51
|
O'Rourke B, Van Eyk JE, Foster DB. Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. CONGESTIVE HEART FAILURE (GREENWICH, CONN.) 2011; 17:269-82. [PMID: 22103918 PMCID: PMC4067253 DOI: 10.1111/j.1751-7133.2011.00266.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphorylation of mitochondrial proteins has been recognized for decades, and the regulation of pyruvate- and branched-chain α-ketoacid dehydrogenases by an atypical kinase/phosphatase cascade is well established. More recently, the development of new mass spectrometry-based technologies has led to the discovery of many novel phosphorylation sites on a variety of mitochondrial targets. The evidence suggests that the major classes of kinase and several phosphatases may be present at the mitochondrial outer membrane, intermembrane space, inner membrane, and matrix, but many questions remain to be answered as to the location, timing, and reversibility of these phosphorylation events and whether they are functionally relevant. The authors review phosphorylation as a mitochondrial regulatory strategy and highlight its possible role in the pathophysiology of cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Brian O'Rourke
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD 21205-2195, USA.
| | | | | |
Collapse
|
52
|
Burniston JG, Hoffman EP. Proteomic responses of skeletal and cardiac muscle to exercise. Expert Rev Proteomics 2011; 8:361-77. [PMID: 21679117 DOI: 10.1586/epr.11.17] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regular exercise is effective in the prevention of chronic diseases and confers a lower risk of death in individuals displaying risk factors such as hypertension and dyslipidemia. Thus, knowledge of the molecular responses to exercise provides a valuable contrast for interpreting investigations of disease and can highlight novel therapeutic targets. While exercise is an everyday experience and can be conceptualized in simple terms, it is also a complex physiological phenomenon and investigation of exercise responses requires sophisticated analytical techniques and careful standardization of the exercise stimulus. Proteomic investigation of exercise is in its infancy but the ability to link changes in function with comprehensive changes in protein expression and post-translational modification holds great promise for advancing physiology. This article highlights recent pioneering work investigating the effects of exercise in skeletal and cardiac muscle that has uncovered novel mechanisms underlying the benefits of physical activity.
Collapse
Affiliation(s)
- Jatin G Burniston
- Muscle Physiology and Proteomics Laboratory, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | | |
Collapse
|
53
|
Kim HK, Thu VT, Heo HJ, Kim N, Han J. Cardiac proteomic responses to ischemia-reperfusion injury and ischemic preconditioning. Expert Rev Proteomics 2011; 8:241-61. [PMID: 21501017 DOI: 10.1586/epr.11.8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiac ischemia and ischemia-reperfusion (I/R) injury are major contributors to morbidity and mortality worldwide. Pathological mechanisms of I/R and the physiological mechanisms of ischemic preconditioning (IPC), which is an effective cardiac protective response, have been widely investigated in the last decade to search for means to prevent or treat this disease. Proteomics is a powerful analytical tool that has provided important information to identify target proteins and understand the underlying mechanisms of I/R and IPC. Here, we review the application of proteomics to I/R injury and IPC to discover target proteins. We analyze the functional meaning of the accumulated data on hundreds of proteins using various bioinformatics applications. In addition, we review exercise-induced proteomic alterations in the heart to understand the potential cardioprotective role of exercise against I/R injury. Further developments in the proteomic field that target specialized proteins will yield new insights for optimizing therapeutic targets and developing a wide range of therapeutic agents against ischemic heart disease.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University 633-165 Gaegeum-Dong, Busanjin-Gu, Busan 613-735, Korea
| | | | | | | | | |
Collapse
|
54
|
Murphy E, Steenbergen C. What makes the mitochondria a killer? Can we condition them to be less destructive? BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1302-8. [PMID: 20837069 PMCID: PMC3398608 DOI: 10.1016/j.bbamcr.2010.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/10/2010] [Accepted: 09/01/2010] [Indexed: 12/22/2022]
Abstract
Cardioprotection, such as preconditioning and postconditioning, has been shown to result in a significant reduction in cell death. Many of the signaling pathways activated by cardioprotection have been elucidated, but there is still a lack of understanding of the mechanisms by which these signaling pathways reduce cell death. Mitochondria have been reported to be an important player in many types of apoptotic and necrotic cell death. If mitochondria play an important role in cell death, then it seems reasonable to consider that cardioprotective mechanisms might act, at least in part, by opposing mitochondrial cell death pathways. One of the major mechanisms of cell death in ischemia-reperfusion is suggested to be the opening of a large conductance pore in the inner mitochondrial membrane, known as the mitochondrial permeability transition pore. Inhibition of this mitochondrial pore appears to be one of the major mechanisms by which cardioprotection reduces cell death. Cardioprotection activates a number of signaling pathways that reduce the level of triggers (reactive oxygen species and calcium) or enhances inhibitors of the mitochondrial permeability transition pore at the start of reperfusion. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Translational Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
55
|
The tRNAMet 4435A>G mutation in the mitochondrial haplogroup G2a1 is responsible for maternally inherited hypertension in a Chinese pedigree. Eur J Hum Genet 2011; 19:1181-6. [PMID: 21694735 PMCID: PMC3198143 DOI: 10.1038/ejhg.2011.111] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) have been associated with hypertension in several pedigrees with maternal inheritance. However, the pathophysiology of maternally inherited hypertension remains poorly understood. We reported here clinical, genetic evaluations and molecular analysis of mtDNA in a three-generation Han Chinese family with essential hypertension. Eight of 17 matrilineal relatives exhibited a wide range of severity in essential hypertension, whereas none of the offsprings of the affected father had hypertension. The age-at-onset of hypertension in the maternal kindred varied from 31 to 65 years, with an average of 52 years. Sequence analysis of mtDNA in this pedigree identified the known homoplasmic 4435A>G mutation, which is located at immediately 3' end to the anticodon, corresponding to the conventional position 37 of tRNA(Met), and 41 variants belonging to the Asian haplogroup G2a1. In contrast, the 4435A>G mutation occurred among mtDNA haplogroups B5a, D, M7a2 and J. The adenine (A37) at this position of tRNA(Met) is extraordinarily conserved from bacteria to human mitochondria. This modified A37 was shown to contribute to the high fidelity of codon recognition, structural formation and stabilization of functional tRNAs. However, 41 other mtDNA variants in this pedigree were the known polymorphisms. The occurrence of the 4435A>G mutation in two genetically unrelated families affected by hypertension indicates that this mutation is involved in hypertension. Our present investigations further supported our previous findings that the 4435A>G mutation acted as an inherited risk factor for the development of hypertension. Our findings will be helpful for counseling families of maternally inherited hypertension.
Collapse
|
56
|
Wang S, Li R, Fettermann A, Li Z, Qian Y, Liu Y, Wang X, Zhou A, Mo JQ, Yang L, Jiang P, Taschner A, Rossmanith W, Guan MX. Maternally inherited essential hypertension is associated with the novel 4263A>G mutation in the mitochondrial tRNAIle gene in a large Han Chinese family. Circ Res 2011; 108:862-70. [PMID: 21454794 DOI: 10.1161/circresaha.110.231811] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Despite maternal transmission of hypertension in some pedigrees, pathophysiology of maternally inherited hypertension remains poorly understood. OBJECTIVE To establish a causative link between mitochondrial dysfunction and essential hypertension. METHOD AND RESULTS A total of 106 subjects from a large Chinese family underwent clinical, genetic, molecular, and biochemical evaluations. Fifteen of 24 adult matrilineal relatives exhibited a wide range of severity in essential hypertension, whereas none of the offspring of affected fathers had hypertension. The age at onset of hypertension in the maternal kindred varied from 20 years to 69 years, with an average of 44 years. Mutational analysis of their mitochondrial genomes identified a novel homoplasmic 4263A>G mutation located at the processing site for the tRNA(Ile) 5'-end precursor. An in vitro processing analysis showed that the 4263A>G mutation reduced the efficiency of the tRNA(Ile) precursor 5'-end cleavage catalyzed by RNase P. tRNA Northern analysis revealed that the 4263A>G mutation caused ≈46% reduction in the steady-state level of tRNA(Ile). An in vivo protein-labeling analysis showed ≈32% reduction in the rate of mitochondrial translation in cells carrying the 4263A>G mutation. Impaired mitochondrial translation is apparently a primary contributor to the reductions in the rate of overall respiratory capacity, malate/glutamate-promoted respiration, succinate/glycerol-3-phosphate-promoted respiration, or N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate-promoted respiration and the increasing level of reactive oxygen species in cells carrying the 4263A>G mutation. CONCLUSIONS These data provide direct evidence that mitochondrial dysfunction caused by mitochondrial tRNA(Ile) 4263A>G mutation is involved in essential hypertension. Our findings may provide new insights into pathophysiology of maternally transmitted hypertension.
