51
|
Han Z, Shaligram S, Faughnan ME, Clark D, Sun Z, Su H. Reduction of endoglin receptor impairs mononuclear cell-migration. EXPLORATION OF MEDICINE 2020; 1:136-148. [PMID: 32954380 PMCID: PMC7500529 DOI: 10.37349/emed.2020.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To test if the impairment of mononuclear cell (MNC) migration in patients with hereditary hemorrhagic telangiectasia (HHT) is due to the reduction of the endoglin (ENG) receptor on the cell surface and oxidative stress. Methods: MNCs of HHT patients and normal controls were subjected to migration assay. Fractions of MNCs were pre-incubated with antibodies specific to HHT causative genes ENG [hereditary hemorrhagic telangiectasia type 1 (HHT1)] or activin receptor-like kinase 1 [ALK1, hereditary hemorrhagic telangiectasia type 2 (HHT2)], AMD3100 or Diprotin-A to block ENG, ALK1 C-X-C chemokine receptor 4 (CXCR4) or CD26 (increased in HHT1 MNCs) before migration assay. The MNCs were allowed to migrate toward stromal cell-derived factor-1α (SDF-1α) for 18 h. The expression of CXCR4, CD26, superoxide dismutase 1 (SOD1) and glutathione peroxidase 1 (GPX1) in MNCs and nitric oxide levels in the plasma were analyzed. Results: Compared to the controls, fewer HHT1 MNCs and similar number of HHT2 MNCs migrated toward SDF-1α. Diprotin-A pre-treatment improved HHT1 MNC-migration, but had no effect on normal and HHT2 MNCs. Pre-incubation with an anti-ENG antibody reduced the migration of normal MNCs. Diprotin-A did not improve the migration of ENG antibody pre-treated MNCs. Anti-ALK1 antibody had no effect on MNC-migration. AMD3100 treatment reduced normal and HHT MNC-migration. ENG mRNA level was reduced in HHT1 and HHT2 MNCs. ALK1 mRNA was reduced in HHT2 MNCs only. CD26 expression was higher in HHT1 MNCs. Pre-treatment of MNCs with anti-ENG or anti-ALK1 antibody had no effect on CD26 and CXCR4 expression. The expression of antioxidant enzymes, SOD1, was reduced in HHT1 MNCs, which was accompanied with an increase of ROS in HHT MNCs and nitric oxide in HHT1 plasma. Conclusions: Reduction of ENG receptor on MNC surface reduced monocyte migration toward SDF-1α independent of CD26 expression. Increased oxidative stress could alter HHT MNC migration behavior.
Collapse
Affiliation(s)
- Zhenying Han
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.,Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA
| | - Sonali Shaligram
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.,Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA
| | - Marie E Faughnan
- Toronto HHT Centre, Division of Respirology, Department of Medicine, St. Michael's Hospital, University of Toronto, Ontario M5B 1W8, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario M5B 1W8, Canada
| | - Dewi Clark
- Toronto HHT Centre, Division of Respirology, Department of Medicine, St. Michael's Hospital, University of Toronto, Ontario M5B 1W8, Canada
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, CA 94143, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.,Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
52
|
Trauma Can Induce Telangiectases in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9051507. [PMID: 32429545 PMCID: PMC7290907 DOI: 10.3390/jcm9051507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease of the fibrovascular tissue resulting in visceral vascular malformations and (muco-) cutaneous telangiectases with recurrent bleedings. The mechanism behind the disease is not fully understood; however, observations from HHT mouse models suggest that mechanical trauma may induce the formation of abnormal vessels. To assess the influence of environmental trauma (mechanical or light induced) on the number of telangiectases in patients with HHT, the number of telangiectases on the hands, face, and lips were counted on 103 HHT patients possessing at least three out of four Curaçao criteria. They were then surveyed for information concerning their dominant hand, exposure to sunlight, and types of regular manual work. Patients developed more telangiectases on their dominant hand and lower lip (Wilcoxon rank sum test: p < 0.001). Mechanical stress induced by manual work led to an increased number of telangiectases on patients’ hands (Mann–Whitney U test: p < 0.001). There was also a positive correlation between sun exposure and the number of telangiectases on the lips (Mann–Whitney U test: 0.027). This study shows that mechanical and UV-induced trauma strongly influence the formation of telangiectases in HHT patients. This result has potential implications in preventive measures and on therapeutic approaches for HHT.
