-/-)-->LDLr(-/-) mice had significantly less necrotic core area (71%, P<0.001), less macrophage content (37%, P<0.01), and more collagen content (35%, P<0.05) in atherosclerotic lesions. We also found that SMS2(-/-)-->LDLr(-/-) mice had significantly lower free cholesterol and cholesteryl ester levels in the brachiocephalic artery than WT-->LDLr(-/-) mice (33 and 52%, P<0.01 and P<0.001, respectively). CONCLUSIONS SMS2 deficiency in the macrophages reduces atherosclerosis in mice. Macrophage SMS2 is thus a potential therapeutic target for treatment of this disease.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Tarr PT, Tarling EJ, Bojanic DD, Edwards PA, Baldán Á. Emerging new paradigms for ABCG transporters. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:584-93. [PMID: 19416657 PMCID: PMC2698934 DOI: 10.1016/j.bbalip.2009.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 12/14/2022]
Abstract
Every cell is separated from its external environment by a lipid membrane. Survival depends on the regulated and selective transport of nutrients, waste products and regulatory molecules across these membranes, a process that is often mediated by integral membrane proteins. The largest and most diverse of these membrane transport systems is the ATP binding cassette (ABC) family of membrane transport proteins. The ABC family is a large evolutionary conserved family of transmembrane proteins (>250 members) present in all phyla, from bacteria to Homo sapiens, which require energy in the form of ATP hydrolysis to transport substrates against concentration gradients. In prokaryotes the majority of ABC transporters are involved in the transport of nutrients and other macromolecules into the cell. In eukaryotes, with the exception of the cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7), ABC transporters mobilize substrates from the cytoplasm out of the cell or into specific intracellular organelles. This review focuses on the members of the ABCG subfamily of transporters, which are conserved through evolution in multiple taxa. As discussed below, these proteins participate in multiple cellular homeostatic processes, and functional mutations in some of them have clinical relevance in humans.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/classification
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- ATP-Binding Cassette Transporters/physiology
- Animals
- Biological Transport
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Lipoproteins/physiology
- Mice
- Mice, Knockout
Collapse
Affiliation(s)
- Paul T. Tarr
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth J. Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Dragana D. Bojanic
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Peter A. Edwards
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry and Molecular Biology, DRC 321, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| |
Collapse
|
98
|
Escolà-Gil JC, Rotllan N, Julve J, Blanco-Vaca F. In vivo macrophage-specific RCT and antioxidant and antiinflammatory HDL activity measurements: New tools for predicting HDL atheroprotection. Atherosclerosis 2009; 206:321-7. [PMID: 19362310 DOI: 10.1016/j.atherosclerosis.2008.12.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/01/2008] [Accepted: 12/08/2008] [Indexed: 12/12/2022]
Abstract
The beneficial therapeutic effects of raising HDL cholesterol are proving difficult to confirm in humans. The evaluation of antiatherogenic functions of HDL is an important area of research which includes the role of HDL in reverse cholesterol transport (RCT), especially macrophage-specific RCT, and its antioxidant and antiinflammatory roles. The antioxidant and antiinflammatory functions of HDL can be assessed using cell-free and cell-based assays. Also, a new approach was developed to measure RCT from labeled-cholesterol macrophages to liver and feces of mice. Studies in genetically engineered animals indicate that these major HDL antiatherogenic functions are better predictors of atherosclerosis susceptibility than HDL cholesterol or total RCT. Thus, functional testing of the antiatherogenic functions of HDL in experimental animal models may facilitate the development of new strategies for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain.
| | | | | | | |
Collapse
|
99
|
Lammers B, Out R, Hildebrand RB, Quinn CM, Williamson D, Hoekstra M, Meurs I, Van Berkel TJC, Jessup W, Van Eck M. Independent protective roles for macrophage Abcg1 and Apoe in the atherosclerotic lesion development. Atherosclerosis 2009; 205:420-6. [PMID: 19217108 DOI: 10.1016/j.atherosclerosis.2009.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 11/25/2022]
Abstract
OBJECTIVE ATP-binding cassette transporter G1 (Abcg1) and apolipoprotein E (Apoe) play a role in macrophage cholesterol efflux and consequently the development of atherosclerosis. A possible interaction between Abcg1 and Apoe in cholesterol efflux was postulated, but the potential combined action of these proteins on atherosclerotic lesion formation is unclear. METHODS LDL receptor knockout (KO) mice were transplanted with bone marrow from Abcg1/Apoe double KO (dKO) mice, their respective single knockouts, and wild-type (WT) controls and challenged with a high-fat/high-cholesterol diet for 6 weeks to induce atherosclerosis. RESULTS No differences were found in serum lipid levels. The mean atherosclerotic lesion area in dKO transplanted animals (187+/-18x10(3)microm(2)) was 1.4-fold (p<0.01) increased compared to single knockouts (Abcg1 KO: 138+/-5x10(3)microm(2); Apoe KO: 131+/-7x10(3)microm(2)) and 1.9-fold (p<0.001) as compared to WT controls (97+/-15x10(3)microm(2)). In vitro cholesterol efflux experiments established that combined deletion of Abcg1 and Apoe leads to a larger attenuation of macrophage cholesterol efflux to HDL as compared to single knockouts. CONCLUSIONS Single deletion of macrophage Abcg1 or Apoe does lead to a moderate non-significant increase in atherosclerotic lesion development as tested by ANOVA, while combined deletion of Abcg1 and Apoe induces a more dramatic and significant increase in atherosclerosis. Our results indicate an additive, independent effect for both macrophage Abcg1 and Apoe in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Bart Lammers
- Gorlaeus Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Furuyama S, Uehara Y, Zhang B, Baba Y, Abe S, Iwamoto T, Miura SI, Saku K. Genotypic Effect of ABCG1 Gene Promoter -257T>G Polymorphism on Coronary Artery Disease Severity in Japanese Men. J Atheroscler Thromb 2009; 16:194-200. [DOI: 10.5551/jat.e380] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|