Collapse
Affiliation(s)
- Shiwen Wang
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Xiao YY, Chang YT, Ran K, Liu JP. Delayed preconditioning by sevoflurane elicits changes in the mitochondrial proteome in ischemia-reperfused rat hearts. Anesth Analg 2011; 113:224-32. [PMID: 21659557 DOI: 10.1213/ane.0b013e3182239b71] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Delayed myocardial preconditioning by volatile anesthetics involves changes in DNA transcription and translation. Mitochondria play a central role in myocardial ischemia/reperfusion (I/R) injury and in ischemic or pharmacologic preconditioning. In this study, we investigated whether there are alterations in myocardial mitochondrial protein expression after volatile anesthetic preconditioning (APC) to examine the underlying mechanisms of delayed cardioprotection. METHODS Thirty-six Sprague-Dawley rats were randomly assigned to 1 of 3 groups (n = 12 for each group). Rats in the delayed APC group were exposed to sevoflurane (2.5% for 60 minutes) 24 hours before myocardial ischemia was induced. Myocardial ischemia in the I/R and APC groups was induced by left coronary artery occlusion for 30 minutes, followed by 120 minutes of reperfusion. The control group received no treatment. The mitochondria fractions were prepared by differential centrifugation with density gradient isolation for proteomic analysis. Two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry was used to identify differences in the protein expression from mitochondria of the rat hearts. RESULTS Fifteen differentially expressed mitochondrial proteins between the APC group and I/R group were identified and the expression patterns of 2 of the proteins were confirmed by Western blot analysis. These proteins were associated with mitochondrial substrate metabolism, respiration, and adenosine triphosphate (ATP)/adenosine diphosphate transport. The modifications of the mitochondrial proteome suggest an enhanced capacity of mitochondria to maintain myocardial ATP levels after I/R injury. CONCLUSION Delayed sevoflurane myocardial preconditioning induces mitochondrial proteome remodeling, which mainly involves proteins that are related to ATP generation and transport. Therefore, proteomic changes related to bioenergetic balance may be the mechanistic basis of delayed anesthetic myocardial preconditioning.
Collapse
Affiliation(s)
- Yan-Ying Xiao
- Department of Anesthesiology, Second Xiang-Ya Hospital, Central South University, No. 139, Ren-Min Rd., Changsha, Hunan Province, China
| | | | | | | |
Collapse
|
58
|
Zhang J, Zhou W, Qiao H. Bioenergetic homeostasis decides neuroprotection or neurotoxicity induced by volatile anesthetics: a uniform mechanism of dual effects. Med Hypotheses 2011; 77:223-9. [PMID: 21550179 DOI: 10.1016/j.mehy.2011.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 03/24/2011] [Accepted: 04/06/2011] [Indexed: 01/25/2023]
Abstract
The commonly used volatile anesthetic isoflurane or sevoflurane has been shown to be both neuroprotective and neurotoxic in various cell cultures and animal models. Some possible mechanisms have been raised to elucidate volatile anesthetics-induced neuroprotection or neurotoxicity, respectively. However, none of these can reconcile the linkage between their dual effects. Similar to volatile anesthetics, some drugs and nonpharmacological factors also can produce neuroprotection and neurotoxicity, which is associated with bioenergetic metabolism of neuronal cells. Here we present a uniform mechanism, bioenergetic homeostasis hypothesis, to explain neuroprotection and neurotoxicity induced by volatile anesthetics. The numerous evidences have shown that volatile anesthetics could affect mitochondrial electron transport complexes and glycolysis related pathways in cells, which could alter intracellular calcium homeostasis, ROS production and adenosine triphosphate (ATP) synthesis. Duration and concentration of exposure to volatile anesthetics could play a role on severity of bioenergy inhibition. Mild bioenergetic metabolism inhibition trigger signaling events involving preconditioning on neurons, and further bioenergy impairment could lead to neuronal cellular apoptosis, inhibition of neurogenesis and elevated β-Secretase, which drive pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, No. 12, Urumqi Central Rd., Shanghai 200040, PR China.
| | | | | |
Collapse
|
59
|
Stanley BA, Graham DR, James J, Mitsak M, Tarwater PM, Robbins J, Van Eyk JE. Altered myofilament stoichiometry in response to heart failure in a cardioprotective α-myosin heavy chain transgenic rabbit model. Proteomics Clin Appl 2011; 5:147-58. [PMID: 21365772 PMCID: PMC3124290 DOI: 10.1002/prca.201000116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/17/2010] [Accepted: 01/17/2011] [Indexed: 11/07/2022]
Abstract
PURPOSE Decreases in α myosin heavy chain (α-MHC) is a common feature of human heart failure (HF), whereas α-MHC overexpression in transgenic (TG) rabbits is cardioprotective against tachycardia-induced cardiomyopathy (TIC). Hypothesizing that MHC isoform content alterations would impact sarcomere and mitochondrial energetics protein complement, we investigated the impact of α-MHC overexpression on global cardiac protein expression. EXPERIMENTAL DESIGN Protein expression was assessed by two-dimensional gel electrophoresis and MS on the extracts from TG and nontransgenic (NTG) rabbits under TIC or sham-operated conditions. RESULTS We observed significant changes in the levels of actin, myosin light chain 2, and desmin between the left ventricular (LV) tissue of TG and NTG animals. The proteome was broadly impacted, with significant changes in mitochondrial energetics and chaperone protein families. No changes were observed in total cellular MHC or in myofibril-associated MHC. In myofibrils isolated from TG(sham) animals, only actin levels were altered in TG(sham) compared with NTG(sham) animals, suggesting careful myofibril assembly regulation. CONCLUSIONS AND CLINICAL RELEVANCE These data suggest that myofibril protein composition may protect against TIC, emphasizing protein interconnectivity and demonstrating the need for broad-based proteomic studies in understanding targeted genetic manipulations. This study identifies the targets for future development of cardioprotective agents and elucidates tachycardia-induced heart failure pathways.
Collapse
Affiliation(s)
- Brian A Stanley
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Golbidi S, Laher I. Molecular mechanisms in exercise-induced cardioprotection. Cardiol Res Pract 2011; 2011:972807. [PMID: 21403846 PMCID: PMC3051318 DOI: 10.4061/2011/972807] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 01/23/2023] Open
Abstract
Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
61
|
White MY, Brown DA, Sheng S, Cole RN, O'Rourke B, Van Eyk JE. Parallel proteomics to improve coverage and confidence in the partially annotated Oryctolagus cuniculus mitochondrial proteome. Mol Cell Proteomics 2011; 10:M110.004291. [PMID: 21036924 PMCID: PMC3033681 DOI: 10.1074/mcp.m110.004291] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Indexed: 02/06/2023] Open
Abstract
The ability to decipher the dynamic protein component of any system is determined by the inherent limitations of the technologies used, the complexity of the sample, and the existence of an annotated genome. In the absence of an annotated genome, large-scale proteomic investigations can be technically difficult. Yet the functional and biological species differences across animal models can lead to selection of partially or nonannotated organisms over those with an annotated genome. The outweighing of biology over technology leads us to investigate the degree to which a parallel approach can facilitate proteome coverage in the absence of complete genome annotation. When studying species without complete genome annotation, a particular challenge is how to ensure high proteome coverage while meeting the bioinformatic stringencies of high-throughput proteomics. A protein inventory of Oryctolagus cuniculus mitochondria was created by overlapping "protein-centric" and "peptide-centric" one-dimensional and two-dimensional liquid chromatography strategies; with additional partitioning into membrane-enriched and soluble fractions. With the use of these five parallel approaches, 2934 unique peptides were identified, corresponding to 558 nonredundant protein groups. 230 of these proteins (41%) were identified by only a single technical approach, confirming the need for parallel techniques to improve annotation. To determine the extent of coverage, a side-by-side comparison with human and mouse cardiomyocyte mitochondrial studies was performed. A nonredundant list of 995 discrete proteins was compiled, of which 244 (25%) were common across species. The current investigation identified 142 unique protein groups, the majority of which were detected here by only one technical approach, in particular peptide- and protein-centric two-dimensional liquid chromatography. Although no single approach achieved more than 40% coverage, the combination of three approaches (protein- and peptide-centric two-dimensional liquid chromatography and subfractionation) contributed 96% of all identifications. Parallel techniques ensured minimal false discovery, and reduced single peptide-based identifications while maximizing sequence coverage in the absence of the annotated rabbit proteome.
Collapse
Affiliation(s)
- Melanie Y White
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | |
Collapse
|
62
|
Murillo D, Kamga C, Mo L, Shiva S. Nitrite as a mediator of ischemic preconditioning and cytoprotection. Nitric Oxide 2011; 25:70-80. [PMID: 21277988 DOI: 10.1016/j.niox.2011.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/04/2011] [Accepted: 01/13/2011] [Indexed: 10/24/2022]
Abstract
Ischemia/reperfusion (IR) injury is a central component in the pathogenesis of several diseases and is a leading cause of morbidity and mortality in the western world. Subcellularly, mitochondrial dysfunction, characterized by depletion of ATP, calcium-induced opening of the mitochondrial permeability transition pore, and exacerbated reactive oxygen species (ROS) formation, plays an integral role in the progression of IR injury. Nitric oxide (NO) and more recently nitrite (NO(2)(-)) are known to modulate mitochondrial function, mediate cytoprotection after IR and have been implicated in the signaling of the highly protective ischemic preconditioning (IPC) program. Here, we review what is known about the role of NO and nitrite in cytoprotection after IR and consider the putative role of nitrite in IPC. Focus is placed on the potential cytoprotective mechanisms involving NO and nitrite-dependent modulation of mitochondrial function.
