51
|
Jennings MM, Donahue JK. Connexin Remodeling Contributes to Atrial Fibrillation. J Atr Fibrillation 2013; 6:839. [PMID: 28496873 DOI: 10.4022/jafib.839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 11/10/2022]
Abstract
Atrial fibrillation significantly contributes to mortality and morbidity through increased risk of stroke, heart failure and myocardial infarction. Investigations of mechanisms responsible for the development and maintenance of atrial fibrillation have highlighted the importance of gap junctional remodeling. Connexins 40 and 43, the major atrial gap junctional proteins, undergo considerable alterations in expression and localization in atrial fibrillation, creating an environment conducive to sustained reentry. Atrial fibrillation is initiated and/or maintained in this reentrant substrate. This review will focus on connexin remodeling in the context of underlying mechanism and possible therapeutic target for atrial fibrillation.
Collapse
Affiliation(s)
| | - J Kevin Donahue
- Case Western Reserve University School of Medicine, MetroHealth Campus
| |
Collapse
|
52
|
Affiliation(s)
- Julie A Wolfram
- Department of Medicine, MetroHealth Campus of Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
53
|
|
54
|
Minimally invasive closed-chest ultrasound-guided substance delivery into the pericardial space in mice. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:227-38. [PMID: 23250337 PMCID: PMC3570759 DOI: 10.1007/s00210-012-0815-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/13/2012] [Indexed: 01/13/2023]
Abstract
Organ-directed gene transfer remains an attractive method for both gaining a better understanding of heart disease and for cardiac therapy. However, virally mediated transfer of gene products into cardiac cells requires prolonged exposure of the myocardium to the viral substrate. Pericardial injection of viral vectors has been proposed and used with some success to achieve myocardial transfection and may be a suitable approach for transfection of atrial myocardium. Indeed, such an organ-specific method would be particularly useful to reverse phenotypes in young and adult genetically altered murine models of cardiac disease. We therefore sought to develop a minimally invasive technique for pericardial injection of substances in mice. Pericardial access in anaesthetised, spontaneously breathing mice was achieved using continuous high-resolution ultrasound guidance. We could demonstrate adequate delivery of injected substances into the murine pericardium. Atrial epicardial and myocardial cells were transfected in approximately one third of mice injected with enhanced green fluorescent protein-expressing adenovirus. Cellular expression rates within individual murine atria were limited to a maximum of 20 %; therefore, expression efficiency needs to be further improved. Minimally invasive, ultrasound-guided injection of viral material appears a technically challenging yet feasible method for selective transfection of atrial epi- and myocardium. This pericardial injection method may be useful in the evaluation of potential genetic interventions aimed at rescuing atrial phenotypes in transgenic mouse models.
Collapse
|
55
|
Kimura T, Miyoshi S, Okamoto K, Fukumoto K, Tanimoto K, Soejima K, Takatsuki S, Fukuda K. The effectiveness of rigid pericardial endoscopy for minimally invasive minor surgeries: cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation. J Cardiothorac Surg 2012; 7:117. [PMID: 23140449 PMCID: PMC3541994 DOI: 10.1186/1749-8090-7-117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 11/03/2012] [Indexed: 04/24/2023] Open
Abstract
Background The efficacy and safety of rigid pericardial endoscopy as the promising minimally invasive approach to the pericardial space was evaluated. Techniques for cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation were developed. Methods Two swine and 5 canines were studied to evaluate the safety and efficacy of rigid pericardial endoscopy. After a double pericardiocentesis, a transurethral rigid endoscope was inserted into the pericardial space. The technique to obtain a clear visual field was examined, and acute complications such as hemodynamic changes and the effects on intra-pericardial pressure were evaluated. Using custom-made needles, pacemaker leads, and forceps, the applications for cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation were also evaluated. Results The use of air, the detention of a stiff guide wire in the pericardial space, and the stretching of the pericardium with the rigid endoscope were all useful to obtain a clear visual field. A side-lying position also aided observation of the posterior side of the heart. As a cell transplantation methodology, we developed an ultrasonography-guided needle, which allows for the safe visualization of transplantation without major complications. Pacemaker leads were safely and properly implanted, which provides a better outcome for cardiac resynchronizing therapy. Furthermore, the success of clear visualization of the pulmonary veins enabled us to perform epicardial ablation. Conclusions Rigid pericardial endoscopy holds promise as a safe method for minimally invasive cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation by allowing clear visualization of the pericardial space.
Collapse
Affiliation(s)
- Takehiro Kimura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Congestive heart failure accounts for half a million deaths per year in the United States. Despite its place among the leading causes of morbidity, pharmacological and mechanic remedies have only been able to slow the progression of the disease. Today's science has yet to provide a cure, and there are few therapeutic modalities available for patients with advanced heart failure. There is a critical need to explore new therapeutic approaches in heart failure, and gene therapy has emerged as a viable alternative. Recent advances in understanding of the molecular basis of myocardial dysfunction, together with the evolution of increasingly efficient gene transfer technology, have placed heart failure within reach of gene-based therapy. The recent successful and safe completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium ATPase pump (SERCA2a), along with the start of more recent phase 1 trials, opens a new era for gene therapy for the treatment of heart failure.
Collapse
Affiliation(s)
- Lisa Tilemann
- Cardiovascular Research Center, Mount Sinai Medical Center, New York, NY 10029, USA
| | | | | | | |
Collapse
|
57
|
Abstract
Atrial fibrillation is the most common type of cardiac arrhythmia, and is responsible for substantial morbidity and mortality in the general population. Current treatments have moderate efficacy and considerable risks, especially of pro-arrhythmia, highlighting the need for new therapeutic strategies. In recent years, substantial efforts have been invested in developing novel treatments that target the underlying molecular determinants of atrial fibrillation, and several new compounds are under development. This Review focuses on the mechanistic rationale for the development of new anti-atrial fibrillation drugs, on the molecular and structural motifs that they target and on the results obtained so far in experimental and clinical studies.