Collapse
|
53
|
Cheng P, Ma L, Shaligram S, Walker EJ, Yang ST, Tang C, Zhu W, Zhan L, Li Q, Zhu X, Lawton MT, Su H. Effect of elevation of vascular endothelial growth factor level on exacerbation of hemorrhage in mouse brain arteriovenous malformation. J Neurosurg 2020; 132:1566-1573. [PMID: 31026826 PMCID: PMC6817409 DOI: 10.3171/2019.1.jns183112] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/18/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE A high level of vascular endothelial growth factor (VEGF) has been implicated in brain arteriovenous malformation (bAVM) bleeding and rupture. However, direct evidence is missing. In this study the authors used a mouse bAVM model to test the hypothesis that elevation of focal VEGF levels in bAVMs exacerbates the severity of bAVM hemorrhage. METHODS Brain AVMs were induced in adult mice in which activin receptor-like kinase 1 (Alk1, a gene that causes AVM) gene exons 4-6 were floxed by intrabasal ganglia injection of an adenoviral vector expressing Cre recombinase to induce Alk1 mutation and an adeno-associated viral vector expressing human VEGF (AAV-VEGF) to induce angiogenesis. Two doses of AAV-VEGF (5 × 109 [high] or 2 × 109 [low]) viral genomes were used. In addition, the common carotid artery and external jugular vein were anastomosed in a group of mice treated with low-dose AAV-VEGF 6 weeks after the model induction to induce cerebral venous hypertension (VH), because VH increases the VEGF level in the brain. Brain samples were collected 8 weeks after the model induction. Hemorrhages in the bAVM lesions were quantified on brain sections stained with Prussian blue, which detects iron deposition. VEGF levels were quantified in bAVM tissue by enzyme-linked immunosorbent assay. RESULTS Compared to mice injected with a low dose of AAV-VEGF, the mice injected with a high dose had higher levels of VEGF (p = 0.003) and larger Prussian blue-positive areas in the bAVM lesion at 8 or 9 weeks after model induction (p = 0.002). VH increased bAVM hemorrhage in the low-dose AAV-VEGF group. The overall mortality in the high-dose AAV-VEGF group was 26.7%, whereas no mouse died in the low-dose AAV-VEGF group without VH. In contrast, VH caused a mortality of 50% in the low-dose AAV-VEGF group. CONCLUSIONS Using mouse bAVM models, the authors provided direct evidence that elevation of the VEGF level increases bAVM hemorrhage and mouse mortality.
Collapse
Affiliation(s)
- Philip Cheng
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Li Ma
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Sonali Shaligram
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Espen J. Walker
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Shun-Tai Yang
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Chaoliang Tang
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Wan Zhu
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Lei Zhan
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Qiang Li
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Xiaonan Zhu
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Michael T. Lawton
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| |
Collapse
|
54
|
Hong JM, Hu YD, Chai XQ, Tang CL. Role of activin receptor-like kinase 1 in vascular development and cerebrovascular diseases. Neural Regen Res 2020; 15:1807-1813. [PMID: 32246621 PMCID: PMC7513971 DOI: 10.4103/1673-5374.280305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Activin receptor-like kinase 1 (ALK1) is a transmembrane serine/threonine receptor kinase of the transforming growth factor beta (TGFβ) receptor superfamily. ALK1 is specifically expressed in vascular endothelial cells, and its dynamic changes are closely related to the proliferation of endothelial cells, the recruitment of pericytes to blood vessels, and functional differentiation during embryonic vascular development. The pathophysiology of many cerebrovascular diseases is today understood as a disorder of endothelial cell function and an imbalance in the proportion of vascular cells. Indeed, mutations in ALK1 and its co-receptor endoglin are major genetic risk factors for vascular arteriovenous malformation. Many studies have shown that ALK1 is closely related to the development of cerebral aneurysms, arteriovenous malformations, and cerebral atherosclerosis. In this review, we describe the various roles of ALK1 in the regulation of angiogenesis and in the maintenance of cerebral vascular homeostasis, and we discuss its relationship to functional dysregulation in cerebrovascular diseases. This review should provide new perspectives for basic research on cerebrovascular diseases and offer more effective targets and strategies for clinical diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Jun-Mou Hong
- Department of Vascular Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Yi-Da Hu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiao-Qing Chai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Chao-Liang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
55
|
Ota T, Komiyama M. Pathogenesis of non-hereditary brain arteriovenous malformation and therapeutic implications. Interv Neuroradiol 2020; 26:244-253. [PMID: 32024399 DOI: 10.1177/1591019920901931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain arteriovenous malformations have a high risk of intracranial hemorrhage, which is a substantial cause of morbidity and mortality in patients with brain arteriovenous malformations. Although a variety of genetic factors leading to hereditary brain arteriovenous malformations have been extensively investigated, their pathogenesis is still not well elucidated, especially in sporadic brain arteriovenous malformations. The authors have reviewed the updated data of not only the genetic aspects of sporadic brain arteriovenous malformations, but also the architecture of microvasculature, the roles of the angiogenic factors, and the signaling pathways. This knowledge may allow us to infer the pathogenesis of sporadic brain arteriovenous malformations and develop pre-emptive treatments for them.
Collapse
Affiliation(s)
- Takahiro Ota
- Department of Neurosurgery, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Masaki Komiyama
- Department of Neurointervention, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
56
|
Barbosa Do Prado L, Han C, Oh SP, Su H. Recent Advances in Basic Research for Brain Arteriovenous Malformation. Int J Mol Sci 2019; 20:ijms20215324. [PMID: 31731545 PMCID: PMC6862668 DOI: 10.3390/ijms20215324] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Arteriovenous malformations (AVMs) are abnormal connections of vessels that shunt blood directly from arteries into veins. Rupture of brain AVMs (bAVMs) can cause life-threatening intracranial bleeding. Even though the majority of bAVM cases are sporadic without a family history, some cases are familial. Most of the familial cases of bAVMs are associated with a genetic disorder called hereditary hemorrhagic telangiectasia (HHT). The mechanism of bAVM formation is not fully understood. The most important advances in bAVM basic science research is the identification of somatic mutations of genes in RAS-MAPK pathways. However, the mechanisms by which mutations of these genes lead to AVM formation are largely unknown. In this review, we summarized the latest advance in bAVM studies and discussed some pathways that play important roles in bAVM pathogenesis. We also discussed the therapeutic implications of these pathways.
