51
|
Kobayashi T, Patrick SE, Kobayashi M. Ala scanning of the inhibitory region of cardiac troponin I. J Biol Chem 2009; 284:20052-60. [PMID: 19483081 DOI: 10.1074/jbc.m109.001396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In skeletal and cardiac muscles, troponin (Tn), which resides on the thin filament, senses a change in intracellular Ca(2+) concentration. Tn is composed of TnC, TnI, and TnT. Ca(2+) binding to the regulatory domain of TnC removes the inhibitory effect by TnI on the contraction. The inhibitory region of cardiac TnI spans from residue 138 to 149. Upon Ca(2+) activation, the inhibitory region is believed to be released from actin, thus triggering actin-activation of myosin ATPase. In this study, we created a series of Ala-substitution mutants of cTnI to delineate the functional contribution of each amino acid in the inhibitory region to myofilament regulation. We found that most of the point mutations in the inhibitory region reduced the ATPase activity in the presence of Ca(2+), which suggests the same region also acts as an activator of the ATPase. The thin filaments can also be activated by strong myosin head (S1)-actin interactions. The binding of N-ethylmaleimide-treated myosin subfragment 1 (NEM-S1) to actin filaments mimics such strong interactions. Interestingly, in the absence of Ca(2+) NEM-S1-induced activation of S1 ATPase was significantly less with the thin filaments containing TnI(T144A) than that with the wild-type TnI. However, in the presence of Ca(2+), there was little difference in the activation of ATPase activity between these preparations.
Collapse
Affiliation(s)
- Tomoyoshi Kobayashi
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
52
|
Duncker DJ, Boontje NM, Merkus D, Versteilen A, Krysiak J, Mearini G, El-Armouche A, de Beer VJ, Lamers JMJ, Carrier L, Walker LA, Linke WA, Stienen GJM, van der Velden J. Prevention of myofilament dysfunction by beta-blocker therapy in postinfarct remodeling. Circ Heart Fail 2009; 2:233-42. [PMID: 19808345 DOI: 10.1161/circheartfailure.108.806125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myofilament contractility of individual cardiomyocytes is depressed in remote noninfarcted myocardium and contributes to global left ventricular pump dysfunction after myocardial infarction (MI). Here, we investigated whether beta-blocker therapy could restore myofilament contractility. METHODS AND RESULTS In pigs with a MI induced by ligation of the left circumflex coronary artery, beta-blocker therapy (bisoprolol, MI+beta) was initiated on the first day after MI. Remote left ventricular subendocardial biopsies were taken 3 weeks after sham or MI surgery. Isometric force was measured in single permeabilized cardiomyocytes. Maximal force (F(max)) was lower, whereas Ca(2+) sensitivity was higher in untreated MI compared with sham (both P<0.05). The difference in Ca(2+) sensitivity was abolished by treatment of cells with the beta-adrenergic kinase, protein kinase A. beta-blocker therapy partially reversed F(max) and Ca(2+) sensitivity to sham values and significantly reduced passive force. Despite the lower myofilament Ca(2+) sensitivity in MI+beta compared with untreated myocardium, the protein kinase A induced reduction in Ca(2+) sensitivity was largest in cardiomyocytes from myocardium treated with beta-blockers. Phosphorylation of beta-adrenergic target proteins (myosin binding protein C and troponin I) did not differ among groups, whereas myosin light chain 2 phosphorylation was reduced in MI, which coincided with increased expression of protein phosphatase 1. beta-blockade fully restored the latter alterations and significantly reduced expression of protein phosphatase 2a. CONCLUSIONS beta-blockade reversed myofilament dysfunction and enhanced myofilament responsiveness to protein kinase A in remote myocardium after MI. These effects likely contribute to the beneficial effects of beta-blockade on global left ventricular function after MI.