Collapse
|
58
|
Igarashi T, Finet JE, Takeuchi A, Fujino Y, Strom M, Greener ID, Rosenbaum DS, Donahue JK. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation. Circulation 2012; 125:216-25. [PMID: 22158756 PMCID: PMC3260348 DOI: 10.1161/circulationaha.111.053272] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Several lines of evidence have suggested that maintenance of atrial fibrillation (AF) depends on reentrant mechanisms. Maintenance of reentry necessitates a sufficiently short refractory period and/or delayed conduction, and AF has been associated with both alterations. Fibrosis, cellular dysfunction, and gap junction protein alterations occur in AF and cause conduction delay. We performed this study to test the hypothesis that gap junction protein overexpression would improve conduction and prevent AF. METHODS AND RESULTS Thirty Yorkshire swine were randomized into 2 groups (sinus rhythm and AF), and each group into 3 subgroups: sham-operated control, gene therapy with adenovirus expressing connexin (Cx) 40, and gene therapy with adenovirus expressing Cx43 (n=5 per subgroup). All animals had epicardial gene painting; the AF group had burst atrial pacing. All animals underwent terminal study 7 days after gene transfer. Sinus rhythm animals had strong transgene expression but no atrial conduction changes. In AF animals, controls had reduced and lateralized Cx43 expression, and Cx43 gene transfer restored expression and cellular location to sinus rhythm control levels. In the AF group, both Cx40 and Cx43 gene transfer improved conduction and reduced AF relative to controls. CONCLUSIONS Connexin gene therapy preserved atrial conduction and prevented AF.
Collapse
Affiliation(s)
- Tomonori Igarashi
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Es-Salah-Lamoureux Z, Xiong PY, Goodchild SJ, Ahern CA, Fedida D. Blockade of permeation by potassium but normal gating of the G628S nonconducting hERG channel mutant. Biophys J 2011; 101:662-70. [PMID: 21806934 DOI: 10.1016/j.bpj.2011.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/10/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022] Open
Abstract
G628S is a mutation in the signature sequence that forms the selectivity filter of the human ether-a-go-go-related gene (hERG) channel (GFG) and is associated with long-QT2 syndrome. G628S channels are known to have a dominant-negative effect on hERG currents, and the mutant is therefore thought to be nonfunctional. This study aims to assess the physiological mechanism that prevents the surface-expressing G628S channels from conducting ions. We used voltage-clamp fluorimetry along with two-microelectrode voltage clamping in Xenopus oocytes to confirm that the channels express well at the surface, and to show that they are actually functional, with activation kinetics comparable to that of wild-type, and that the mutation leads to a reduced selectivity to potassium. Although ionic currents are not detected in physiological solutions, removing extracellular K(+) results in the appearance of an inward Na(+)-dependent current. Using whole-cell patch clamp in mammalian transfected cells, we demonstrate that the G628S channels conduct Na(+), but that this can be blocked by both intracellular and higher-than-physiological extracellular K(+). Using solutions devoid of K(+) allows the appearance of nA-sized Na(+) currents with activation and inactivation gating analogous to wild-type channels. The G628S channels are functionally conducting but are normally blocked by intracellular K(+).
Collapse
Affiliation(s)
- Zeineb Es-Salah-Lamoureux
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
60
|
Xiao J, Liang D, Chen YH. The genetics of atrial fibrillation: from the bench to the bedside. Annu Rev Genomics Hum Genet 2011; 12:73-96. [PMID: 21682648 DOI: 10.1146/annurev-genom-082410-101515] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atrial fibrillation (AF) has become a growing global epidemic and a financial burden for society. The past 10 years have seen significant advances in our understanding of the genetic aspects of AF: At least 2 chromosomal loci and 17 causal genes have been identified in familial AF, and an additional 7 common variants and single-nucleotide polymorphisms in 11 different genes have been indicated in nonfamilial AF. However, the current management strategies for AF are suboptimal. The integration of genetic information into clinical practice may aid the early identification of AF patients who are at risk as well as the characterization of molecular pathways that culminate in AF, with the eventual result of better treatment. Never before has such an opportunity arisen to advance our understanding of the biology of AF through the translation of genetics findings from the bench to the bedside.
Collapse
Affiliation(s)
- Junjie Xiao
- Key Laboratory of Arrhythmias, Ministry of Education, and Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | | | | |
Collapse
|
61
|
Sirish P, López JE, Li N, Wong A, Timofeyev V, Young JN, Majdi M, Li RA, Chen HSV, Chiamvimonvat N. MicroRNA profiling predicts a variance in the proliferative potential of cardiac progenitor cells derived from neonatal and adult murine hearts. J Mol Cell Cardiol 2011; 52:264-72. [PMID: 22062954 DOI: 10.1016/j.yjmcc.2011.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/27/2011] [Accepted: 10/15/2011] [Indexed: 11/28/2022]
Abstract
Cardiac progenitor cells (CPCs) are multipotent cells that may offer tremendous potentials for the regeneration of injured myocardium. To expand the limited number of CPCs for effective clinical regeneration of myocardium, it is important to understand their proliferative potentials. Single-cell based assays were utilized to purify c-kit(pos) CPCs from human and mouse hearts. MicroRNA profiling identified eight differentially expressed microRNAs in CPCs from neonatal and adult hearts. Notably, the predicted protein targets were predominantly involved in cellular proliferation-related pathways. To directly test this phenotypic prediction, the developmental variance in the proliferation of CPCs was tested. Ki67 protein expression and DNA kinetics were tested in human and mouse in vivo CPCs, and doubling times were tested in primary culture of mouse CPCs. The human embryonic and mouse neonatal CPCs showed a six-fold increase in Ki67 expressing cells, a two-fold increase in the number of cells in S/G2-M phases of cell cycle, and a seven-fold increase in the doubling time in culture when compared to the corresponding adult CPCs. The over-expression of miR-17-92 increased the proliferation in adult CPCs in vivo by two-fold. In addition, the level of retinoblastoma-like 2 (Rbl2/p130) protein was two-fold higher in adult compared to neonatal-mouse CPCs. In conclusion, we demonstrate a differentially regulated cohort of microRNAs that predicts differences in cellular proliferation in CPCs during postnatal development and target microRNAs that are involved in this transition. Our study provides new insights that may enhance the utilization of adult CPCs for regenerative therapy of the injured myocardium.
