51
|
Kusuhara S, Fukushima Y, Fukuhara S, Jakt LM, Okada M, Shimizu Y, Hata M, Nishida K, Negi A, Hirashima M, Mochizuki N, Nishikawa SI, Uemura A. Arhgef15 promotes retinal angiogenesis by mediating VEGF-induced Cdc42 activation and potentiating RhoJ inactivation in endothelial cells. PLoS One 2012; 7:e45858. [PMID: 23029280 PMCID: PMC3448698 DOI: 10.1371/journal.pone.0045858] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/22/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Drugs inhibiting vascular endothelial growth factor (VEGF) signaling are globally administered to suppress deregulated angiogenesis in a variety of eye diseases. However, anti-VEGF therapy potentially affects the normal functions of retinal neurons and glias which constitutively express VEGF receptor 2. Thus, it is desirable to identify novel drug targets which are exclusively expressed in endothelial cells (ECs). Here we attempted to identify an EC-specific Rho guanine nucleotide exchange factor (GEF) and evaluate its role in retinal angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS By exploiting fluorescence-activated cell sorting and microarray analyses in conjunction with in silico bioinformatics analyses, we comprehensively identified endothelial genes in angiogenic retinal vessels of postnatal mice. Of 9 RhoGEFs which were highly expressed in retinal ECs, we show that Arhgef15 acted as an EC-specific GEF to mediate VEGF-induced Cdc42 activation and potentiated RhoJ inactivation, thereby promoting actin polymerization and cell motility. Disruption of the Arhgef15 gene led to delayed extension of vascular networks and subsequent reduction of total vessel areas in postnatal mouse retinas. CONCLUSIONS/SIGNIFICANCE Our study provides information useful to the development of new means of selectively manipulating angiogenesis without affecting homeostasis in un-targeted tissues; not only in eyes but also in various disease settings such as cancer.
Collapse
Affiliation(s)
- Sentaro Kusuhara
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoko Fukushima
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Ophthalmology, Osaka University Medical School, Osaka, Japan
| | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Lars Martin Jakt
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Mitsuhiro Okada
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Yuri Shimizu
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Masayuki Hata
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Medical School, Osaka, Japan
| | - Akira Negi
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Hirashima
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Shin-Ichi Nishikawa
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Akiyoshi Uemura
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|