Collapse
Affiliation(s)
- Dirk J Duncker
- Department of Biochemistry, Cardiovascular Research School COEUR, Erasmus MC, University Medical Center Rotterdam, Thoraxcenter, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies. Pflugers Arch 2009; 458:337-57. [PMID: 19165498 DOI: 10.1007/s00424-008-0630-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 12/24/2008] [Indexed: 01/06/2023]
Abstract
Muscle contraction results from force-generating interactions between myosin cross-bridges on the thick filament and actin on the thin filament. The force-generating interactions are regulated by Ca(2+) via specialised proteins of the thin filament. It is controversial how the contractile and regulatory systems dynamically interact to determine the time course of muscle contraction and relaxation. Whereas kinetics of Ca(2+)-induced thin-filament regulation is often investigated with isolated proteins, force kinetics is usually studied in muscle fibres. The gap between studies on isolated proteins and structured fibres is now bridged by recent techniques that analyse the chemical and mechanical kinetics of small components of a muscle fibre, subcellular myofibrils isolated from skeletal and cardiac muscle. Formed of serially arranged repeating units called sarcomeres, myofibrils have a complete fully structured ensemble of contractile and Ca(2+) regulatory proteins. The small diameter of myofibrils (few micrometres) facilitates analysis of the kinetics of sarcomere contraction and relaxation induced by rapid changes of [ATP] or [Ca(2+)]. Among the processes studied on myofibrils are: (1) the Ca(2+)-regulated switch on/off of the troponin complex, (2) the chemical steps in the cross-bridge adenosine triphosphatase cycle, (3) the mechanics of force generation and (4) the length dynamics of individual sarcomeres. These studies give new insights into the kinetics of thin-filament regulation and of cross-bridge turnover, how cross-bridges transform chemical energy into mechanical work, and suggest that the cross-bridge ensembles of each half-sarcomere cooperate with each other across the half-sarcomere borders. Additionally, we now have a better understanding of muscle relaxation and its impairment in certain muscle diseases.
Collapse
|
54
|
Molnár A, Borbély A, Czuriga D, Ivetta SM, Szilágyi S, Hertelendi Z, Pásztor ET, Balogh Á, Galajda Z, Szerafin T, Jaquet K, Papp Z, Édes I, Tóth A. Protein Kinase C Contributes to the Maintenance of Contractile Force in Human Ventricular Cardiomyocytes. J Biol Chem 2009; 284:1031-9. [DOI: 10.1074/jbc.m807600200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
55
|
Kobayashi T, Jin L, de Tombe PP. Cardiac thin filament regulation. Pflugers Arch 2008; 457:37-46. [PMID: 18421471 DOI: 10.1007/s00424-008-0511-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 03/19/2008] [Accepted: 03/25/2008] [Indexed: 12/17/2022]
Abstract
Myocardial contraction is initiated upon the release of calcium into the cytosol from the sarcoplasmic reticulum following membrane depolarization. The fundamental physiological role of the heart is to pump an amount blood that is determined by the prevailing requirements of the body. The physiological control systems employed to accomplish this task include regulation of heart rate, the amount of calcium release, and the response of the cardiac myofilaments to activator calcium ions. Thin filament activation and relaxation dynamics has emerged as a pivotal regulatory system tuning myofilament function to the beat-to-beat regulation of cardiac output. Maladaptation of thin filament dynamics, in addition to dysfunctional calcium cycling, is now recognized as an important cellular mechanism causing reduced cardiac pump function in a variety of cardiac diseases. Here, we review current knowledge regarding protein-protein interactions involved in the dynamics of thin filament activation and relaxation and the regulation of these processes by protein kinase-mediated phosphorylation.
Collapse
Affiliation(s)
- Tomoyoshi Kobayashi
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
56
|
Lu XY, Chen L, Cai XL, Yang HT. Overexpression of heat shock protein 27 protects against ischaemia/reperfusion-induced cardiac dysfunction via stabilization of troponin I and T. Cardiovasc Res 2008; 79:500-8. [DOI: 10.1093/cvr/cvn091] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
57
|
Tachampa K, Kobayashi T, Wang H, Martin AF, Biesiadecki BJ, Solaro RJ, de Tombe PP. Increased cross-bridge cycling kinetics after exchange of C-terminal truncated troponin I in skinned rat cardiac muscle. J Biol Chem 2008; 283:15114-21. [PMID: 18378675 DOI: 10.1074/jbc.m801636200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The precise mechanism of cardiac troponin I (cTnI) proteolysis in myocardial stunning is not fully understood. Accordingly, we determined the effect of cTnI C terminus truncation on chemo-mechanical transduction in isolated skinned rat trabeculae. Recombinant troponin complex (cTn), containing either mouse cTnI-(1-193) or human cTnI-(1-192) was exchanged into skinned cardiac trabeculae; Western blot analysis confirmed that 60-70% of the endogenous cTn was replaced by recombinant Tn. Incorporation of truncated cTnI induced significant reductions ( approximately 50%) in maximum force and cooperative activation as well as increases ( approximately 50%) in myofilament Ca(2+) sensitivity and tension cost. Similar results were obtained with either mouse or human truncated cTn. Presence of truncated cTnI increased maximum actin-activated S1 ATPase activity as well as its Ca(2+) sensitivity in vitro. Partial exchange (50%) for truncated cTnI resulted in similar reductions in maximum force and cooperativity; tension cost was increased in proportion to truncated cTnI content. In vitro, to determine the molecular mechanism responsible for the enhanced myofilament Ca(2+) sensitivity, we measured Ca(2+) binding to cTn as reported using a fluorescent probe. Incorporation of truncated cTnI did not affect Ca(2+) binding affinity to cTn alone. However, when cTn was incorporated into thin filaments, cTnI truncation induced a significant increase in Ca(2+) binding affinity to cTn. We conclude that cTnI truncation induces depressed myofilament function. Decreased cardiac function after ischemia/reperfusion injury may directly result, in part, from proteolytic degradation of cTnI, resulting in alterations in cross-bridge cycling kinetics.