Collapse
Affiliation(s)
- Padmini Sirish
- Division of Cardiovascular Medicine, University of California, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Genetic suppression of atrial fibrillation using a dominant-negative ether-a-go-go-related gene mutant. Heart Rhythm 2011; 9:265-72. [PMID: 21907172 DOI: 10.1016/j.hrthm.2011.09.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/02/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Gene therapy-dependent modulation of atrial electrophysiology may provide a more specific alternative to pharmacological and ablative treatment strategies. OBJECTIVE We hypothesized that genetic inactivation of atrial repolarizing ether-a-go-go-related gene (ERG) K(+) currents using a dominant-negative mutant would provide rhythm control in AF. METHODS Ten domestic swine underwent pacemaker implantation and were subjected to atrial burst pacing to induce persistent AF. Animals were then randomized to receive either AdCERG-G627S to suppress ERG/I(Kr) currents or green fluorescent protein (AdGFP) as control. Adenoviruses were applied using a novel hybrid technique combining atrial virus injection and epicardial electroporation to increase transgene expression. RESULTS In pigs treated with AdCERG-G627S, the onset of persistent AF was prevented (n = 2) or significantly delayed compared with AdGFP controls (12 ± 2.1 vs. 6.2 ± 1.3 days; P < .001) during 14-day follow-up. Effective refractory periods were prolonged in the AdCERG-G627S group compared with AdGFP animals (221.5 ± 4.7 ms vs. 197.0 ± 4.7 ms; P < .006). Impairment of left ventricular ejection fraction (LVEF) during AF was prevented by AdCERG-G627S application (LVEF(CERG-G627S) = 62.1% ± 4.0% vs. LVEF(GFP) = 30.3% ± 9.1%; P < .001). CONCLUSION Inhibition of ERG function using atrial AdCERG-G627S gene transfer suppresses or delays the onset of persistent AF by prolongation of atrial refractoriness in a porcine model. Targeted gene therapy represents an alternative to pharmacological or ablative treatment of AF.
Collapse
|
63
|
Bikou O, Thomas D, Trappe K, Lugenbiel P, Kelemen K, Koch M, Soucek R, Voss F, Becker R, Katus HA, Bauer A. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovasc Res 2011; 92:218-25. [DOI: 10.1093/cvr/cvr209] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
64
|
Swaminathan PD, Purohit A, Soni S, Voigt N, Singh MV, Glukhov AV, Gao Z, He BJ, Luczak ED, Joiner MLA, Kutschke W, Yang J, Donahue JK, Weiss RM, Grumbach IM, Ogawa M, Chen PS, Efimov I, Dobrev D, Mohler PJ, Hund TJ, Anderson ME. Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J Clin Invest 2011; 121:3277-88. [PMID: 21785215 DOI: 10.1172/jci57833] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/25/2011] [Indexed: 12/13/2022] Open
Abstract
Sinus node dysfunction (SND) is a major public health problem that is associated with sudden cardiac death and requires surgical implantation of artificial pacemakers. However, little is known about the molecular and cellular mechanisms that cause SND. Most SND occurs in the setting of heart failure and hypertension, conditions that are marked by elevated circulating angiotensin II (Ang II) and increased oxidant stress. Here, we show that oxidized calmodulin kinase II (ox-CaMKII) is a biomarker for SND in patients and dogs and a disease determinant in mice. In wild-type mice, Ang II infusion caused sinoatrial nodal (SAN) cell oxidation by activating NADPH oxidase, leading to increased ox-CaMKII, SAN cell apoptosis, and SND. p47-/- mice lacking functional NADPH oxidase and mice with myocardial or SAN-targeted CaMKII inhibition were highly resistant to SAN apoptosis and SND, suggesting that ox-CaMKII-triggered SAN cell death contributed to SND. We developed a computational model of the sinoatrial node that showed that a loss of SAN cells below a critical threshold caused SND by preventing normal impulse formation and propagation. These data provide novel molecular and mechanistic information to understand SND and suggest that targeted CaMKII inhibition may be useful for preventing SND in high-risk patients.
Collapse
Affiliation(s)
- Paari Dominic Swaminathan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Trappe K, Thomas D, Bikou O, Kelemen K, Lugenbiel P, Voss F, Becker R, Katus HA, Bauer A. Suppression of persistent atrial fibrillation by genetic knockdown of caspase 3: a pre-clinical pilot study. Eur Heart J 2011; 34:147-57. [DOI: 10.1093/eurheartj/ehr269] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
66
|
Small Interfering RNA to c-myc Inhibits Vein Graft Restenosis in a Rat Vein Graft Model. J Surg Res 2011; 169:e85-91. [PMID: 21571310 DOI: 10.1016/j.jss.2011.03.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/02/2011] [Accepted: 03/22/2011] [Indexed: 01/23/2023]
|
67
|
Kimura T, Miyoshi S, Takatsuki S, Tanimoto K, Fukumoto K, Soejima K, Fukuda K. Safety and efficacy of pericardial endoscopy by percutaneous subxyphoid approach in swine heart in vivo. J Thorac Cardiovasc Surg 2011; 142:181-90. [DOI: 10.1016/j.jtcvs.2010.09.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/05/2010] [Accepted: 09/11/2010] [Indexed: 11/25/2022]
|
68
|
Bolderman RW, Hermans JR, Rademakers LM, de Jong MM, Bruin P, Dias AA, van der Veen FH, Maessen JG. Epicardial application of an amiodarone-releasing hydrogel to suppress atrial tachyarrhythmias. Int J Cardiol 2011; 149:341-6. [DOI: 10.1016/j.ijcard.2010.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 12/18/2009] [Accepted: 02/06/2010] [Indexed: 01/09/2023]
|
69
|
Kawamoto S, Flynn JP, Shi Q, Sakr SW, Luo J, Allen MD. Heme oxygenase-1 induction enhances cell survival and restores contractility to unvascularized three-dimensional adult cardiomyocyte grafts implanted in vivo. Tissue Eng Part A 2011; 17:1605-14. [PMID: 21288159 DOI: 10.1089/ten.tea.2010.0447] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Autologous adult cardiomyocytes are not utilized for heart repair strategies because of their rapid apoptosis after implantation. We examined whether induction of heme oxygenase-1 (HO-1), a mediator of preconditioning, could enhance early postimplant myocyte survival. Three-dimensional 5×5 mm patches of full-thickness adult murine atrial wall, including cardiomyocytes, capillary networks, and extracellular matrix, were cultured with or without HO-1 inducer cobalt protoporphyrin (CoPP), or the HO-1 inhibitor, tin protoporphyrin (SnPP), or both. Patches were then implanted subcutaneously. Freshly procured atrial wall patches implanted without preculturing served as additional controls. By 14 days postimplant, graft cardiomyocyte content was significantly greater in CoPP-treated patches than in either control group (p<0.02). Adult cardiomyocytes did not contract in culture or immediately after implantation. However, by 14 days postimplant, spontaneous contraction had recovered in 47% of CoPP-treated patches, but in only 6% of precultured patches without CoPP, 0% of SnPP-treated patches, and 0% of uncultured patches (p<0.03). CoPP-treated adult cardiomyocyte patches were also observed to remodel spontaneously into endothelial-lined chambers that pumped nonclotting blood. These findings demonstrate that adult cardiomyocytes have more plasticity and capacity for functional recovery than previously recognized and could have application as an autologous cardiomyocyte source for tissue engineering.