Collapse
Affiliation(s)
- Daniel Murillo
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
63
|
Boengler K, Heusch G, Schulz R. Nuclear-encoded mitochondrial proteins and their role in cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1286-94. [PMID: 21255616 DOI: 10.1016/j.bbamcr.2011.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/22/2010] [Accepted: 01/09/2011] [Indexed: 11/29/2022]
Abstract
During myocardial ischemia/reperfusion, mitochondria are both a source and a target of injury. In cardioprotective maneuvers such as ischemic and pharmacological pre- and postconditioning mitochondria have a decisive role. Since about 99% of the mitochondrial proteins are encoded in the nucleus, deleterious and protective mitochondrial effects most likely comprise the import of cytosolic proteins. The present review therefore discusses the role of mitochondria in myocardial ischemia/reperfusion injury and protection from it, focusing on some cytosolic proteins, which are translocated into mitochondria before, during, or following ischemia/reperfusion. Both morphological and functional alterations are discussed at the level of the heart, the cardiomyocyte and/or the mitochondrion itself. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institut für Pathophysiologie, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | |
Collapse
|
64
|
Abonnenc M, Stegemann C, Mayr M. Highlights from the 2010 BAS/BSCR spring meeting: New Frontiers in Cardiovascular Research. Expert Rev Proteomics 2010; 7:811-3. [PMID: 21142882 DOI: 10.1586/epr.10.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The British Atherosclerosis Society (BAS)/British Society for Cardiovascular Research (BSCR) spring meeting was held in Manchester, UK, on 7-8 June 2010. Experts in the field of systems biology, proteomics, metabolomics and miRNAs presented how these techniques can be used to discover 'New Frontiers in Cardiovascular Research'. The conference was attended by over 150 participants, mainly from the UK. A total of 2 days of presentations and a poster session with 55 posters provided the possibility to discuss the latest research results and showed the opportunities that new techniques can offer in cardiovascular research.
Collapse
Affiliation(s)
- Mélanie Abonnenc
- King's BHF Centre, King's College London, 125 Coldharbour Lane, London, UK
| | | | | |
Collapse
|
65
|
Gottlieb RA, Gustafsson AB. Mitochondrial turnover in the heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1295-301. [PMID: 21147177 DOI: 10.1016/j.bbamcr.2010.11.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 09/22/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022]
Abstract
Mitochondrial quality control is increasingly recognized as an essential element in maintaining optimally functioning tissues. Mitochondrial quality control depends upon a balance between biogenesis and autophagic destruction. Mitochondrial dynamics (fusion and fission) allows for the redistribution of mitochondrial components. We speculate that this permits sorting of highly functional components into one end of a mitochondrion, while damaged components are segregated at the other end, to be jettisoned by asymmetric fission followed by selective mitophagy. Ischemic preconditioning requires autophagy/mitophagy, resulting in selective elimination of damaged mitochondria, leaving behind a population of robust mitochondria with a higher threshold for opening of the mitochondrial permeability transition pore. In this review we will consider the factors that regulate mitochondrial biogenesis and destruction, the machinery involved in both processes, and the biomedical consequences associated with altered mitochondrial turnover. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- BioScience Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4650, USA.
| | | |
Collapse
|
66
|
Yang HY, Kwon J, Cho EJ, Choi HI, Park C, Park HR, Park SH, Chung KJ, Ryoo ZY, Cho KO, Lee TH. Proteomic analysis of protein expression affected by peroxiredoxin V knock-down in hypoxic kidney. J Proteome Res 2010; 9:4003-15. [PMID: 20553050 DOI: 10.1021/pr100190b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peroxiredoxin V, an atypical thioredoxin peroxidase, is widely expressed in mammalian tissues. In addition, Prdx V is localized in mitochondria, peroxisome, cytosol, and the nucleus. Prdx V has been reported to protect a wide range of cellular environments as an antioxidant enzyme, and its dysfunctions may be implicated in several diseases, such as cancer, inflammation, and neurodegenerative disease. Identification and relative quantification of proteins affected by Prdx V may help identify novel signaling mechanisms that are important for oxidative stress response. However, the role of Prdx V in the modulation of hypoxia-related cellular response is not studied yet. To examine the function of endogenous Prdx V in hypoxic condition in vivo, we generated a transgenic mouse model with Prdx V siRNA expression controlled by U6 promoter. Of many tissues, the knockdown of Prdx V expression was displayed in the kidney, lung, and liver but not the spleen and skin. We conducted on the basis of nano-UPLC-MS(E) proteomic study to identify the Prdx V-affected protein networks in hypoxic kidneys. In this study, we identified protein networks associated with oxidative stress, fatty acid metabolism, and mitochondrial dysfunction. Our results indicated that Prdx V affected to regulation of kidney homeostasis under hypoxia stress.
Collapse
Affiliation(s)
- Hee-Young Yang
- Department of Oral Biochemistry, Dental Science Research Institute, The second Stage of Brain Korea 21 for Dental School, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Williams LM, Fu Z, Dulloor P, Yen T, Barron-Casella E, Savage W, Van Eyk JE, Casella JF, Everett A. Hemoglobin depletion from plasma: Considerations for proteomic discovery in Sickle Cell disease and other hemolytic processes. Proteomics Clin Appl 2010; 4:926-30. [DOI: 10.1002/prca.201000054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
68
|
Gucek M, Murphy E. What can we learn about cardioprotection from the cardiac mitochondrial proteome? Cardiovasc Res 2010; 88:211-8. [PMID: 20805096 DOI: 10.1093/cvr/cvq277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This review will summarize proteomic methods that are useful in studying the role of mitochondria in cardioprotection. The strengths and weaknesses of some of the different approaches are discussed. We focus on the cardiac mitochondrial proteome with emphasis on changes associated with cell death and protection, and we summarize how proteomic data have contributed to addressing the role of mitochondria in cardioprotection.
Collapse
Affiliation(s)
- Marjan Gucek
- NHLBI Proteomics Core, NHLBI, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
69
|
Folmes CD, Sawicki G, Cadete VJ, Masson G, Barr AJ, Lopaschuk GD. Novel O-palmitolylated beta-E1 subunit of pyruvate dehydrogenase is phosphorylated during ischemia/reperfusion injury. Proteome Sci 2010; 8:38. [PMID: 20618950 PMCID: PMC2909933 DOI: 10.1186/1477-5956-8-38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 07/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During and following myocardial ischemia, glucose oxidation rates are low and fatty acids dominate as a source of oxidative metabolism. This metabolic phenotype is associated with contractile dysfunction during reperfusion. To determine the mechanism of this reliance on fatty acid oxidation as a source of ATP generation, a functional proteomics approach was utilized. RESULTS 2-D gel electrophoresis of mitochondria from working rat hearts subjected to 25 minutes of global no flow ischemia followed by 40 minutes of aerobic reperfusion identified 32 changes in protein abundance compared to aerobic controls. Of the five proteins with the greatest change in abundance, two were increased (long chain acyl-coenzyme A dehydrogenase (48 +/- 1 versus 39 +/- 3 arbitrary units, n = 3, P < 0.05) and alpha subunit of ATP synthase (189 +/- 15 versus 113 +/- 23 arbitrary units, n = 3, P < 0.05)), while two were decreased (24 kDa subunit of NADH-ubiquinone oxidoreductase (94 +/- 7 versus 127 +/- 9 arbitrary units, n = 3, P < 0.05) and D subunit of ATP synthase (230 +/- 11 versus 368 +/- 47 arbitrary units, n = 3, P < 05)). Two forms of pyruvate dehydrogenase betaE1 subunit, the rate-limiting enzyme for glucose oxidation, were also identified. The protein level of the more acidic form of pyruvate dehydrogenase was reduced during reperfusion (37 +/- 4 versus 56 +/- 7 arbitrary units, n = 3, P < 05), while the more basic form remained unchanged. The more acidic isoform was found to be O-palmitoylated, while both isoforms exhibited ischemia/reperfusion-induced phosphorylation. In silico analysis identified the putative kinases as the insulin receptor kinase for the more basic form and protein kinase Czeta or protein kinase A for the more acidic form. These modifications of pyruvate dehydrogenase are associated with a 35% decrease in glucose oxidation during reperfusion. CONCLUSIONS Cardiac ischemia/reperfusion induces significant changes to a number of metabolic proteins of the mitochondrial proteome. In particular, ischemia/reperfusion induced the post-translational modification of pyruvate dehydrogenase, the rate-limiting step of glucose oxidation, which is associated with a 35% decrease in glucose oxidation during reperfusion. Therefore these post-translational modifications may have important implications in the regulation of myocardial energy metabolism.