Collapse
Affiliation(s)
- Leandro Barbosa Do Prado
- Center for Cerebrovascular Research, Department of Anesthesia, University of California, San Francisco, CA 94143, USA;
| | - Chul Han
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute/Dignity Health, Phoenix, AZ 85013, USA; (C.H.); (S.P.O.)
| | - S. Paul Oh
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute/Dignity Health, Phoenix, AZ 85013, USA; (C.H.); (S.P.O.)
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia, University of California, San Francisco, CA 94143, USA;
- Correspondence: ; Tel.: +01-415-206-3162
| |
Collapse
|
57
|
Shaligram SS, Winkler E, Cooke D, Su H. Risk factors for hemorrhage of brain arteriovenous malformation. CNS Neurosci Ther 2019; 25:1085-1095. [PMID: 31359618 PMCID: PMC6776739 DOI: 10.1111/cns.13200] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Patients with brain arteriovenous malformation (bAVM) are at risk of intracranial hemorrhage (ICH). Overall, bAVM accounts for 25% of hemorrhagic strokes in adults <50 years of age. The treatment of unruptured bAVMs has become controversial, because the natural history of these patients may be less morbid than invasive therapies. Available treatments include observation, surgical resection, endovascular embolization, stereotactic radiosurgery, or combination thereof. Knowing the risk factors for bAVM hemorrhage is crucial for selecting appropriate therapeutic strategies. In this review, we discussed several biological risk factors, which may contribute to bAVM hemorrhage.
Collapse
Affiliation(s)
- Sonali S Shaligram
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative care, University of California, San Francisco, California
| | - Ethan Winkler
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Daniel Cooke
- Department of Radiology, University of California, San Francisco, California
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative care, University of California, San Francisco, California
| |
Collapse
|
58
|
Winkler EA, Lu AY, Raygor KP, Linzey JR, Jonzzon S, Lien BV, Rutledge WC, Abla AA. Defective vascular signaling & prospective therapeutic targets in brain arteriovenous malformations. Neurochem Int 2019; 126:126-138. [PMID: 30858016 DOI: 10.1016/j.neuint.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is composed of endothelial cells, vascular smooth muscle cells, pericytes, astrocytes and neurons. Through tightly regulated multi-directional cell signaling, the neurovascular unit is responsible for the numerous functionalities of the cerebrovasculature - including the regulation of molecular and cellular transport across the blood-brain barrier, angiogenesis, blood flow responses to brain activation and neuroinflammation. Historically, the study of the brain vasculature focused on endothelial cells; however, recent work has demonstrated that pericytes and vascular smooth muscle cells - collectively known as mural cells - play critical roles in many of these functions. Given this emerging data, a more complete mechanistic understanding of the cellular basis of brain vascular malformations is needed. In this review, we examine the integrated functions and signaling within the neurovascular unit necessary for normal cerebrovascular structure and function. We then describe the role of aberrant cell signaling within the neurovascular unit in brain arteriovenous malformations and identify how these pathways may be targeted therapeutically to eradicate or stabilize these lesions.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Alex Y Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kunal P Raygor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph R Linzey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Soren Jonzzon
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Brian V Lien
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - W Caleb Rutledge
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
59
|
Ando K, Wang W, Peng D, Chiba A, Lagendijk AK, Barske L, Crump JG, Stainier DYR, Lendahl U, Koltowska K, Hogan BM, Fukuhara S, Mochizuki N, Betsholtz C. Peri-arterial specification of vascular mural cells from naïve mesenchyme requires Notch signaling. Development 2019; 146:dev.165589. [PMID: 30642834 DOI: 10.1242/dev.165589] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
Abstract
Mural cells (MCs) are essential for blood vessel stability and function; however, the mechanisms that regulate MC development remain incompletely understood, in particular those involved in MC specification. Here, we investigated the first steps of MC formation in zebrafish using transgenic reporters. Using pdgfrb and abcc9 reporters, we show that the onset of expression of abcc9, a pericyte marker in adult mice and zebrafish, occurs almost coincidentally with an increment in pdgfrb expression in peri-arterial mesenchymal cells, suggesting that these transcriptional changes mark the specification of MC lineage cells from naïve pdgfrb low mesenchymal cells. The emergence of peri-arterial pdgfrb high MCs required Notch signaling. We found that pdgfrb-positive cells express notch2 in addition to notch3, and although depletion of notch2 or notch3 failed to block MC emergence, embryos depleted of both notch2 and notch3 lost mesoderm- as well as neural crest-derived pdgfrb high MCs. Using reporters that read out Notch signaling and Notch2 receptor cleavage, we show that Notch activation in the mesenchyme precedes specification into pdgfrb high MCs. Taken together, these results show that Notch signaling is necessary for peri-arterial MC specification.