Collapse
Affiliation(s)
- Shunsuke Kawamoto
- Department of Cardiovascular Surgery, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
70
|
Boink GJJ, Rosen MR. Regenerative therapies in electrophysiology and pacing: introducing the next steps. J Interv Card Electrophysiol 2010; 31:3-16. [PMID: 21161675 DOI: 10.1007/s10840-010-9529-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/04/2010] [Indexed: 12/27/2022]
Abstract
The morbidity and mortality of cardiac arrhythmias are major international health concerns. Drug and device therapies have made inroads but alternative approaches are still being sought. For example, gene and cell therapies have been explored for treatment of brady- and tachyarrhythmias, and proof of concept has been obtained for both biological pacing in the setting of heart block and gene therapy for ventricular tachycardias. This paper reviews the state of the art developments with regard to gene and cell therapies for cardiac arrhythmias and discusses next steps.
Collapse
Affiliation(s)
- Gerard J J Boink
- Heart Failure Research Center, Academic Medical Center, Amsterdam, Netherlands
| | | |
Collapse
|
71
|
Greener I, Donahue JK. Gene therapy strategies for cardiac electrical dysfunction. J Mol Cell Cardiol 2010; 50:759-65. [PMID: 20696170 DOI: 10.1016/j.yjmcc.2010.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/15/2022]
Abstract
Cardiac disease is frequently associated with abnormalities in electrical function that can severely impair cardiac performance with potentially fatal consequences. The available therapeutic options have some efficacy but are far from perfect. The curative potential of gene therapy makes it an attractive approach for the treatment of cardiac arrhythmias. To date, gene therapy research strategies have targeted three major classes of cardiac arrhythmias: (1) ventricular arrhythmias, (2) atrial fibrillation, and (3) bradyarrhythmias. Various vehicles for gene transfer have been employed with adeno-associated viral gene delivery being the preferred choice for long-term gene expression and adenoviral gene delivery for short-term proof-of-concept work. In combination with the development of novel delivery methods, gene therapy may prove to be an effective strategy to eliminate the most debilitating of arrhythmias. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
Affiliation(s)
- Ian Greener
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | |
Collapse
|
72
|
Amit G, Kikuchi K, Greener ID, Yang L, Novack V, Donahue JK. Selective molecular potassium channel blockade prevents atrial fibrillation. Circulation 2010; 121:2263-70. [PMID: 20479154 DOI: 10.1161/circulationaha.109.911156] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Safety and efficacy limit currently available atrial fibrillation (AF) therapies. We hypothesized that atrial gene transfer would allow focal manipulation of atrial electrophysiology and, by eliminating reentry, would prevent AF. METHODS AND RESULTS In a porcine AF model, we compared control animals to animals receiving adenovirus that encoded KCNH2-G628S, a dominant negative mutant of the I(Kr) potassium channel alpha-subunit (G628S animals). After epicardial atrial gene transfer and pacemaker implantation for burst atrial pacing, animals were evaluated daily for cardiac rhythm. Electrophysiological and molecular studies were performed at baseline and when animals were euthanized on either postoperative day 7 or 21. By day 10, none of the control animals and all of the G628S animals were in sinus rhythm. After day 10, the percentage of G628S animals in sinus rhythm gradually declined until all animals were in AF by day 21. The relative risk of AF throughout the study was 0.44 (95% confidence interval 0.33 to 0.59, P<0.01) among the G628S group versus controls. Atrial monophasic action potential was considerably longer in G628S animals than in controls at day 7, and KCNH2 protein levels were 61% higher in the G628S group than in control animals (P<0.01). Loss of gene expression at day 21 correlated with loss of action potential prolongation and therapeutic efficacy. CONCLUSIONS Gene therapy with KCNH2-G628S eliminated AF by prolonging atrial action potential duration. The effect duration correlated with transgene expression.