Collapse
Affiliation(s)
- Clifford Dl Folmes
- Cardiovascular Research Group and the Departments of Pharmacology and Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
| | - Grzegorz Sawicki
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Clinical Chemistry, Medical University of Wroclaw, Wroclaw, Poland
| | - Virgilio Jj Cadete
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Grant Masson
- Cardiovascular Research Group and the Departments of Pharmacology and Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
| | - Amy J Barr
- Cardiovascular Research Group and the Departments of Pharmacology and Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Group and the Departments of Pharmacology and Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
70
|
Dowd WW, Renshaw GMC, Cech JJ, Kültz D. Compensatory proteome adjustments imply tissue-specific structural and metabolic reorganization following episodic hypoxia or anoxia in the epaulette shark (Hemiscyllium ocellatum). Physiol Genomics 2010; 42:93-114. [PMID: 20371547 PMCID: PMC2888556 DOI: 10.1152/physiolgenomics.00176.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 04/05/2010] [Indexed: 12/31/2022] Open
Abstract
The epaulette shark (Hemiscyllium ocellatum) represents an ancestral vertebrate model of episodic hypoxia and anoxia tolerance at tropical temperatures. We used two-dimensional gel electrophoresis and mass spectrometry-based proteomics approaches, combined with a suite of physiological measures, to characterize this species' responses to 1) one episode of anoxia plus normoxic recovery, 2) one episode of severe hypoxia plus recovery, or 3) two episodes of severe hypoxia plus recovery. We examined these responses in the cerebellum and rectal gland, two tissues with high ATP requirements. Sharks maintained plasma ionic homeostasis following all treatments, and activities of Na(+)/K(+)-ATPase and caspase 3/7 in both tissues were unchanged. Oxygen lack and reoxygenation elicited subtle adjustments in the proteome. Hypoxia led to more extensive proteome responses than anoxia in both tissues. The cerebellum and rectal gland exhibited treatment-specific responses to oxygen limitation consistent with one or more of several strategies: 1) neurotransmitter and receptor downregulation in cerebellum to prevent excitotoxicity, 2) cytoskeletal/membrane reorganization, 3) metabolic reorganization and more efficient intracellular energy shuttling that are more consistent with sustained ATP turnover than with long-term metabolic depression, 4) detoxification of metabolic byproducts and oxidative stress in light of continued metabolic activity, particularly following hypoxia in rectal gland, and 5) activation of prosurvival signaling. We hypothesize that neuronal morphological changes facilitate prolonged protection from excitotoxicity via dendritic spine remodeling in cerebellum (i.e., synaptic structural plasticity). These results recapitulate several highly conserved themes in the anoxia and hypoxia tolerance, preconditioning, and oxidative stress literature in a single system. In addition, several of the identified pathways and proteins suggest potentially novel mechanisms for enhancing anoxia or hypoxia tolerance in vertebrates. Overall, our data show that episodic hypoxic or anoxic exposure and recovery in the epaulette shark amplifies a constitutive suite of compensatory mechanisms that further prepares them for subsequent insults.
Collapse
Affiliation(s)
- W Wesley Dowd
- Department of Animal Science, University of California, Davis, California, USA
| | | | | | | |
Collapse
|
71
|
Deng N, Zhang J, Zong C, Wang Y, Lu H, Yang P, Wang W, Young GW, Wang Y, Korge P, Lotz C, Doran P, Liem DA, Apweiler R, Weiss JN, Duan H, Ping P. Phosphoproteome analysis reveals regulatory sites in major pathways of cardiac mitochondria. Mol Cell Proteomics 2010; 10:M110.000117. [PMID: 20495213 DOI: 10.1074/mcp.m110.000117] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial functions are dynamically regulated in the heart. In particular, protein phosphorylation has been shown to be a key mechanism modulating mitochondrial function in diverse cardiovascular phenotypes. However, site-specific phosphorylation information remains scarce for this organ. Accordingly, we performed a comprehensive characterization of murine cardiac mitochondrial phosphoproteome in the context of mitochondrial functional pathways. A platform using the complementary fragmentation technologies of collision-induced dissociation (CID) and electron transfer dissociation (ETD) demonstrated successful identification of a total of 236 phosphorylation sites in the murine heart; 210 of these sites were novel. These 236 sites were mapped to 181 phosphoproteins and 203 phosphopeptides. Among those identified, 45 phosphorylation sites were captured only by CID, whereas 185 phosphorylation sites, including a novel modification on ubiquinol-cytochrome c reductase protein 1 (Ser-212), were identified only by ETD, underscoring the advantage of a combined CID and ETD approach. The biological significance of the cardiac mitochondrial phosphoproteome was evaluated. Our investigations illustrated key regulatory sites in murine cardiac mitochondrial pathways as targets of phosphorylation regulation, including components of the electron transport chain (ETC) complexes and enzymes involved in metabolic pathways (e.g. tricarboxylic acid cycle). Furthermore, calcium overload injured cardiac mitochondrial ETC function, whereas enhanced phosphorylation of ETC via application of phosphatase inhibitors restored calcium-attenuated ETC complex I and complex III activities, demonstrating positive regulation of ETC function by phosphorylation. Moreover, in silico analyses of the identified phosphopeptide motifs illuminated the molecular nature of participating kinases, which included several known mitochondrial kinases (e.g. pyruvate dehydrogenase kinase) as well as kinases whose mitochondrial location was not previously appreciated (e.g. Src). In conclusion, the phosphorylation events defined herein advance our understanding of cardiac mitochondrial biology, facilitating the integration of the still fragmentary knowledge about mitochondrial signaling networks, metabolic pathways, and intrinsic mechanisms of functional regulation in the heart.
Collapse
Affiliation(s)
- Ning Deng
- Department of Physiology, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Gottlieb RA, Mentzer RM. Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol 2010; 72:45-59. [PMID: 20148666 DOI: 10.1146/annurev-physiol-021909-135757] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The study of autophagy has been transformed by the cloning of most genes in the pathway and the introduction of GFP-LC3 as a reporter to allow visual assessment of autophagy. The field of cardiac biology is not alone in attempting to understand the implications of autophagy. The purpose of this review is to address some of the controversies and conundrums associated with the evolving studies of autophagy in the heart. Autophagy is a cellular process involving a complex orchestration of regulatory gene products as well as machinery for assembly, selective targeting, and degradation of autophagosomes and their contents. Our understanding of the role of autophagy in human disease is rapidly evolving as investigators examine the process in different tissues and different pathophysiological contexts. In the field of heart disease, autophagy has been examined in the settings of ischemia and reperfusion, preconditioning, cardiac hypertrophy, and heart failure. This review addresses the role of autophagy in cardioprotection, the balance of catabolism and anabolism, the concept of mitochondrial quality control, and the implications of impaired autophagic flux or frustrated autophagy.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- The BioScience Center, San Diego State University, San Diego, CA 92182, USA.
| | | |
Collapse
|
73
|
Chugh S, Suen C, Gramolini A. Proteomics and mass spectrometry: what have we learned about the heart? Curr Cardiol Rev 2010; 6:124-33. [PMID: 21532779 PMCID: PMC2892078 DOI: 10.2174/157340310791162631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 01/31/2023] Open
Abstract
The emergence of new platforms for the discovery of innovative therapeutics has provided a means for diagnosing cardiac disease in its early stages. Taking into consideration the global health burden of cardiac disease, clinicians require innovations in medical diagnostics that can be used for risk stratification. Proteomic based studies offer an avenue for the discovery of proteins that are differentially regulated during disease; such proteins could serve as novel biomarkers of the disease state. For instance, in clinical practice, the abundance of such biomarkers in blood could be correlated with the severity of the disease state. As such, early detection of biomarkers would enable an improvement in patient prognosis. In this review, we outline advancements in various proteomic platforms used to study the disease proteome and their applications to the field of clinical medicine. Specifically, we highlight the contributions of proteomic-based profiling experiments to the analysis of cardiovascular diseases.
Collapse
Affiliation(s)
- Shaan Chugh
- Department of Physiology, University of Toronto
| | - Colin Suen
- Department of Physiology, University of Toronto
| | - Anthony Gramolini
- Department of Physiology, University of Toronto
- Heart and Stroke/Richard Lewar Centre of Cardiovascular Excellence
| |
Collapse
|
74
|
Højlund K, Yi Z, Lefort N, Langlais P, Bowen B, Levin K, Beck-Nielsen H, Mandarino LJ. Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle. Diabetologia 2010; 53:541-51. [PMID: 20012595 DOI: 10.1007/s00125-009-1624-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Insulin resistance in skeletal muscle is linked to mitochondrial dysfunction in obesity and type 2 diabetes. Emerging evidence indicates that reversible phosphorylation regulates oxidative phosphorylation (OxPhos) proteins. The aim of this study was to identify and quantify site-specific phosphorylation of the catalytic beta subunit of ATP synthase (ATPsyn-beta) and determine protein abundance of ATPsyn-beta and other OxPhos components in skeletal muscle from healthy and insulin-resistant individuals. METHODS Skeletal muscle biopsies were obtained from lean, healthy, obese, non-diabetic and type 2 diabetic volunteers (each group n = 10) for immunoblotting of proteins, and hypothesis-driven identification and quantification of phosphorylation sites on ATPsyn-beta using targeted nanospray tandem mass spectrometry. Volunteers were metabolically characterised by euglycaemic-hyperinsulinaemic clamps. RESULTS Seven phosphorylation sites were identified on ATPsyn-beta purified from human skeletal muscle. Obese individuals with and without type 2 diabetes were characterised by impaired insulin-stimulated glucose disposal rates, and showed a approximately 30% higher phosphorylation of ATPsyn-beta at Tyr361 and Thr213 (within the nucleotide-binding region of ATP synthase) as well as a coordinated downregulation of ATPsyn-beta protein and other OxPhos components. Insulin increased Tyr361 phosphorylation of ATPsyn-beta by approximately 50% in lean and healthy, but not insulin-resistant, individuals. CONCLUSIONS/INTERPRETATION These data demonstrate that ATPsyn-beta is phosphorylated at multiple sites in human skeletal muscle, and suggest that abnormal site-specific phosphorylation of ATPsyn-beta together with reduced content of OxPhos proteins contributes to mitochondrial dysfunction in insulin resistance. Further characterisation of phosphorylation of ATPsyn-beta may offer novel targets of treatment in human diseases with mitochondrial dysfunction, such as diabetes.