Collapse
Affiliation(s)
- Koji Ando
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden .,Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565 8565, Japan
| | - Weili Wang
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Di Peng
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565 8565, Japan
| | - Anne K Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, SE-171 77 Stockholm, Sweden.,Department of Medicine, Huddinge, Karolinska Institutet, Integrated Cardio Metabolic Centre (ICMC), Blickagången 6, SE-141 57 Huddinge, Sweden
| | - Katarzyna Koltowska
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden.,Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565 8565, Japan.,Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School Musashi Kosugi Hospital, Kawasaki, Kanagawa 211 8533, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565 8565, Japan.,AMED-CREST, Department of Cell Biology, National Cerebral and Cardiovascular Center, 5-7-1, Suita, Osaka 565 8565, Japan
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden.,Department of Medicine, Huddinge, Karolinska Institutet, Integrated Cardio Metabolic Centre (ICMC), Blickagången 6, SE-141 57 Huddinge, Sweden
| |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW Mutations in the Endoglin (Eng) gene, an auxiliary receptor in the transforming growth factor beta (TGFβ)-superfamily signaling pathway, are responsible for the human vascular disorder hereditary hemorrhagic telangiectasia (HHT) type 1, characterized in part by blood vessel enlargement. A growing body of work has uncovered an autonomous role for Eng in endothelial cells. We will highlight the influence of Eng on distinct cellular behaviors, such as migration and shape control, which are ultimately important for the assignment of proper blood vessel diameters. RECENT FINDINGS How endothelial cells establish hierarchically ordered blood vessel trees is one of the outstanding questions in vascular biology. Mutations in components of the TGFβ-superfamily of signaling molecules disrupt this patterning and cause arteriovenous malformations (AVMs). Eng is a TGFβ coreceptor enhancing signaling through the type I receptor Alk1. Recent studies identified bone morphogenetic proteins (BMPs) 9 and 10 as the primary ligands for Alk1/Eng. Importantly, Eng potentiated Alk1 pathway activation downstream of hemodynamic forces. New results furthermore revealed how Eng affects endothelial cell migration and cell shape control in response to these forces, thereby providing new avenues for our understanding of AVM cause. SUMMARY We will discuss the interplay of Eng and hemodynamic forces, such as shear stress, in relation to Alk1 receptor activation. We will furthermore detail how this signaling pathway influences endothelial cell behaviors important for the establishment of hierarchically ordered blood vessel trees. Finally, we will provide an outlook how these insights might help in developing new therapies for the treatment of HHT.
Collapse
|
61
|
Galaris G, Thalgott JH, Lebrin FPG. Pericytes in Hereditary Hemorrhagic Telangiectasia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:215-246. [PMID: 31147880 DOI: 10.1007/978-3-030-16908-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by multi-systemic vascular dysplasia affecting 1 in 5000 people worldwide. Individuals with HHT suffer from many complications including nose and gastrointestinal bleeding, anemia, iron deficiency, stroke, abscess, and high-output heart failure. Identification of the causative gene mutations and the generation of animal models have revealed that decreased transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signaling and increased vascular endothelial growth factor (VEGF) signaling activity in endothelial cells are responsible for the development of the vascular malformations in HHT. Perturbations in these key pathways are thought to lead to endothelial cell activation resulting in mural cell disengagement from the endothelium. This initial instability state causes the blood vessels to response inadequately when they are exposed to angiogenic triggers resulting in excessive blood vessel growth and the formation of vascular abnormalities that are prone to bleeding. Drugs promoting blood vessel stability have been reported as effective in preclinical models and in clinical trials indicating possible interventional targets based on a normalization approach for treating HHT. Here, we will review how disturbed TGF-β and VEGF signaling relates to blood vessel destabilization and HHT development and will discuss therapeutic opportunities based on the concept of vessel normalization to treat HHT.
Collapse
Affiliation(s)
- Georgios Galaris
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jérémy H Thalgott
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Franck P G Lebrin
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Physics for Medicine, ESPCI, INSERM U1273, CNRS, Paris, France.
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France.
| |
Collapse
|
62
|
Zhu W, Saw D, Weiss M, Sun Z, Wei M, Shaligram S, Wang S, Su H. Induction of Brain Arteriovenous Malformation Through CRISPR/Cas9-Mediated Somatic Alk1 Gene Mutations in Adult Mice. Transl Stroke Res 2018; 10:557-565. [PMID: 30511203 DOI: 10.1007/s12975-018-0676-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023]
Abstract
Brain arteriovenous malformation (bAVM) is an important risk factor for intracranial hemorrhage. The pathogenesis of bAVM has not been fully understood. Animal models are important tools for dissecting bAVM pathogenesis and testing new therapies. We have developed several mouse bAVM models using genetically modified mice. However, due to the body size, mouse bAVM models have some limitations. Recent studies identified somatic mutations in sporadic human bAVM. To develop a feasible tool to create sporadic bAVM in rodent and animals larger than rodent, we made tests using the CRISPR/Cas9 technique to induce somatic gene mutations in mouse brain in situ. Two sequence-specific guide RNAs (sgRNAs) targeting mouse Alk1 exons 4 and 5 were cloned into pAd-Alk1e4sgRNA + e5sgRNA-Cas9 plasmid. These sgRNAs were capable to generate mutations in Alk1 gene in mouse cell lines. After packaged into adenovirus, Ad-Alk1e4sgRNA + e5sgRNA-Cas9 was co-injected with an adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF) into the brains of wild-type C57BL/6J mice. Eight weeks after viral injection, bAVMs were detected in 10 of 12 mice. Compared to the control (Ad-GFP/AAV-VEGF-injected) brain, 13% of Alk1 alleles were mutated and Alk1 expression was reduced by 26% in the Ad-Alk1e4sgRNA + e5sgRNA-Cas9/AAV-VEGF-injected brains. Around the Ad-Alk1e4sgRNA + e5sgRNA-Cas9/AAV-VEGF injected site, Alk1-null endothelial cells were detected. Our data demonstrated that CRISPR/Cas9 is a feasible tool for generating bAVM model in animals.