Collapse
Affiliation(s)
- Kittipong Tachampa
- Center for Cardiovascular Research and Department of Physiology and Biophysics, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Michielsen ECHJ, Wodzig WKWH, Van Dieijen-Visser MP. Cardiac Troponin T Release after Prolonged Strenuous Exercise. Sports Med 2008; 38:425-35. [DOI: 10.2165/00007256-200838050-00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
59
|
Dai Q, Escobar GP, Hakala KW, Lambert JM, Weintraub ST, Lindsey ML. The Left Ventricle Proteome Differentiates Middle-Aged and Old Left Ventricles in Mice. J Proteome Res 2008; 7:756-65. [DOI: 10.1021/pr700685e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiuxia Dai
- Division of Cardiology, Department of Medicine, Department of Biochemistry, Medical Student Research Stipend Program, and The Janey Briscoe Center of Excellence in Cardiovascular Research, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - G. Patricia Escobar
- Division of Cardiology, Department of Medicine, Department of Biochemistry, Medical Student Research Stipend Program, and The Janey Briscoe Center of Excellence in Cardiovascular Research, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Kevin W. Hakala
- Division of Cardiology, Department of Medicine, Department of Biochemistry, Medical Student Research Stipend Program, and The Janey Briscoe Center of Excellence in Cardiovascular Research, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jessica M. Lambert
- Division of Cardiology, Department of Medicine, Department of Biochemistry, Medical Student Research Stipend Program, and The Janey Briscoe Center of Excellence in Cardiovascular Research, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Susan T. Weintraub
- Division of Cardiology, Department of Medicine, Department of Biochemistry, Medical Student Research Stipend Program, and The Janey Briscoe Center of Excellence in Cardiovascular Research, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Merry L. Lindsey
- Division of Cardiology, Department of Medicine, Department of Biochemistry, Medical Student Research Stipend Program, and The Janey Briscoe Center of Excellence in Cardiovascular Research, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
60
|
Iorga B, Blaudeck N, Solzin J, Neulen A, Stehle I, Lopez Davila AJ, Pfitzer G, Stehle R. Lys184 deletion in troponin I impairs relaxation kinetics and induces hypercontractility in murine cardiac myofibrils. Cardiovasc Res 2007; 77:676-86. [PMID: 18096573 DOI: 10.1093/cvr/cvm113] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIMS To understand the functional consequences of the Lys184 deletion in murine cardiac troponin I (mcTnI(DeltaK184)), we have studied the primary effects of this mutation linked to familial hypertrophic cardiomyopathy (FHC) at the sarcomeric level. METHODS AND RESULTS Ca(2+) sensitivity and kinetics of force development and relaxation were investigated in cardiac myofibrils from transgenic mice expressing mcTnI(DeltaK184), as a model which co-segregates with FHC. Ca(2+)-dependent conformational changes (switch-on/off) of the fluorescence-labelled human troponin complex, containing either wild-type hcTnI or mutant hcTnI(DeltaK183), were investigated in myofibrils prepared from the guinea pig left ventricle. Ca(2+) sensitivity and maximum Ca(2+)-activated and passive forces were significantly enhanced and cooperativity was reduced in mutant myofibrils. At partial Ca(2+) activation, mutant but not wild-type myofibrils displayed spontaneous oscillatory contraction of sarcomeres. Both conformational switch-off rates of the incorporated troponin complex and the myofibrillar relaxation kinetics were slowed down by the mutation. Impaired relaxation kinetics and increased force at low [Ca(2+)] were reversed by 2,3-butanedione monoxime (BDM), which traps cross-bridges in non-force-generating states. CONCLUSION We conclude that these changes are not due to alterations of the intrinsic cross-bridge kinetics. The molecular mechanism of sarcomeric diastolic dysfunction in this FHC model is based on the impaired regulatory switch-off kinetics of cTnI, which induces incomplete inhibition of force-generating cross-bridges at low [Ca(2+)] and thereby slows down relaxation of sarcomeres. Ca(2+) sensitization and impairment of the relaxation of sarcomeres induced by this mutation may underlie the enhanced systolic function and diastolic dysfunction at the sarcomeric level.