Collapse
Affiliation(s)
- K Højlund
- Center for Metabolic Biology, School of Life Sciences, Arizona State University, PO Box 87370, Tempe, AZ 85287, USA.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Nitric oxide (NO) plays an important role in the regulation of cardiovascular function. In addition to the classic NO activation of the cGMP-dependent pathway, NO can also regulate cell function through protein S-nitrosylation, a redox dependent, thiol-based, reversible posttranslational protein modification that involves attachment of an NO moiety to a nucleophilic protein sulfhydryl group. There are emerging data suggesting that S-nitrosylation of proteins plays an important role in cardioprotection. Protein S-nitrosylation not only leads to changes in protein structure and function but also prevents these thiol(s) from further irreversible oxidative/nitrosative modification. A better understanding of the mechanism regulating protein S-nitrosylation and its role in cardioprotection will provide us new therapeutic opportunities and targets for interventions in cardiovascular diseases.
Collapse
Affiliation(s)
- Junhui Sun
- Translational Medicine Branch, NHLBI, NIH, 10 Center Dr, Room 7N112, Bethesda, MD 20892, USA
| | | |
Collapse
|
76
|
Arrell DK, Zlatkovic J, Kane GC, Yamada S, Terzic A. ATP-sensitive K+ channel knockout induces cardiac proteome remodeling predictive of heart disease susceptibility. J Proteome Res 2010; 8:4823-34. [PMID: 19673485 DOI: 10.1021/pr900561g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (K(ATP)) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode consequences of Kir6.2 K(ATP) channel pore deletion. Differential two-dimensional gel electrophoresis reproducibly resolved >800 protein species from hearts of asymptomatic wild-type and Kir6.2-knockout counterparts. K(ATP) channel ablation remodeled the cardiac proteome, significantly altering 71 protein spots, from which 102 unique identities were assigned following hybrid linear ion trap quadrupole-Orbitrap tandem mass spectrometry. Ontological annotation stratified the K(ATP) channel-dependent protein cohort into a predominant bioenergetic module (63 resolved identities), with additional focused sets representing signaling molecules (6), oxidoreductases (8), chaperones (6), and proteins involved in catabolism (6), cytostructure (8), and transcription and translation (5). Protein interaction mapping, in conjunction with expression level changes, localized a K(ATP) channel-associated subproteome within a nonstochastic scale-free network. Global assessment of the K(ATP) channel deficient environment verified the primary impact on metabolic pathways and revealed overrepresentation of markers associated with cardiovascular disease. Experimental imposition of graded stress precipitated exaggerated structural and functional myocardial defects in the Kir6.2-knockout, decreasing survivorship and validating the forecast of disease susceptibility. Proteomic cartography thus provides an integral view of molecular remodeling in the heart induced by K(ATP) channel deletion, establishing a systems approach that predicts outcome at a presymptomatic stage.
Collapse
Affiliation(s)
- D Kent Arrell
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
77
|
Kane LA, Youngman MJ, Jensen RE, Van Eyk JE. Phosphorylation of the F(1)F(o) ATP synthase beta subunit: functional and structural consequences assessed in a model system. Circ Res 2009; 106:504-13. [PMID: 20035080 DOI: 10.1161/circresaha.109.214155] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RATIONALE We previously discovered several phosphorylations to the beta subunit of the mitochondrial F(1)F(o) ATP synthase complex in isolated rabbit myocytes on adenosine treatment, an agent that induces cardioprotection. The role of these phosphorylations is unknown. OBJECTIVE The present study focuses on the functional consequences of phosphorylation of the ATP synthase complex beta subunit by generating nonphosphorylatable and phosphomimetic analogs in a model system, Saccharomyces cerevisiae. METHODS AND RESULTS The 4 amino acid residues with homology in yeast (T58, S213, T262, and T318) were studied with respect to growth, complex and supercomplex formation, and enzymatic activity (ATPase rate). The most striking mutant was the T262 site, for which the phosphomimetic (T262E) abolished activity, whereas the nonphosphorylatable strain (T262A) had an ATPase rate equivalent to wild type. Although T262E, like all of the beta subunit mutants, was able to form the intact complex (F(1)F(o)), this strain lacked a free F(1) component found in wild-type and had a corresponding increase of lower-molecular-weight forms of the protein, indicating an assembly/stability defect. In addition, the ATPase activity was reduced but not abolished with the phosphomimetic mutation at T58, a site that altered the formation/maintenance of dimers of the F(1)F(o) ATP synthase complex. CONCLUSIONS Taken together, these data show that pseudophosphorylation of specific amino acid residues can have separate and distinctive effects on the F(1)F(o) ATP synthase complex, suggesting the possibility that several of the phosphorylations observed in the rabbit heart can have structural and functional consequences to the F(1)F(o) ATP synthase complex.
Collapse
Affiliation(s)
- Lesley A Kane
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
78
|
Agnetti G, Kaludercic N, Kane LA, Elliott ST, Guo Y, Chakir K, Samantapudi D, Paolocci N, Tomaselli GF, Kass DA, Van Eyk JE. Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts. ACTA ACUST UNITED AC 2009; 3:78-87. [PMID: 20160199 DOI: 10.1161/circgenetics.109.871236] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) improves chamber mechanoenergetics and morbidity and mortality of patients manifesting heart failure with ventricular dyssynchrony; however, little is known about the molecular changes underlying CRT benefits. We hypothesized that mitochondria may play an important role because of their involvement in energy production. METHODS AND RESULTS Mitochondria isolated from the left ventricle in a canine model of dyssynchronous or resynchronized (CRT) heart failure were analyzed by a classical, gel-based, proteomic approach. Two-dimensional gel electrophoresis revealed that 31 mitochondrial proteins where changed when controlling the false discovery rate at 30%. Key enzymes in anaplerotic pathways, such as pyruvate carboxylation and branched-chain amino acid oxidation, were increased. These concerted changes, along with others, suggested that CRT may increase the pool of Krebs cycle intermediates and fuel oxidative phosphorylation. Nearly 50% of observed changes pertained to subunits of the respiratory chain. ATP synthase-beta subunit of complex V was less degraded, and its phosphorylation modulated by CRT was associated with increased formation (2-fold, P=0.004) and specific activity (+20%, P=0.05) of the mature complex. The importance of these modifications was supported by coordinated changes in mitochondrial chaperones and proteases. CRT increased the mitochondrial respiratory control index with tightened coupling when isolated mitochondria were reexposed to substrates for both complex I (glutamate and malate) and complex II (succinate), an effect likely related to ATP synthase subunit modifications and complex quantity and activity. CONCLUSIONS CRT potently affects both the mitochondrial proteome and the performance associated with improved cardiac function.
Collapse
Affiliation(s)
- Giulio Agnetti
- Johns Hopkins Bayview Proteomics Center, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Rehni AK, Singh TG, Bhateja P, Singh N, Arora S. Involvement of cyclic adenosine diphosphoribose receptor activation in ischemic preconditioning induced protection in mouse brain. Brain Res 2009; 1309:75-82. [PMID: 19896931 DOI: 10.1016/j.brainres.2009.10.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/24/2009] [Accepted: 10/29/2009] [Indexed: 10/20/2022]
Abstract
The present study has been designed to expound the significance of cyclic adenosine diphosphoribose receptor activation in ischemic preconditioning induced reversal of ischemia and reperfusion induced cerebral injury in mice. Bilateral carotid artery occlusion of 17 min followed by reperfusion for 24 h was employed in present study to produce ischemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using Morris water-maze test. Rota-rod test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired memory and motor co-ordination. Three preceding episodes of bilateral carotid artery occlusion for 1 min and reperfusion of 1 min (ischemic preconditioning) prevented markedly ischemia-reperfusion-induced cerebral injury measured in terms of infarct size, loss of memory and motor coordination. 8-Bromo-cyclic adenosine diphosphate ribose (2 mg/kg, ip), an antagonist of cyclic ADP-ribose receptor, attenuated the neuroprotective effect of ischemic preconditioning. It is concluded that neuroprotective effect of ischemic preconditioning may be due to the adenosine diphosphoribose receptor activation.