Collapse
Affiliation(s)
- Wan Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Saw
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Miriam Weiss
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Meng Wei
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Sonali Shaligram
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Sen Wang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
63
|
Winkler EA, Birk H, Burkhardt JK, Chen X, Yue JK, Guo D, Rutledge WC, Lasker GF, Partow C, Tihan T, Chang EF, Su H, Kim H, Walcott BP, Lawton MT. Reductions in brain pericytes are associated with arteriovenous malformation vascular instability. J Neurosurg 2018; 129:1464-1474. [PMID: 29303444 PMCID: PMC6033689 DOI: 10.3171/2017.6.jns17860] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/19/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVEBrain arteriovenous malformations (bAVMs) are rupture-prone tangles of blood vessels with direct shunting of blood flow between arterial and venous circulations. The molecular and/or cellular mechanisms contributing to bAVM pathogenesis and/or destabilization in sporadic lesions have remained elusive. Initial insights into AVM formation have been gained through models of genetic AVM syndromes. And while many studies have focused on endothelial cells, the contributions of other vascular cell types have yet to be systematically studied. Pericytes are multifunctional mural cells that regulate brain angiogenesis, blood-brain barrier integrity, and vascular stability. Here, the authors analyze the abundance of brain pericytes and their association with vascular changes in sporadic human AVMs.METHODSTissues from bAVMs and from temporal lobe specimens from patients with medically intractable epilepsy (nonvascular lesion controls [NVLCs]) were resected. Immunofluorescent staining with confocal microscopy was performed to quantify pericytes (platelet-derived growth factor receptor-beta [PDGFRβ] and aminopeptidase N [CD13]) and extravascular hemoglobin. Iron-positive hemosiderin deposits were quantified with Prussian blue staining. Syngo iFlow post-image processing was used to measure nidal blood flow on preintervention angiograms.RESULTSQuantitative immunofluorescent analysis demonstrated a 68% reduction in the vascular pericyte number in bAVMs compared with the number in NVLCs (p < 0.01). Additional analysis demonstrated 52% and 50% reductions in the vascular surface area covered by CD13- and PDGFRβ-positive pericyte cell processes, respectively, in bAVMs (p < 0.01). Reductions in pericyte coverage were statistically significantly greater in bAVMs with prior rupture (p < 0.05). Unruptured bAVMs had increased microhemorrhage, as evidenced by a 15.5-fold increase in extravascular hemoglobin compared with levels in NVLCs (p < 0.01). Within unruptured bAVM specimens, extravascular hemoglobin correlated negatively with pericyte coverage (CD13: r = -0.93, p < 0.01; PDGFRβ: r = -0.87, p < 0.01). A similar negative correlation was observed with pericyte coverage and Prussian blue-positive hemosiderin deposits (CD13: r = -0.90, p < 0.01; PDGFRβ: r = -0.86, p < 0.01). Pericyte coverage positively correlated with the mean transit time of blood flow or the time that circulating blood spends within the bAVM nidus (CD13: r = 0.60, p < 0.05; PDGFRβ: r = 0.63, p < 0.05). A greater reduction in pericyte coverage is therefore associated with a reduced mean transit time or faster rate of blood flow through the bAVM nidus. No correlations were observed with time to peak flow within feeding arteries or draining veins.CONCLUSIONSBrain pericyte number and coverage are reduced in sporadic bAVMs and are lowest in cases with prior rupture. In unruptured bAVMs, pericyte reductions correlate with the severity of microhemorrhage. A loss of pericytes also correlates with a faster rate of blood flow through the bAVM nidus. This suggests that pericytes are associated with and may contribute to vascular fragility and hemodynamic changes in bAVMs. Future studies in animal models are needed to better characterize the role of pericytes in AVM pathogenesis.