Collapse
Affiliation(s)
- Guy Amit
- Heart and Vascular Research Center, MetroHealth Hospital, Case Western Reserve University, Cleveland, OH 44109, USA
| | | | | | | | | | | |
Collapse
|
73
|
Bolderman RW, Bruin P, Hermans JJR, Boerakker MJ, Dias AA, van der Veen FH, Maessen JG. Atrium-targeted drug delivery through an amiodarone-eluting bilayered patch. J Thorac Cardiovasc Surg 2010; 140:904-10. [PMID: 20363485 DOI: 10.1016/j.jtcvs.2010.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 12/18/2009] [Accepted: 01/10/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Clinical studies have demonstrated the efficacy of oral and intravenous amiodarone therapy to prevent postoperative atrial fibrillation. However, because of significant extracardiac side effects, only high-risk patients are eligible for prophylactic amiodarone therapy. This study addressed the hypothesis that atrium-specific drug delivery through an amiodarone-eluting epicardial patch reduces vulnerability to atrial tachyarrhythmias, whereas ventricular and plasma drug concentrations are minimized. METHODS Right atrial epicardiums of goats were fitted with electrodes and a bilayered patch (poly[ethylene glycol]-based matrix and poly[lactide-co-caprolactone] backing layer) loaded with amiodarone (10 mg per patch, n = 10) or without drug (n = 6). Electrophysiologic parameters (atrial effective refractory period, conduction time, and rapid atrial response to burst pacing) and amiodarone levels in plasma and tissue were measured during 1 month's follow-up. RESULTS Epicardial application of amiodarone-eluting patches produced persistently higher drug concentrations in the right atrium than in the left atrium, ventricles, and extracardiac tissues by 2 to 4 orders of magnitude. Atrial effective refractory period and conduction time increased, whereas rapid atrial response inducibility decreased significantly (P < .05) during the 1-month follow-up compared with that seen in animals treated with drug-free patches. Amiodarone concentrations in plasma remained undetectably low (<10 ng/mL). CONCLUSIONS Atrium-specific drug delivery through an amiodarone-eluting patch produces therapeutic atrial drug concentrations, whereas ventricular and systemic drug levels are minimized. This study demonstrates that sustained targeted drug delivery to a specific heart chamber is feasible and might reduce the risk for ventricular and extracardiac adverse effects. Epicardial application of amiodarone-eluting patches is a promising strategy to prevent postoperative atrial fibrillation.
Collapse
Affiliation(s)
- Robert W Bolderman
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Atrial fibrillation is a prominent cause of morbidity and mortality in developed countries. Current treatment strategies center on controlling heart rate while allowing fibrillation to persist or targeting fibrillation primarily and attempting to maintain sinus rhythm. Pharmacological therapies are largely successful for rate control, although mild toxicities are common. Rhythm control strategies are often unsuccessful, leaving patients in atrial fibrillation despite attempts to maintain sinus rhythm. This review will discuss novel biological strategies that are currently under development and may eventually have impact on the management of atrial fibrillation.
Collapse
|
75
|
Adventitial delivery of platelet-derived endothelial cell growth factor gene prevented intimal hyperplasia of vein graft. J Vasc Surg 2008; 48:1566-74. [PMID: 18848756 DOI: 10.1016/j.jvs.2008.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/08/2008] [Accepted: 07/12/2008] [Indexed: 11/22/2022]
Abstract
BACKGROUND Platelet-derived endothelial cell growth factor (PD-ECGF), also known as thymidine phosphorylase (TP) reportedly inhibits vascular smooth muscle cells (VSMCs) migration and proliferation. We hypothesized that adventitial administration of the PD-ECGF/TP gene will suppress intimal hyperplasia and prevent vein graft failure. METHODS The study used 68 female rabbits. Rabbit jugular vein was autogenously transplanted into carotid artery with a cuff anastomotic technique. To define vascular wall gene transfer efficiency, poloxamer hydrogel (20%) containing plasmid vector encoding the LacZ gene and different concentrations of trypsin (0%, 0.1%, 0.25%, and 0.5%, n = 5 for each group) was applied to the adventitia of the vein graft. Gene transfer efficiency was evaluated 7 days later by X-gal staining. An additional 48 rabbits received poloxamer hydrogel (20%) containing 0.25% trypsin and the human PD-ECGF/TP gene, LacZ gene, or saline. Intima thickness was evaluated at 2 and 8 weeks after grafting (n = 8 for each group at each time point). Transgene expression was examined by reverse transcriptase-polymerase chain reaction, immunoblotting assay, and immunohistochemical staining. Immunohistochemical staining was also used to determine VSMC proliferation, heme oxygenase-1 expression, and macrophage infiltration. RESULTS Incorporation of trypsin into the poloxamer hydrogel significantly increased vessel wall gene transfer. Trypsin at 0.25% and 0.5% resulted in higher gene transfer at the same level without effecting intimal hyperplasia and inflammation; thus, trypsin at 0.25% concentration was used for subsequent experiments. Compared with the LacZ and saline groups, grafts receiving the PD-ECGF/TP gene significantly reduced intimal thickness at 2 and 8 weeks after treatment. The ratio of proliferative VSMC was lower in PD-ECGF/TP treated grafts. Histologic examination of the PD-ECGF/TP transgene grafts demonstrated high expression of heme oxygenase-1, which has been reported to inhibit VSMC proliferation, suggesting that heme oxygenase-1 may be important in the inhibition effect of PD-ECGF/TP on VSMC. No neoplastic or morphologic changes were found in the remote organs. CONCLUSIONS A safe and highly efficient gene transfer method was developed by using poloxamer hydrogel and a low concentration of trypsin. Neointimal hyperplasia was significantly reduced by adventitial application of the PD-ECGF/TP gene to the vein graft. Our data suggest that adventitial delivery of the PD-ECGF/TP gene after grafting may be promising method for preventing vein graft failure.
Collapse
|
76
|
Li W, Silverstein RL. Biological surgery: synergetic angiogenic therapy using coadministration of two progenitor cell populations. Circ Res 2008; 103:684-6. [PMID: 18818411 DOI: 10.1161/circresaha.108.185116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
77
|
Gepstein L. Experimental molecular and stem cell therapies in cardiac electrophysiology. Ann N Y Acad Sci 2008; 1123:224-31. [PMID: 18375594 DOI: 10.1196/annals.1420.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the most exciting fields in cardiovascular research today involves the possible use of stem cells, cell and gene therapies, and tissue engineering for the treatment of a variety of cardiovascular disorders. Here, we review on the possible applications of these emerging strategies in the field of cardiac electrophysiology. Initially, the elegant cell and gene therapy approaches proposed for the treatment of bradyarrhythmias are described. These gene therapy approaches are mainly focused on the generation of biological pacemakers either by altering the neurohumoral control of existing pacemaking cells (by overexpressing the beta-adrenergic receptor) or by converting quiescent cardiomyocytes into pacemaking cells by shifting the balance between diastolic repolarization and depolarization currents. An alternative approach explores the possibility of grafting pacemaking cells, which were either derived directly during the differentiation of human embryonic stem cells or engineered from mesenchymal stem cells, into the myocardium as a cell therapy strategy for biological pacemaking. We then describe the possible applications of similar strategies for the treatment of common tachyarrhythmias by overexpression of different ion channels, or their modifiers, either directly in host cardiomyocytes or ex vivo in cells that will be eventually transplanted into the heart. Next, we discuss the electrophysiological implications of cardiac stem cell therapy for heart failure. Finally, we address the obstacles, challenges, and avenues for further research required to make these novel strategies a clinical reality.