Collapse
Affiliation(s)
- Ashish K Rehni
- Chitkara College of Pharmacy, Chandigarh-Patiala National Highway, Rajpura, Patiala, Punjab, India
| | | | | | | | | |
Collapse
|
80
|
Wong R, Aponte AM, Steenbergen C, Murphy E. Cardioprotection leads to novel changes in the mitochondrial proteome. Am J Physiol Heart Circ Physiol 2009; 298:H75-91. [PMID: 19855063 DOI: 10.1152/ajpheart.00515.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is proposed that ischemic preconditioning (PC) initiates signaling that converges on mitochondria and results in cardioprotection. The outcome of this signaling on mitochondrial enzyme complexes is yet to be understood. We therefore used proteomic methods to test the hypothesis that PC and pharmacological preconditioning similarly alter mitochondrial signaling complexes. Langendorff-perfused murine hearts were treated with the specific GSK-3 inhibitor AR-A014418 (GSK Inhib VIII) for 10 min or subjected to four cycles of 5-min ischemia-reperfusion (PC) before 20-min global ischemia and 120-min reperfusion. PC and GSK Inhib VIII both improved recovery of postischemic left ventricular developed pressure, decreased infarct size, and reduced lactate production during ischemia compared with their time-matched controls. We used proteomics to examine mitochondrial protein levels/posttranslational modifications that were common between PC and GSK Inhib VIII. Levels of cytochrome-c oxidase subunits Va and VIb, ATP synthase-coupling factor 6, and cytochrome b-c1 complex subunit 6 were increased while cytochrome c was decreased with PC and GSK Inhib VIII. Furthermore, the amount of cytochrome-c oxidase subunit VIb was found to be increased in PC and GSK Inhib VIII mitochondrial supercomplexes, which are comprised of complexes I, III, and IV. This result would suggest that changes in complex subunits associated with cardioprotection may affect supercomplex composition. Thus the ability of PC and GSK inhibition to alter the expression levels of electron transport complexes will have important implications for mitochondrial function.
Collapse
Affiliation(s)
- Renee Wong
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
81
|
Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, Van Eyk JE. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2009; Chapter 10:Unit10.25. [PMID: 19816929 PMCID: PMC2905857 DOI: 10.1002/0471142727.mb1025s88] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This unit outlines the steps required to prepare a sample for MS analysis following protein separation or enrichment by gel electrophoresis, liquid chromatography, and affinity capture within the context of a bottom-up proteomics workflow in which the protein is first broken up into peptides, either by chemical or enzymatic digestion, prior to MS analysis. Also included are protocols for enrichment at the peptide level, including phosphopeptide enrichment and reversed-phase chromatography for sample purification immediately prior to MS analysis. Finally, there is a discussion regarding the types of MS technologies commonly used to analyze proteomics samples, as well as important parameters that should be considered when analyzing the MS data to ensure stringent and robust protein identifications and characterization.
Collapse
Affiliation(s)
- Rebekah L Gundry
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Foster DB, Van Eyk JE, Marbán E, O'Rourke B. Redox signaling and protein phosphorylation in mitochondria: progress and prospects. J Bioenerg Biomembr 2009; 41:159-68. [PMID: 19440831 DOI: 10.1007/s10863-009-9217-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As we learn more about the factors that govern cardiac mitochondrial bioenergetics, fission and fusion, as well as the triggers of apoptotic and necrotic cell death, there is growing appreciation that these dynamic processes are finely-tuned by equally dynamic post-translational modification of proteins in and around the mitochondrion. In this minireview, we discuss the evidence that S-nitrosylation, glutathionylation and phosphorylation of mitochondrial proteins have important bioenergetic consequences. A full accounting of these targets, and the functional impact of their modifications, will be necessary to determine the extent to which these processes underlie ischemia/reperfusion injury, cardioprotection by pre/post-conditioning, and the pathogenesis of heart failure.
Collapse
Affiliation(s)
- D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Ross Research Building, Room 847, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
83
|
Pedersen PL. Mitochondrial matters of the heart: a plethora of regulatory modes to maintain function for a long lifetime. J Bioenerg Biomembr 2009; 41:95-8. [DOI: 10.1007/s10863-009-9219-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
84
|
Zlatkovic J, Arrell DK, Kane GC, Miki T, Seino S, Terzic A. Proteomic profiling of KATP channel-deficient hypertensive heart maps risk for maladaptive cardiomyopathic outcome. Proteomics 2009; 9:1314-25. [PMID: 19253285 DOI: 10.1002/pmic.200800718] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
KCNJ11 null mutants, lacking Kir6.2 ATP-sensitive K(+) (K(ATP)) channels, exhibit a marked susceptibility towards hypertension (HTN)-induced heart failure. To gain insight into the molecular alterations induced by knockout of this metabolic sensor under hemodynamic stress, wild-type (WT) and Kir6.2 knockout (Kir6.2-KO) cardiac proteomes were profiled by comparative 2-DE and Orbitrap MS. Despite equivalent systemic HTN produced by chronic hyperaldosteronism, 114 unique proteins were altered in Kir6.2-KO compared to WT hearts. Bioinformatic analysis linked the primary biological function of the K(ATP) channel-dependent protein cohort to energetic metabolism (64% of proteins), followed by signaling infrastructure (36%) including oxidoreductases, stress-related chaperones, processes supporting protein degradation, transcription and translation, and cytostructure. Mapped protein-protein relationships authenticated the primary impact on metabolic pathways, delineating the K(ATP) channel-dependent subproteome within a nonstochastic network. Iterative systems interrogation of the proteomic web prioritized heart-specific adverse effects, i.e., "Cardiac Damage", "Cardiac Enlargement", and "Cardiac Fibrosis", exposing a predisposition for the development of cardiomyopathic traits in the hypertensive Kir6.2-KO. Validating this maladaptive forecast, phenotyping documented an aggravated myocardial contractile performance, a massive interstitial fibrosis and an exaggerated left ventricular size, all prognostic indices of poor outcome. Thus, Kir6.2 ablation engenders unfavorable proteomic remodeling in hypertensive hearts, providing a composite molecular substrate for pathologic stress-associated cardiovascular disease.
Collapse
Affiliation(s)
- Jelena Zlatkovic
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
85
|
Costa VM, Silva R, Tavares LC, Vitorino R, Amado F, Carvalho F, Bastos MDL, Carvalho M, Carvalho RA, Remião F. Adrenaline and reactive oxygen species elicit proteome and energetic metabolism modifications in freshly isolated rat cardiomyocytes. Toxicology 2009; 260:84-96. [DOI: 10.1016/j.tox.2009.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/15/2009] [Indexed: 01/13/2023]
|
86
|
Lippe G, Bisetto E, Comelli M, Contessi S, Di Pancrazio F, Mavelli I. Mitochondrial and cell-surface F0F1ATPsynthase in innate and acquired cardioprotection. J Bioenerg Biomembr 2009; 41:151-7. [PMID: 19387805 DOI: 10.1007/s10863-009-9208-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondria are central to heart function and dysfunction, and the pathways activated by different cardioprotective interventions mostly converge on mitochondria. In a context of perspectives in innate and acquired cardioprotection, we review some recent advances in F(0)F(1)ATPsynthase structure/function and regulation in cardiac cells. We focus on three topics regarding the mitochondrial F(0)F(1)ATPsynthase and the plasma membrane enzyme, i.e.: i) the crucial role of cardiac mitochondrial F(0)F(1)ATPsynthase regulation by the inhibitory protein IF(1) in heart preconditioning strategies; ii) the structure and function of mitochondrial F(0)F(1)ATPsynthase oligomers in mammalian myocardium as possible endogenous factors of mitochondria resistance to ischemic insult; iii) the external location and characterization of plasma membrane F(0)F(1) ATP synthase in search for possible actors of its regulation, such as IF(1) and calmodulin, at cell surface.
Collapse
Affiliation(s)
- Giovanna Lippe
- Department of Biomedical Sciences and Technologies and M.A.T.I. Centre of Excellence, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
| | | | | | | | | | | |
Collapse
|
87
|
Kane LA, Van Eyk JE. Post-translational modifications of ATP synthase in the heart: biology and function. J Bioenerg Biomembr 2009; 41:145-50. [PMID: 19399597 PMCID: PMC2905846 DOI: 10.1007/s10863-009-9218-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ATP synthase complex is a critical enzyme in the energetic pathways of cells because it is the enzyme complex that produces the majority of cellular ATP. It has been shown to be involved in several cardiac phenotypes including heart failure and preconditioning, a cellular protective mechanism. Understanding the regulation of this enzyme is important in understanding the mechanisms behind these important phenomena. Recently there have been several post-translational modifications (PTM) reported for various subunits of this enzyme complex, opening up the possibility of differential regulation by these PTMs. Here we discuss the known PTMs in the heart and other mammalian tissues and their implication to function and regulation of the ATP synthase.
Collapse
Affiliation(s)
- Lesley A Kane
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
88
|
Cardioprotection requires taking out the trash. Basic Res Cardiol 2009; 104:169-80. [PMID: 19242643 DOI: 10.1007/s00395-009-0011-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 01/25/2009] [Accepted: 02/26/2009] [Indexed: 01/08/2023]
Abstract
Autophagy is a critical cellular housekeeping process that is essential for removal of damaged or unwanted organelles and protein aggregates. Under conditions of starvation, it is also a mechanism to break down proteins to generate amino acids for synthesis of new and more urgently needed proteins. In the heart, autophagy is upregulated by starvation, reactive oxygen species, hypoxia, exercise, and ischemic preconditioning, the latter a well-known potent cardioprotective phenomenon. The observation that upregulation of autophagy confers protection against ischemia/reperfusion injury and inhibition of autophagy is associated with a loss of cardioprotection conferred by pharmacological conditioning suggests that the pathway plays a key role in enhancing the heart's tolerance to ischemia. While many of the antecedent signaling pathways of preconditioning are well-defined, the mechanisms by which preconditioning and autophagy converge to protect the heart are unknown. In this review we discuss mechanisms that potentially underlie the linkage between cardioprotection and autophagy in the heart.