Collapse
Affiliation(s)
- Ethan A. Winkler
- Department of Neurological Surgery, University of California, San Francisco
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco
| | - Harjus Birk
- Department of Neurological Surgery, University of California, San Francisco
| | - Jan-Karl Burkhardt
- Department of Neurological Surgery, University of California, San Francisco
| | - Xiaolin Chen
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco
- Department of Neurological Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - John K. Yue
- Department of Neurological Surgery, University of California, San Francisco
| | - Diana Guo
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco
| | - W. Caleb Rutledge
- Department of Neurological Surgery, University of California, San Francisco
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco
| | - George F. Lasker
- Department of Neurological Surgery, University of California, San Francisco
| | - Carlene Partow
- Department of Neurological Surgery, University of California, San Francisco
| | - Tarik Tihan
- Department of Pathology, University of California, San Francisco
| | - Edward F. Chang
- Department of Neurological Surgery, University of California, San Francisco
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco
| | - Brian P. Walcott
- Department of Neurological Surgery, University of California, San Francisco
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco
- Department of Neurological Surgery, University of Southern California, Los Angeles, California
| | - Michael T. Lawton
- Department of Neurological Surgery, University of California, San Francisco
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco
| |
Collapse
|
64
|
Walcott BP, Winkler EA, Rouleau GA, Lawton MT. Molecular, Cellular, and Genetic Determinants of Sporadic Brain Arteriovenous Malformations. Neurosurgery 2018; 63 Suppl 1:37-42. [PMID: 27399362 DOI: 10.1227/neu.0000000000001300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Brian P Walcott
- Department of Neurological Surgery and.,Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, California
| | - Ethan A Winkler
- Department of Neurological Surgery and.,Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, California
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Michael T Lawton
- Department of Neurological Surgery and.,Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, California
| |
Collapse
|
65
|
Yamaguchi S, Horie N, Satoh K, Ishikawa T, Mori T, Maeda H, Fukuda Y, Ishizaka S, Hiu T, Morofuji Y, Izumo T, Nishida N, Matsuo T. Age of donor of human mesenchymal stem cells affects structural and functional recovery after cell therapy following ischaemic stroke. J Cereb Blood Flow Metab 2018; 38:1199-1212. [PMID: 28914133 PMCID: PMC6434451 DOI: 10.1177/0271678x17731964] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell transplantation therapy offers great potential to improve impairments after stroke. However, the importance of donor age on therapeutic efficacy is unclear. We investigated the regenerative capacity of transplanted cells focusing on donor age (young vs. old) for ischaemic stroke. The quantities of human mesenchymal stem cell (hMSC) secreted brain-derived neurotrophic factor in vitro and of monocyte chemotactic protein-1 at day 7 in vivo were both significantly higher for young hMSC compared with old hMSC. Male Sprague-Dawley rats subjected to transient middle cerebral artery occlusion that received young hMSC (trans-arterially at 24 h after stroke) showed better behavioural recovery with prevention of brain atrophy compared with rats that received old hMSC. Histological analysis of the peri-infarct cortex showed that rats treated with young hMSC had significantly fewer microglia and more vessels covered with pericytes. Interestingly, migration of neural stem/progenitor cells expressing Musashi-1 positively correlated with astrocyte process alignment, which was more pronounced for young hMSC. Aging of hMSC may be a critical factor that affects cell therapy outcomes, and transplantation of young hMSC appears to provide better functional recovery through anti-inflammatory effects, vessel maturation, and neurogenesis potentially by the dominance of trophic factor secretion.
Collapse
Affiliation(s)
- Susumu Yamaguchi
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nobutaka Horie
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuya Satoh
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Ishikawa
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Mori
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hajime Maeda
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuhtaka Fukuda
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shunsuke Ishizaka
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Hiu
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoichi Morofuji
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Izumo
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Noriyuki Nishida
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Matsuo
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
66
|
Zhu W, Chen W, Zou D, Wang L, Bao C, Zhan L, Saw D, Wang S, Winkler E, Li Z, Zhang M, Shen F, Shaligram S, Lawton M, Su H. Thalidomide Reduces Hemorrhage of Brain Arteriovenous Malformations in a Mouse Model. Stroke 2018; 49:1232-1240. [PMID: 29593101 DOI: 10.1161/strokeaha.117.020356] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Brain arteriovenous malformation (bAVM) is an important risk factor for intracranial hemorrhage. Current treatments for bAVM are all associated with considerable risks. There is no safe method to prevent bAVM hemorrhage. Thalidomide reduces nose bleeding in patients with hereditary hemorrhagic telangiectasia, an inherited disorder characterized by vascular malformations. In this study, we tested whether thalidomide and its less toxic analog, lenalidomide, reduce bAVM hemorrhage using a mouse model. METHODS bAVMs were induced through induction of brain focal activin-like kinase 1 (Alk1, an AVM causative gene) gene deletion and angiogenesis in adult Alk1-floxed mice. Thalidomide was injected intraperitoneally twice per week for 6 weeks, starting either 2 or 8 weeks after AVM induction. Lenalidomide was injected intraperitoneally daily starting 8 weeks after AVM induction for 6 weeks. Brain samples were collected at the end of the treatments for morphology, mRNA, and protein analyses. The influence of Alk1 downregulation on PDGFB (platelet-derived growth factor B) expression was also studied on cultured human brain microvascular endothelial cells. The effect of PDGFB in mural cell recruitment in bAVM was explored by injection of a PDGFB overexpressing lentiviral vector to the mouse brain. RESULTS Thalidomide or lenalidomide treatment reduced the number of dysplastic vessels and hemorrhage and increased mural cell (vascular smooth muscle cells and pericytes) coverage in the bAVM lesion. Thalidomide reduced the burden of CD68+ cells and the expression of inflammatory cytokines in the bAVM lesions. PDGFB expression was reduced in ALK1-knockdown human brain microvascular endothelial cells and in mouse bAVM lesion. Thalidomide increased Pdgfb expression in bAVM lesion. Overexpression of PDGFB mimicked the effect of thalidomide. CONCLUSIONS Thalidomide and lenalidomide improve mural cell coverage of bAVM vessels and reduce bAVM hemorrhage, which is likely through upregulation of Pdgfb expression.