Collapse
Affiliation(s)
- Lior Gepstein
- The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
78
|
Gepstein L. Electrophysiologic implications of myocardial stem cell therapies. Heart Rhythm 2008; 5:S48-52. [DOI: 10.1016/j.hrthm.2008.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Indexed: 10/22/2022]
|
79
|
Regenerative therapies in electrophysiology and pacing. J Interv Card Electrophysiol 2008; 22:87-98. [PMID: 18363088 DOI: 10.1007/s10840-008-9208-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
Abstract
The prevention and treatment of cardiac arrhythmias conferring major morbidity and mortality is far from optimal, and relies heavily on devices and drugs for the partial successes that have been seen. The greatest success has been in the use of electronic pacemakers to drive the hearts of patients having high degree heart block. Recent years have seen the beginnings of attempts to use novel approaches available through gene and cell therapies to treat both brady- and tachyarrhythmias. By far the most successful approaches to date have been seen in the development of biological pacemakers. However, the far more difficult problems posed by atrial fibrillation and ventricular tachycardia are now being addressed. In the following pages we review the approaches now in progress as well as the specific methodologic demands that must be met if these therapies are to be successful.
Collapse
|
80
|
Atrial-Selective Approaches for the Treatment of Atrial Fibrillation. J Am Coll Cardiol 2008; 51:787-92. [DOI: 10.1016/j.jacc.2007.08.067] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 07/27/2007] [Accepted: 08/13/2007] [Indexed: 11/22/2022]
|
81
|
Lehnart SE, Ackerman MJ, Benson DW, Brugada R, Clancy CE, Donahue JK, George AL, Grant AO, Groft SC, January CT, Lathrop DA, Lederer WJ, Makielski JC, Mohler PJ, Moss A, Nerbonne JM, Olson TM, Przywara DA, Towbin JA, Wang LH, Marks AR. Inherited arrhythmias: a National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation 2007; 116:2325-45. [PMID: 17998470 DOI: 10.1161/circulationaha.107.711689] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The National Heart, Lung, and Blood Institute and Office of Rare Diseases at the National Institutes of Health organized a workshop (September 14 to 15, 2006, in Bethesda, Md) to advise on new research directions needed for improved identification and treatment of rare inherited arrhythmias. These included the following: (1) Na+ channelopathies; (2) arrhythmias due to K+ channel mutations; and (3) arrhythmias due to other inherited arrhythmogenic mechanisms. Another major goal was to provide recommendations to support, enable, or facilitate research to improve future diagnosis and management of inherited arrhythmias. Classifications of electric heart diseases have proved to be exceedingly complex and in many respects contradictory. A new contemporary and rigorous classification of arrhythmogenic cardiomyopathies is proposed. This consensus report provides an important framework and overview to this increasingly heterogeneous group of primary cardiac membrane channel diseases. Of particular note, the present classification scheme recognizes the rapid evolution of molecular biology and novel therapeutic approaches in cardiology, as well as the introduction of many recently described diseases, and is unique in that it incorporates ion channelopathies as a primary cardiomyopathy in consensus with a recent American Heart Association Scientific Statement.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University, P&S 9-401 box 22, 630 W 168 St, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Koide S, Okazaki M, Tamura M, Ozumi K, Takatsu H, Kamezaki F, Tanimoto A, Tasaki H, Sasaguri Y, Nakashima Y, Otsuji Y. PTEN reduces cuff-induced neointima formation and proinflammatory cytokines. Am J Physiol Heart Circ Physiol 2007; 292:H2824-31. [PMID: 17277022 DOI: 10.1152/ajpheart.01221.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An inflammatory response followed by vascular injury plays an important role in neointima formation and development of atherosclerotic lesions, which are in part mediated by proinflammatory cytokines. Using a cuff injury model, we examined the effects of adenovirus-mediated overexpression of phosphatase and tensin homology deleted on chromosome 10 (PTEN) on neointima formation and the proinflammatory response. A cuff was placed around the femoral artery, and adenovirus expressing human PTEN type 1 (AdPTEN) or Escherichia coli β-galactosidase (AdLacZ) was injected between the cuff and the adventitia. After 14 days, the arteries were examined histopathologically and by Western blotting. The significant reduction of neointima formation by AdPTEN compared with AdLacZ was accompanied by reduced cell proliferation and increased adventitial cell apoptosis. AdPTEN also reduced expression of phosphorylated IκB-α, but not nonphosphorylated IκB-α. Western blotting revealed that AdPTEN reduced the cuff injury-induced expression levels of monocyte chemoattractant protein-1, TNF-α, and IL-1β and their expression in all layers of the arterial wall. In contrast, cuff-induced macrophage invasion, which was also inhibited by AdPTEN, was detected only at the intimal surface and in the adventitia. In cultured vascular smooth muscle cells, PTEN directly inhibited ANG II-induced monocyte chemoattractant protein-1 expression as quantified by real-time PCR and Western blotting. Our results suggest that overexpression of PTEN reduces neointima formation, possibly in part through inhibition of the inflammatory response by macrophage invasion and proinflammatory cytokine expression.