Collapse
|
89
|
Perlman DH, Bauer SM, Ashrafian H, Bryan NS, Garcia-Saura MF, Lim CC, Fernandez BO, Infusini G, McComb ME, Costello CE, Feelisch M. Mechanistic insights into nitrite-induced cardioprotection using an integrated metabolomic/proteomic approach. Circ Res 2009; 104:796-804. [PMID: 19229060 DOI: 10.1161/circresaha.108.187005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitrite has recently emerged as an important bioactive molecule, capable of conferring cardioprotection and a variety of other benefits in the cardiovascular system and elsewhere. The mechanisms by which it accomplishes these functions remain largely unclear. To characterize the dose response and corresponding cardiac sequelae of transient systemic elevations of nitrite, we assessed the time course of oxidation/nitros(yl)ation, as well as the metabolomic, proteomic, and associated functional changes in rat hearts following acute exposure to nitrite in vivo. Transient systemic nitrite elevations resulted in: (1) rapid formation of nitroso and nitrosyl species; (2) moderate short-term changes in cardiac redox status; (3) a pronounced increase in selective manifestations of long-term oxidative stress as evidenced by cardiac ascorbate oxidation, persisting long after changes in nitrite-related metabolites had normalized; (4) lasting reductions in glutathione oxidation (GSSG/GSH) and remarkably concordant nitrite-induced cardioprotection, which both followed a complex dose-response profile; and (5) significant nitrite-induced protein modifications (including phosphorylation) revealed by mass spectrometry-based proteomic studies. Altered proteins included those involved in metabolism (eg, aldehyde dehydrogenase 2, ubiquinone biosynthesis protein CoQ9, lactate dehydrogenase B), redox regulation (eg, protein disulfide isomerase A3), contractile function (eg, filamin-C), and serine/threonine kinase signaling (eg, protein kinase A R1alpha, protein phosphatase 2A A R1-alpha). Thus, brief elevations in plasma nitrite trigger a concerted cardioprotective response characterized by persistent changes in cardiac metabolism, redox stress, and alterations in myocardial signaling. These findings help elucidate possible mechanisms of nitrite-induced cardioprotection and have implications for nitrite dosing in therapeutic regimens.
Collapse
Affiliation(s)
- David H Perlman
- Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Foster DB, O'Rourke B, Van Eyk JE. What can mitochondrial proteomics tell us about cardioprotection afforded by preconditioning? Expert Rev Proteomics 2009; 5:633-6. [PMID: 18937553 DOI: 10.1586/14789450.5.5.633] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- D Brian Foster
- Institute of Molecular Cardiobiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
91
|
Ruiz-Romero C, Blanco FJ. Mitochondrial proteomics and its application in biomedical research. MOLECULAR BIOSYSTEMS 2009; 5:1130-42. [DOI: 10.1039/b906296n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
92
|
Nguyen T, Ogbi M, Johnson JA. Delta protein kinase C interacts with the d subunit of the F1F0 ATPase in neonatal cardiac myocytes exposed to hypoxia or phorbol ester. Implications for F1F0 ATPase regulation. J Biol Chem 2008; 283:29831-40. [PMID: 18725417 PMCID: PMC2573058 DOI: 10.1074/jbc.m801642200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 08/06/2008] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial protein kinase C isozymes have been reported to mediate both cardiac ischemic preconditioning and ischemia/reperfusion injury. In addition, cardiac preconditioning improves the recovery of ATP levels after ischemia/reperfusion injury. We have, therefore, evaluated protein kinase C modulation of the F(1)F(0) ATPase in neonatal cardiac myocytes. Exposure of cells to 3 or 100 nM 4beta-phorbol 12-myristate-13-acetate induced co-immunoprecipitation of delta protein kinase C (but not alpha, epsilon, or zeta protein kinase C) with the d subunit of the F(1)F(0) ATPase. This co-immunoprecipitation correlated with 40+/-3% and 72+/-9% inhibitions of oligomycin-sensitive F(1)F(0) ATPase activity, respectively. We observed prominent expression of delta protein kinase C in cardiac myocyte mitochondria, which was enhanced following a 4-h hypoxia exposure. In contrast, hypoxia decreased mitochondrial zetaPKC levels by 85+/-1%. Following 4 h of hypoxia, F(1)F(0) ATPase activity was inhibited by 75+/-9% and delta protein kinase C co-immunoprecipitated with the d subunit of F(1)F(0) ATPase. In vitro incubation of protein kinase C with F(1)F(0) ATPase enhanced F(1)F(0) activity in the absence of protein kinase C activators and inhibited it in the presence of activators. Recombinant delta protein kinase C also inhibited F(1)F(0) ATPase activity. Protein kinase C overlay assays revealed delta protein kinase C binding to the d subunit of F(1)F(0) ATPase, which was modulated by diacylglycerol, phosphatidylserine, and cardiolipin. Our results suggest a novel regulation of the F(1)F(0) ATPase by the delta protein kinase C isozyme.
Collapse
Affiliation(s)
- Tiffany Nguyen
- Department of Pharmacology and Toxicology, School of Medicine, Medical College of Georgia, Augusta, Georgia 30912-2300, USA
| | | | | |
Collapse
|
93
|
Højlund K, Mogensen M, Sahlin K, Beck-Nielsen H. Mitochondrial dysfunction in type 2 diabetes and obesity. Endocrinol Metab Clin North Am 2008; 37:713-31, x. [PMID: 18775360 DOI: 10.1016/j.ecl.2008.06.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes mellitus (T2D) and obesity that is characterized by impaired insulin-mediated glucose transport and glycogen synthesis and by increased intramyocellular content of lipid metabolites. Several studies have provided evidence for mitochondrial dysfunction in skeletal muscle of type 2 diabetic and prediabetic subjects, primarily due to a lower content of mitochondria (mitochondrial biogenesis) and possibly to a reduced functional capacity per mitochondrion. This article discusses the latest advances in the understanding of the molecular mechanisms underlying insulin resistance in human skeletal muscle in T2D and obesity, with a focus on possible links between insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kurt Højlund
- Diabetes Research Center, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, 3 DK-5000 Odense C, Denmark.
| | | | | | | |
Collapse
|
94
|
Feng J, Zhu M, Schaub MC, Gehrig P, Roschitzki B, Lucchinetti E, Zaugg M. Phosphoproteome analysis of isoflurane-protected heart mitochondria: phosphorylation of adenine nucleotide translocator-1 on Tyr194 regulates mitochondrial function. Cardiovasc Res 2008; 80:20-9. [PMID: 18558627 DOI: 10.1093/cvr/cvn161] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Reversible phosphorylation of mitochondrial proteins is essential in the regulation of respiratory function, energy metabolism, and mitochondrion-mediated cell death. We hypothesized that mitochondrial protein phosphorylation plays a critical role in cardioprotection during pre and postconditioning, two of the most efficient anti-ischaemic therapies. METHODS AND RESULTS Using phosphoproteomic approaches, we investigated the profiles of phosphorylated proteins in Wistar rat heart mitochondria protected by pharmacological pre and postconditioning elicited by isoflurane. Sixty-one spots were detected by two-dimensional blue-native gel electrophoresis-coupled Western blotting using a phospho-Ser/Thr/Tyr-specific antibody, and 45 of these spots were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Eleven protein spots related to oxidative phosphorylation, energy metabolism, chaperone, and carrier functions exhibited significant changes in their phosphorylation state when protected mitochondria were compared with unprotected. Using a phosphopeptide enrichment protocol followed by liquid chromatography-MS/MS, 26 potential phosphorylation sites were identified in 19 proteins. Among these, a novel phosphorylation site was detected in adenine nucleotide translocator-1 (ANT1) at residue Tyr(194). Changes in ANT phosphorylation between protected and unprotected mitochondria were confirmed by immunoprecipitation. The biological significance of ANT phosphorylation at Tyr(194) was further tested with site-directed mutagenesis in yeast. Substitution of Tyr(194) with Phe, mimicking the non-phosphorylated state, resulted in the inhibition of yeast growth on non-fermentable carbon sources, implying a critical role of phosphorylation at this residue in regulating ANT function and cellular respiration. CONCLUSIONS Our analysis emphasizes the regulatory functions of the phosphoproteome in heart mitochondria and reveals a novel, potential link between bioenergetics and cardioprotection.