Collapse
Affiliation(s)
- Wan Zhu
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.)
| | - Wanqiu Chen
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.)
| | - Dingquan Zou
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.).,University of California, San Francisco; and Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.Z.)
| | - Liang Wang
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.)
| | - Chen Bao
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.)
| | - Lei Zhan
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.)
| | - Daniel Saw
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.)
| | - Sen Wang
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.)
| | | | - Zhengxi Li
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.)
| | - Meng Zhang
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.)
| | - Fanxia Shen
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.)
| | - Sonali Shaligram
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.)
| | | | - Hua Su
- From the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (W.Z., W.C., D.Z., L.W., C.B., L.Z., D.S., S.W., Z.L., M.Z., F.S., S.S., H.S.)
| |
Collapse
|
67
|
Ruiz-Llorente L, Gallardo-Vara E, Rossi E, Smadja DM, Botella LM, Bernabeu C. Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin Ther Targets 2017; 21:933-947. [PMID: 28796572 DOI: 10.1080/14728222.2017.1365839] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hereditary Haemorrhagic Telangiectasia (HHT) is as an autosomal dominant trait characterized by frequent nose bleeds, mucocutaneous telangiectases, arteriovenous malformations (AVMs) of the lung, liver and brain, and gastrointestinal bleedings due to telangiectases. HHT is originated by mutations in genes whose encoded proteins are involved in the transforming growth factor β (TGF-β) family signalling of vascular endothelial cells. In spite of the great advances in the diagnosis as well as in the molecular, cellular and animal models of HHT, the current treatments remain just at the palliative level. Areas covered: Pathogenic mutations in genes coding for the TGF-β receptors endoglin (ENG) (HHT1) or the activin receptor-like kinase-1 (ACVRL1 or ALK1) (HHT2), are responsible for more than 80% of patients with HHT. Therefore, ENG and ALK1 are the main potential therapeutic targets for HHT and the focus of this review. The current status of the preclinical and clinical studies, including the anti-angiogenic strategy, have been addressed. Expert opinion: Endoglin and ALK1 are attractive therapeutic targets in HHT. Because haploinsufficiency is the pathogenic mechanism in HHT, several therapeutic approaches able to enhance protein expression and/or function of endoglin and ALK1 are keys to find novel and efficient treatments for the disease.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Eunate Gallardo-Vara
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Elisa Rossi
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - David M Smadja
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - Luisa M Botella
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Carmelo Bernabeu
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| |
Collapse
|
68
|
Guo L, Harari E, Virmani R, Finn AV. Linking Hemorrhage, Angiogenesis, Macrophages, and Iron Metabolism in Atherosclerotic Vascular Diseases. Arterioscler Thromb Vasc Biol 2017; 37:e33-e39. [DOI: 10.1161/atvbaha.117.309045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Liang Guo
- From the CVPath Institute, Inc, Gaithersburg, MD
| | | | - Renu Virmani
- From the CVPath Institute, Inc, Gaithersburg, MD
| | | |
Collapse
|
69
|
Integrin β8 Deletion Enhances Vascular Dysplasia and Hemorrhage in the Brain of Adult Alk1 Heterozygous Mice. Transl Stroke Res 2016; 7:488-496. [PMID: 27352867 DOI: 10.1007/s12975-016-0478-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Brain arteriovenous malformation (bAVM), characterized by tangled dysplastic vessels, is an important cause of intracranial hemorrhage in young adults, and its pathogenesis and progression are not fully understood. Patients with haploinsufficiency of transforming growth factor-β (TGF-β) receptors, activin receptor-like kinase 1 (ALK1) or endoglin (ENG) have a higher incidence of bAVM than the general population. However, bAVM does not develop effectively in mice with the same haploinsufficiency. The expression of integrin β8 subunit (ITGB8), another member in the TGF-β superfamily, is reduced in sporadic human bAVM. Brain angiogenic stimulation results at the capillary level of vascular malformation in adult Alk1 haploinsufficient (Alk1 +/- ) mice. We hypothesized that deletion of Itgb8 enhances bAVM development in adult Alk1 +/- mice. An adenoviral vector expressing Cre recombinase (Ad-Cre) was co-injected with an adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF) into the brain of Alk1 +/-;Itgb8-floxed mice to induce focal Itgb8 gene deletion and angiogenesis. We showed that compared with Alk +/- mice (4.75 ± 1.38/mm2), the Alk1 +/-;Itgb8-deficient mice had more dysplastic vessels in the angiogenic foci (7.14 ± 0.68/mm2, P = 0.003). More severe hemorrhage was associated with dysplastic vessels in the brain of Itgb8-deleted Alk1 +/- , as evidenced by larger Prussian blue-positive areas (1278 ± 373 pixels/mm2 vs. Alk1 +/- : 320 ± 104 pixels/mm2; P = 0.028). These data indicate that both Itgb8 and Alk1 are important in maintaining normal cerebral angiogenesis in response to VEGF. Itgb8 deficiency enhances the formation of dysplastic vessels and hemorrhage in Alk1 +/- mice.