Collapse
Affiliation(s)
- Bogdan Iorga
- Institute of Vegetative Physiology, University of Cologne, Robert-Koch-Strasse 39, Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Controversy abounds in the cardiac muscle literature over the rate-limiting steps of cardiac muscle contraction and relaxation. However, the idea of a single biochemical mechanism being the all-inclusive rate-limiting step for cardiac muscle contraction and relaxation may be oversimplified. There is ample evidence that Ca(2+) concentration and dynamics, intrinsic cross-bridge properties, and even troponin C (TnC) Ca(2+) binding and dissociation can all modulate the mechanical events of cardiac muscle contraction and relaxation. However, TnC has generally been thought to play no role in influencing cardiac muscle dynamics due to the idea that Ca(2+) exchange with TnC is very rapid. This definitely is the case for isolated TnC, but not for the more sophisticated biochemical systems of reconstituted thin filaments and myofibrils. This review will discuss the biochemical influences on Ca(2+) exchange with TnC and their physiological implications.
Collapse
Affiliation(s)
- Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, 400 Hamilton Hall, Columbus, OH 43210, USA.
| | | |
Collapse
|
62
|
Abstract
This review briefly synthesizes the molecular biology of troponin, which is currently the best biochemical marker for the detection of cardiac injury and, thus, acute myocardial infarction as well. Potential new uses for the marker based on these insights, with a specific interest in cardiac troponin fragments that potentially could be linked to distinct clinical conditions, are described. Some of the clinical problems clinicians are faced with including how to use the markers in renal failure and the difficulties associated with the heterogeneity of current troponin assays are also discussed. Finally, we present the possibility of specific cardiac troponin fragments resulting from modification or degradation, associated with distinct pathological processes, as new potential uses for this biomarker.
Collapse
Affiliation(s)
- Vlad C Vasile
- Mayo Clinic & Mayo Medical School, Department of Internal Medicine, Division of Cardiovascular Diseases & Department of Laboratory Medicine & Pathology, Rochester, Minnesota, USA
| | | |
Collapse
|
63
|
Hamdani N, Kooij V, van Dijk S, Merkus D, Paulus WJ, Remedios CD, Duncker DJ, Stienen GJM, van der Velden J. Sarcomeric dysfunction in heart failure. Cardiovasc Res 2007; 77:649-58. [PMID: 18055579 DOI: 10.1093/cvr/cvm079] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sarcomeric dysfunction plays a central role in reduced cardiac pump function in heart failure. This review focuses on the alterations in sarcomeric proteins in diseased myocardium that range from altered isoform expression to post-translational protein changes such as proteolysis and phosphorylation. Recent studies in animal models of heart failure and human failing myocardium converge and indicate that sarcomeric dysfunction, including altered maximum force development, Ca(2+) sensitivity, and increased passive stiffness, largely originates from altered protein phosphorylation, caused by neurohumoral-induced alterations in the kinase-phosphatase balance inside the cardiomyocytes. Novel therapies, which specifically target phosphorylation sites within sarcomeric proteins or the kinases and phosphatases involved, might improve cardiac function in heart failure.