Collapse
Affiliation(s)
- Jianhua Feng
- Cardiovascular Anesthesia Research Laboratory, Institute of Anesthesiology, E-HOF, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
95
|
MacLellan WR, Wang Y, Vondriska TM, Weiss JN, Ping P. Proteomic insights into cardiac cell death and survival. Proteomics Clin Appl 2008; 2:837-44. [PMID: 21136883 PMCID: PMC3808833 DOI: 10.1002/prca.200780121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Indexed: 11/06/2022]
Abstract
Cardiovascular disease is the leading cause of death and disability in the developed world. To design novel therapeutic strategies to treat and prevent this disease, better understanding of cardiac cell function is necessary. In addition to (and, indeed, in combination with) genetics, physiology and molecular biology, proteomics plays a critical role in our understanding of cardiovascular systems at multiple scales. The purpose of this review is to examine recent developments in the field of myocardial injury and protection, examining how proteomics has informed investigations into organelles, signaling complexes, and cardiac phenotype.
Collapse
Affiliation(s)
- W. Robb MacLellan
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
- Department of Physiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
| | - Yibin Wang
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
- Department of Physiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
- Department of Anesthesiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
| | - Thomas M. Vondriska
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
- Department of Physiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
- Department of Anesthesiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
| | - James N. Weiss
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
- Department of Physiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
| | - Peipei Ping
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
- Department of Physiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
| |
Collapse
|
96
|
Zhang J, Liem DA, Mueller M, Wang Y, Zong C, Deng N, Vondriska TM, Korge P, Drews O, MacLellan WR, Honda H, Weiss JN, Apweiler R, Ping P. Altered proteome biology of cardiac mitochondria under stress conditions. J Proteome Res 2008; 7:2204-14. [PMID: 18484766 PMCID: PMC3805274 DOI: 10.1021/pr070371f] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myocardial ischemia-reperfusion induces mitochondrial dysfunction and, depending upon the degree of injury, may lead to cardiac cell death. However, our ability to understand mitochondrial dysfunction has been hindered by an absence of molecular markers defining the various degrees of injury. To address this paucity of knowledge, we sought to characterize the impact of ischemic damage on mitochondrial proteome biology. We hypothesized that ischemic injury induces differential alterations in various mitochondrial subcompartments, that these proteomic changes are specific to the severity of injury, and that they are important to subsequent cellular adaptations to myocardial ischemic injury. Accordingly, an in vitro model of cardiac mitochondria injury in mice was established to examine two stress conditions: reversible injury (induced by mild calcium overload) and irreversible injury (induced by hypotonic stimuli). Both forms of injury had a drastic impact on the proteome biology of cardiac mitochondria. Altered mitochondrial function was concomitant with significant protein loss/shedding from the injured organelles. In the setting of mild calcium overload, mitochondria retained functionality despite the release of numerous proteins, and the majority of mitochondria remained intact. In contrast, hypotonic stimuli caused severe damage to mitochondrial structure and function, induced increased oxidative modification of mitochondrial proteins, and brought about detrimental changes to the subproteomes of the inner mitochondrial membrane and matrix. Using an established in vivo murine model of regional myocardial ischemic injury, we validated key observations made by the in vitro model. This preclinical investigation provides function and suborganelle location information on a repertoire of cardiac mitochondrial proteins sensitive to ischemia reperfusion stress and highlights protein clusters potentially involved in mitochondrial dysfunction in the setting of ischemic injury.
Collapse
Affiliation(s)
- Jun Zhang
- Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - David A. Liem
- Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | - Yueju Wang
- Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Chenggong Zong
- Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ning Deng
- Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Thomas M. Vondriska
- Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Anesthesiology/Division of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Paavo Korge
- Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Oliver Drews
- Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - W. Robb MacLellan
- Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Henry Honda
- Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - James N. Weiss
- Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | - Peipei Ping
- Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
97
|
Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 2008; 88:581-609. [PMID: 18391174 PMCID: PMC3199571 DOI: 10.1152/physrev.00024.2007] [Citation(s) in RCA: 1106] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria play an important role in cell death and cardioprotection. During ischemia, when ATP is progressively depleted, ion pumps cannot function resulting in a rise in calcium (Ca(2+)), which further accelerates ATP depletion. The rise in Ca(2+) during ischemia and reperfusion leads to mitochondrial Ca(2+) accumulation, particularly during reperfusion when oxygen is reintroduced. Reintroduction of oxygen allows generation of ATP; however, damage to the electron transport chain results in increased mitochondrial generation of reactive oxygen species (ROS). Mitochondrial Ca(2+) overload and increased ROS can result in opening of the mitochondrial permeability transition pore, which further compromises cellular energetics. The resultant low ATP and altered ion homeostasis result in rupture of the plasma membrane and cell death. Mitochondria have long been proposed as central players in cell death, since the mitochondria are central to synthesis of both ATP and ROS and since mitochondrial and cytosolic Ca(2+) overload are key components of cell death. Many cardioprotective mechanisms converge on the mitochondria to reduce cell death. Reducing Ca(2+) overload and reducing ROS have both been reported to reduce ischemic injury. Preconditioning activates a number of signaling pathways that reduce Ca(2+) overload and reduce activation of the mitochondrial permeability transition pore. The mitochondrial targets of cardioprotective signals are discussed in detail.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.
| | | |
Collapse
|
98
|
Wang XL, Fu A, Spiro C, Lee HC. Clinical application of proteomics approaches in vascular diseases. Proteomics Clin Appl 2008; 2:238-50. [DOI: 10.1002/prca.200780005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Indexed: 01/12/2023]
|
99
|
Persistent Regional Downregulation in Mitochondrial Enzymes and Upregulation of Stress Proteins in Swine With Chronic Hibernating Myocardium. Circ Res 2008; 102:103-12. [DOI: 10.1161/circresaha.107.155895] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hibernating myocardium is accompanied by a downregulation in energy utilization that prevents the immediate development of ischemia during stress at the expense of an attenuated level of regional contractile function. We used a discovery based proteomic approach to identify novel regional molecular adaptations responsible for this phenomenon in subendocardial samples from swine instrumented with a chronic LAD stenosis. After 3 months (n=8), hibernating myocardium was present as reflected by reduced resting LAD flow (0.75±0.14 versus 1.19±0.14 mL · min
−1
· g
−1
in remote) and wall thickening (1.93±0.46 mm versus 5.46±0.41 mm in remote,
P
<0.05). Regionally altered proteins were quantified with 2D Differential-in-Gel Electrophoresis (2D-DIGE) using normal myocardium as a reference with identification of candidates using MALDI-TOF mass spectrometry. Hibernating myocardium developed a significant downregulation of many mitochondrial proteins and an upregulation of stress proteins. Of particular note, the major entry points to oxidative metabolism (eg, pyruvate dehydrogenase complex and Acyl-CoA dehydrogenase) and enzymes involved in electron transport (eg, complexes I, III, and V) were reduced (
P
<0.05). Multiple subunits within an enzyme complex frequently showed a concordant downregulation in abundance leading to an amplification of their cumulative effects on activity (eg, “total” LAD PDC activity was 21.9±3.1 versus 42.8±1.9 mU,
P
<0.05). After 5-months (n=10), changes in mitochondrial and stress proteins persisted whereas cytoskeletal proteins (eg, desmin and vimentin) normalized. These data indicate that the proteomic phenotype of hibernating myocardium is dynamic and has similarities to global changes in energy substrate metabolism and function in the advanced failing heart. These proteomic changes may limit oxidative injury and apoptosis and impact functional recovery after revascularization.
Collapse
|
100
|
Lopez-Campistrous A, Hao L, Xiang W, Ton D, Semchuk P, Sander J, Ellison MJ, Fernandez-Patron C. Mitochondrial dysfunction in the hypertensive rat brain: respiratory complexes exhibit assembly defects in hypertension. Hypertension 2008; 51:412-9. [PMID: 18172056 DOI: 10.1161/hypertensionaha.107.102285] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The central nervous system plays a critical role in the normal control of arterial blood pressure and in its elevation in virtually all forms of hypertension. Mitochondrial dysfunction has been increasingly associated with the development of hypertension. Therefore, we examined whether mitochondrial dysfunction occurs in the brain in hypertension and characterized it at the molecular scale. Mitochondria from whole brain and brain stem from 12-week-old spontaneously hypertensive rats with elevated blood pressure (190+/-5 mm Hg) were compared against those from age-matched normotensive (134+/-7 mm Hg) Wistar Kyoto rats (n=4 in each group). Global differential analysis using 2D electrophoresis followed by tandem mass spectrometry-based protein identification suggested a downregulation of enzymes involved in cellular energetics in hypertension. Targeted differential analysis of mitochondrial respiratory complexes using the classical blue-native SDS-PAGE/Western method and a complementary combination of sucrose-gradient ultracentrifugation/tandem mass spectrometry revealed previously unknown assembly defects in complexes I, III, IV, and V in hypertension. Interestingly, targeted examination of the brain stem, a regulator of cardiovascular homeostasis and systemic blood pressure, further showed the occurrence of mitochondrial complex I dysfunction, elevated reactive oxygen species production, decreased ATP synthesis, and impaired respiration in hypertension. Our findings suggest that in already-hypertensive spontaneously hypertensive rats, the brain respiratory complexes exhibit previously unknown assembly defects. These defects impair the function of the mitochondrial respiratory chain. This mitochondrial dysfunction localizes to the brain stem and is, therefore, likely to contribute to the development, as well as to pathophysiological complications, of hypertension.
Collapse
Affiliation(s)
- Ana Lopez-Campistrous
- Department of Biochemistry, Institute for Biomolecular Design, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|