Collapse
Affiliation(s)
- Shinichiro Koide
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Alternatively, excitement and frustration have been generated from the literature reports of gene therapy for treatment and potential cure of cardiac diseases. The time since the first literature report of in vivo myocardial gene transfer is more than 15 years, and the time since the first report of gene therapy for a cardiac arrhythmia is six years. Clinical trials, let alone clinical usage, of these promising therapies have not yet started. This article reviews the current state of the art for arrhythmia gene therapy, including the literature reports of antiarrhythmic studies and of problems within the field. Gene transfer continues to be a promising technology, but patience is required as these problems are solved and the therapies make their way through the preclinical and clinical testing process.
Collapse
Affiliation(s)
- J Kevin Donahue
- Heart and Vascular Research Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44116, USA.
| |
Collapse
|
84
|
Sasano T, Kikuchi K, McDonald AD, Lai S, Donahue JK. Targeted high-efficiency, homogeneous myocardial gene transfer. J Mol Cell Cardiol 2007; 42:954-61. [PMID: 17484913 PMCID: PMC1976378 DOI: 10.1016/j.yjmcc.2007.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 11/23/2022]
Abstract
Myocardial gene therapy continues to show promise as a tool for investigation and treatment of cardiac disease. Progress toward clinical approval has been slowed by limited in vivo delivery methods. We investigated the problem in a porcine model, with an objective of developing a method for high efficiency, homogeneous myocardial gene transfer that could be used in large mammals, and ultimately in humans. Eighty-one piglets underwent coronary catheterization for delivery of viral vectors into the left anterior descending artery and/or the great cardiac vein. The animals were followed for 5 or 28 days, and then transgene efficiency was quantified from histological samples. The baseline protocol included treatment with VEGF, nitroglycerin, and adenosine followed by adenovirus infusion into the LAD. Gene transfer efficiency varied with choice of viral vector, with use of VEGF, adenosine, or nitroglycerin, and with calcium concentration. The best results were obtained by manipulation of physical parameters. Simultaneous infusion of adenovirus through both left anterior descending artery and great cardiac vein resulted in gene transfer to 78+/-6% of myocytes in a larger target area. This method was well tolerated by the animals. We demonstrate targeted, homogeneous, high efficiency gene transfer using a method that should be transferable for eventual human usage.
Collapse
Affiliation(s)
- Tetsuo Sasano
- Heart and Vascular Research Center, MetroHealth Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | | | | | | | | |
Collapse
|
85
|
Kapur NK, Deming CB, Kapur S, Bian C, Champion HC, Donahue JK, Kass DA, Rade JJ. Hemodynamic Modulation of Endocardial Thromboresistance. Circulation 2007; 115:67-75. [PMID: 17190863 DOI: 10.1161/circulationaha.106.640698] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Patients with heart failure are at increased risk for thromboembolic events, including stroke. Historically attributed to blood stasis, little is known about the adverse effects of elevated chamber filling pressure on endocardial function, which could predispose to intracardiac thrombus formation.
Methods and Results—
We investigated changes in the expression of thrombomodulin, a key component of the anticoagulant protein C pathway, in rats subjected to acute atrial pressure overload caused by aortic banding. Acute elevation of left atrial filling pressure, without an associated decline in ventricular systolic function, caused a 70% inhibition of atrial endocardial thrombomodulin expression and resulted in increased local thrombin generation. Targeted restoration of atrial thrombomodulin expression with adenovirus-mediated gene transfer successfully reduced thrombin generation to baseline levels. In vitro co-culture studies revealed that thrombomodulin downregulation is caused by the paracrine release of transforming growth factor-β from cardiac connective tissue in response to mechanical stretch. This was confirmed in vivo by administration of a neutralizing transforming growth factor-β antibody, which effectively prevented thrombomodulin downregulation during acute pressure overload.
Conclusions—
These findings suggest that increased hemodynamic load adversely affects endocardial function and is a potentially important contributor to thromboembolus formation in heart failure.
Collapse
Affiliation(s)
- Navin K Kapur
- Division of Cardiology, Johns Hopkins School of Medicine, 600 N. Wolfe St, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Normal cardiac function requires an appropriate and regular beating rate (cardiac rhythm). When the heart rhythm is too fast or too slow, cardiac function can be impaired, with derangements that vary from mild symptoms to life-threatening complications. Irregularities, particularly those involving excessively fast or slow rates, constitute cardiac 'arrhythmias'. In the past, drug treatment of cardiac arrhythmias has proven difficult, both because of inadequate effectiveness and a risk of serious complications. However, a variety of recent advances have opened up exciting possibilities for the development of novel and superior approaches to arrhythmia therapy. This article will review recent progress and future prospects for treating two particularly important cardiac arrhythmias: atrial fibrillation and ventricular fibrillation.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8.
| | | |
Collapse
|
87
|
Boink GJJ, Seppen J, de Bakker JMT, Tan HL. Gene therapy to create biological pacemakers. Med Biol Eng Comput 2006; 45:167-76. [PMID: 17048028 DOI: 10.1007/s11517-006-0112-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Accepted: 09/04/2006] [Indexed: 11/28/2022]
Abstract
Old age and a variety of cardiovascular disorders may disrupt normal sinus node function. Currently, this is successfully treated with electronic pacemakers, which, however, leave room for improvement. During the past decade, different strategies to initiate pacemaker function by gene therapy were developed. In the search for a biological pacemaker, various approaches were explored, including beta(2)-adrenergic receptor overexpression, down regulation of the inward rectifier current, and overexpression of the pacemaker current. The most recent advances include overexpression of bioengineered ion channels and genetically modified stem cells. This review considers the strengths and the weaknesses of the different approaches and discusses some of the different viral vectors currently used.
Collapse
Affiliation(s)
- Gerard J J Boink
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
88
|
Yankelson L, Gepstein L. From Gene Therapy and Stem Cells to Clinical Electrophysiology. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2006; 29:996-1005. [PMID: 16981925 DOI: 10.1111/j.1540-8159.2006.00476.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gene therapy, cell therapy, and tissue engineering are emerging as novel experimental therapeutic paradigms for a variety of cardiovascular disorders. In the current report we will review the possible implications of these emerging technologies in the field of cardiac electrophysiology. Initially, the possible role of myocardial gene and cell therapies in creating a biological alternative to electronic pacemakers for the treatment of bradyarrhythmias will be discussed. This will be followed by a description of the possible applications of using similar strategies for the treatment of common tachyarrhythmias. Finally, the electrophysiological implications of cardiac stem cell therapy for heart failure, as well as the possible in vitro applications of stem cell technology for electrophysiological studies and drug screening, will be discussed. While these emerging strategies provide a paradigm shift from conventional treatment modalities, this field is still at its infancy and several obstacles, discussed in this review, should be overcome before any clinical breakthroughs can be expected.