Collapse
Affiliation(s)
- Nazha Hamdani
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
With cardiovascular (CV)-related disorders accounting for the highest mortality rates in the world, affecting the quantity and quality of life of patients and creating an economic burden of prolonged therapeutic intervention, there is great significance in understanding the cellular and molecular alterations that influence the progression of these pathologies. The cellular genotype is regulated by the DNA component, whilst the cellular phenotype is influenced by the protein complement. By improving the understanding of the molecular mechanisms that influence the protein profile, the pathologies that influence the intrinsic functions of the CV system may be detected earlier or managed more efficiently. This is achievable with technologies encompassed by 'proteomics.' Proteomic investigations of CV diseases, including dilated cardiomyopathy (DCM), atherosclerosis, and ischemia/reperfusion (I/R) injury, have identified candidate proteins altered with the pathologic states, complementing past biochemical and physiologic observations. Whilst proteomics is still a relatively new discipline to be applied to the basic scientific investigation of CV diseases, it is emerging as a technique to screen for potential biomarkers in both tissues/cells and biologic fluids (biofluids), as well as to identify the targets of existing therapeutics. By enabling the separation of complex mixtures over numerous dimensions, exploiting the intrinsic properties of proteins, including charge state, molecular mass, and hydrophobicity, in addition to cellular location, the discrete alterations within the cell may be resolved. Proteomics has shown alterations to myofilament proteins including troponin I and myosin light chain, correlating with the reduction in contractility in the myocardium from DCM and I/R. The diverse cell types that coalesce to induce atherosclerotic plaque formation have been investigated both collectively and individually to elucidate the influence of the modifications to single cell types on the developing plaque as a whole. Proteomics has also been used to observe changes to biofluids occurring with these pathologies, a new potential link between basic science and clinical applications. The development of CV proteomics has helped to identify a number of possible protein candidates, and offers the potential to treat and diagnose CV disease more effectively in the future.
Collapse
Affiliation(s)
- Melanie Y White
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
65
|
de Waard MC, van der Velden J, Bito V, Ozdemir S, Biesmans L, Boontje NM, Dekkers DHW, Schoonderwoerd K, Schuurbiers HCH, de Crom R, Stienen GJM, Sipido KR, Lamers JMJ, Duncker DJ. Early exercise training normalizes myofilament function and attenuates left ventricular pump dysfunction in mice with a large myocardial infarction. Circ Res 2007; 100:1079-1088. [PMID: 17347478 DOI: 10.1161/01.res.0000262655.16373.37] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extent and mechanism of the cardiac benefit of early exercise training following myocardial infarction (MI) is incompletely understood, but may involve blunting of abnormalities in Ca(2+)-handling and myofilament function. Consequently, we investigated the effects of 8-weeks of voluntary exercise, started early after a large MI, on left ventricular (LV) remodeling and dysfunction in the mouse. Exercise had no effect on survival, MI size or LV dimensions, but improved LV fractional shortening from 8+/-1 to 12+/-1%, and LVdP/dt(P30) from 5295+/-207 to 5794+/-207 mm Hg/s (both P<0.05), and reduced pulmonary congestion. These global effects of exercise were associated with normalization of the MI-induced increase in myofilament Ca(2+)-sensitivity (DeltapCa(50)=0.037). This effect of exercise was PKA-mediated and likely because of improved beta(1)-adrenergic signaling, as suggested by the increased beta(1)-adrenoceptor protein (48%) and cAMP levels (36%; all P<0.05). Exercise prevented the MI-induced decreased maximum force generating capacity of skinned cardiomyocytes (F(max) increased from 14.3+/-0.7 to 18.3+/-0.8 kN/m(2) P<0.05), which was associated with enhanced shortening of unloaded intact cardiomyocytes (from 4.1+/-0.3 to 7.0+/-0.6%; P<0.05). Furthermore, exercise reduced diastolic Ca(2+)-concentrations (by approximately 30%, P<0.05) despite the unchanged SERCA2a and PLB expression and PLB phosphorylation status. Importantly, exercise had no effect on Ca(2+)-transient amplitude, indicating that the improved LV and cardiomyocyte shortening were principally because of improved myofilament function. In conclusion, early exercise in mice after a large MI has no effect on LV remodeling, but attenuates global LV dysfunction. The latter can be explained by the exercise-induced improvement of myofilament function.
Collapse
Affiliation(s)
- Monique C de Waard
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Stehle R, Iorga B, Pfitzer G. Calcium regulation of troponin and its role in the dynamics of contraction and relaxation. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1125-8. [PMID: 17158261 DOI: 10.1152/ajpregu.00841.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|