Collapse
Affiliation(s)
- Lior Yankelson
- Sohnis Family Research Laboratory for the Regeneration of Functional Myocardium, Department of Biophysics and Physiology, the Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
89
|
Hammwöhner M, D'Alessandro A, Dobrev D, Kirchhof P, Goette A. [New antiarrhythmic drugs for therapy of atrial fibrillation: II. Non-ion channel blockers]. Herzschrittmacherther Elektrophysiol 2006; 17:73-80. [PMID: 16786465 DOI: 10.1007/s00399-006-0513-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 05/04/2006] [Indexed: 05/10/2023]
Abstract
The therapeutic approach to atrial fibrillation is difficult and challenging. The effect of "classical" antiarrhythmic agents is based on their inhibitory effects on various ion channels. However, therapeutic benefit of these agents is often limited. The primary goal of this article is to discuss new therapeutic approaches using non-ion channel blocking drugs in the treatment of atrial fibrillation. Some of the substances discussed in this article have been used already in the clinical practice. Others, for example gentherapeutic approaches, are still in the experimental state. In contrast to ion channel blocking agents their efficacy is based on the suppression of structural remodeling. Hence, it can be assumed that due to these effects they may also be beneficial in the primary prevention of atrial fibrillation.
Collapse
Affiliation(s)
- M Hammwöhner
- Otto-von-Guericke Universitätsklinik Magdeburg, Klinik für Kardiologie, Angiologie und Pneumologie, Leipzigerstr. 44, 39120, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
90
|
Donahue JK, Bauer A, Kikuchi K, Sasano T. Modification of Cellular Communication by Gene Transfer. Ann N Y Acad Sci 2006; 1047:157-65. [PMID: 16093493 DOI: 10.1196/annals.1341.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hope has been expressed that gene and cell therapies will one day reduce the morbidity and mortality associated with cardiovascular diseases. Work in these fields has shown that the road from bench to bedside is filled with obstacles. Still, the possibility for treatment or even cure of cardiac disease is real. Continuing work will improve understanding of the underlying physiology and vector biology. The current review focuses on the potential use of gene therapy to affect cellular communication. Included is a review of communication effects on a transcellular level with angiogenesis, AV nodal conduction and sinus nodal automaticity, and effects on an intracellular level with cardiac myocyte repolarization. Challenges facing the field of gene therapy are also reviewed. If these problems can be solved, gene therapy will become a viable alternative for clinical use.
Collapse
Affiliation(s)
- J Kevin Donahue
- Institute of Molecular Cardiobiology and Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
91
|
Ikonen E. Genetics and molecular biology. Curr Opin Lipidol 2005; 16:695-7. [PMID: 16276247 DOI: 10.1097/01.mol.0000194124.15216.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
92
|
Fishbein I, Stachelek SJ, Connolly JM, Wilensky RL, Alferiev I, Levy RJ. Site specific gene delivery in the cardiovascular system. J Control Release 2005; 109:37-48. [PMID: 16298010 DOI: 10.1016/j.jconrel.2005.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 08/15/2005] [Indexed: 11/16/2022]
Abstract
Gene therapy holds great promise for treating both genetic and acquired disorders. However, progress toward effective human gene therapy has been thwarted by a number of problems including vector toxicity, poor targeting of diseased tissues, and host immune and inflammatory activity to name but a few of the challenges. Gene therapy for cardiovascular disease has been the subject of many fewer clinical trials than other disorders such as cancer or cystic fibrosis. Nevertheless, the challenges are comparable. The present paper reports a review of investigations related to our hypothesis that site specific cardiovascular gene therapy represents an approach that can lead to both optimizing efficacy and reducing the impact of gene vector-related systemic adverse effects. We report experimental studies demonstrating proof of principle in three areas: gene therapy for heart valve disease, gene delivery stents, and gene therapy to treat cardiac arrhythmias. Heart valve disease is the second most common indication for open heart surgery and is now only treatable by surgical removal or repair of the diseased heart valve. Our investigations demonstrate that gene vectors can be immobilized on the surface of prosthetic heart valve leaflets thereby enabling a therapeutic genetic modification of host cells around the valve annulus and on the leaflet. Other animal studies have shown that vascular stents used to relieve arterial obstruction can also be used as gene delivery systems to provide therapeutic vector constructs that can both locally prevent post stenting reobstruction, known as in-stent restenosis, and treat the underlying vascular disease. Cardiac arrhythmias are the cause of sudden death due to heart disease and affect millions of others on a chronic basis. Our group has successfully investigated in animal studies localized gene therapy using an ion channel mutation to treat atrial arrhythmias.
Collapse
Affiliation(s)
- Ilia Fishbein
- Cardiology Research Laboratories, Children's Hospital of Philadelphia, Abramson Research Center, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
93
|
Donahue JK, Kikuchi K, Sasano T. Gene Therapy for Cardiac Arrhythmias. Trends Cardiovasc Med 2005; 15:219-24. [PMID: 16182132 DOI: 10.1016/j.tcm.2005.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 06/14/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
Myocardial gene transfer has become a routine tool to investigate the pathophysiology of cardiac diseases, although translation of gene transfer techniques into therapeutics has not come as quickly as many had hoped. In the field of cardiac arrhythmias, there is a great need for new therapeutic options. The current work reviews the use of gene transfer to evaluate cellular electrophysiology, the application of in vivo gene transfer to treat common arrhythmias, and the current problems in the field of cardiac gene therapy. Arrhythmia gene therapy is a field in its infancy, and future human applications are dependent on solutions to the problems discussed in this review.
Collapse
Affiliation(s)
- J Kevin Donahue
- Division of Cardiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | |
Collapse
|