Collapse
|
70
|
Zhang R, Han Z, Degos V, Shen F, Choi EJ, Sun Z, Kang S, Wong M, Zhu W, Zhan L, Arthur HM, Oh SP, Faughnan ME, Su H. Persistent infiltration and pro-inflammatory differentiation of monocytes cause unresolved inflammation in brain arteriovenous malformation. Angiogenesis 2016; 19:451-461. [PMID: 27325285 DOI: 10.1007/s10456-016-9519-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
Abstract
An abnormally high number of macrophages are present in human brain arteriovenous malformations (bAVM) with or without evidence of prior hemorrhage, causing unresolved inflammation that may enhance abnormal vascular remodeling and exacerbate the bAVM phenotype. The reasons for macrophage accumulation at the bAVM sites are not known. We tested the hypothesis that persistent infiltration and pro-inflammatory differentiation of monocytes in angiogenic tissues increase the macrophage burden in bAVM using two mouse models and human monocytes. Mouse bAVM was induced through deletion of AVM causative genes, Endoglin (Eng) globally or Alk1 focally, plus brain focal angiogenic stimulation. An endothelial cell and vascular smooth muscle cell co-culture system was used to analyze monocyte differentiation in the angiogenic niche. After angiogenic stimulation, the Eng-deleted mice had fewer CD68(+) cells at 2 weeks (P = 0.02), similar numbers at 4 weeks (P = 0.97), and more at 8 weeks (P = 0.01) in the brain angiogenic region compared with wild-type (WT) mice. Alk1-deficient mice also had a trend toward more macrophages/microglia 8 weeks (P = 0.064) after angiogenic stimulation and more RFP(+) bone marrow-derived macrophages than WT mice (P = 0.01). More CD34(+) cells isolated from peripheral blood of patients with ENG or ALK1 gene mutation differentiated into macrophages than those from healthy controls (P < 0.001). These data indicate that persistent infiltration and pro-inflammatory differentiation of monocytes might contribute to macrophage accumulation in bAVM. Blocking macrophage homing to bAVM lesions should be tested as a strategy to reduce the severity of bAVM.
Collapse
Affiliation(s)
- Rui Zhang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhenying Han
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Degos
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.,INSERM, U676, Hôpital Robert Debré, Paris, France
| | - Fanxia Shen
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Eun-Jung Choi
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Shuai Kang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Wong
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Wan Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Lei Zhan
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Helen M Arthur
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, United Kingdom
| | - S Paul Oh
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Marie E Faughnan
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
71
|
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an underrecognized and underdiagnosed autosomal-dominant angiodysplasia that has an estimated prevalence of 1 in 5000 individuals, with variable clinical presentations even within family members with identical mutations. The most common manifestations are telangiectasias of the skin and nasal mucosa. However, HHT can often be complicated by the presence of arteriovenous malformations and telangiectasias in the lungs, brain, gastrointestinal tract, and liver that are often silent and can lead to life-threatening complications of stroke and hemorrhage. This article reviews HHT for the pulmonologist, who is not uncommonly the first practitioner to encounter these patients.
Collapse
|
72
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
73
|
Kim H, Pawlikowska L, Su H, Young WL. Genetics and Vascular Biology of Angiogenesis and Vascular Malformations. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
74
|
Zhang R, Zhu W, Su H. Vascular Integrity in the Pathogenesis of Brain Arteriovenous Malformation. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:29-35. [PMID: 26463919 DOI: 10.1007/978-3-319-18497-5_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain arteriovenous malformation (bAVM) is an important cause of intracranial hemorrhage (ICH), particularly in the young population. ICH is the first clinical symptom in about 50 % of bAVM patients. The vessels in bAVM are fragile and prone to rupture, causing bleeding into the brain. About 30 % of unruptured and non-hemorrhagic bAVMs demonstrate microscopic evidence of hemosiderin in the vascular wall. In bAVM mouse models, vascular mural cell coverage is reduced in the AVM lesion, accompanied by vascular leakage and microhemorrhage. In this review, we discuss possible signaling pathways involved in abnormal vascular development in bAVM.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, 1001 Potrero Avenue, 1363, San Francisco, CA, 94110, USA
| | - Wan Zhu
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, 1001 Potrero Avenue, 1363, San Francisco, CA, 94110, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, 1001 Potrero Avenue, 1363, San Francisco, CA, 94110, USA.
| |
Collapse
|
75
|
Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations. Sci Rep 2015; 5:16449. [PMID: 26563570 PMCID: PMC4643246 DOI: 10.1038/srep16449] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022] Open
Abstract
Pericytes regulate vessel stability and pericyte dysfunction contributes to retinopathies, stroke, and cancer. Here we define Notch as a key regulator of pericyte function during angiogenesis. In Notch1+/−; Notch3−/− mice, combined deficiency of Notch1 and Notch3 altered pericyte interaction with the endothelium and reduced pericyte coverage of the retinal vasculature. Notch1 and Notch3 were shown to cooperate to promote proper vascular basement membrane formation and contribute to endothelial cell quiescence. Accordingly, loss of pericyte function due to Notch deficiency exacerbates endothelial cell activation caused by Notch1 haploinsufficiency. Mice mutant for Notch1 and Notch3 develop arteriovenous malformations and display hallmarks of the ischemic stroke disease CADASIL. Thus, Notch deficiency compromises pericyte function and contributes to vascular pathologies.
Collapse
|
76
|
Nielsen CM, Huang L, Murphy PA, Lawton MT, Wang RA. Mouse Models of Cerebral Arteriovenous Malformation. Stroke 2015; 47:293-300. [PMID: 26351360 DOI: 10.1161/strokeaha.115.002869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Corinne M Nielsen
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Lawrence Huang
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Patrick A Murphy
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Michael T Lawton
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Rong A Wang
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.).
| |
Collapse
|
77
|
Ma L, Guo Y, Zhao YL, Su H. The Role of Macrophage in the Pathogenesis of Brain Arteriovenous Malformation. ACTA ACUST UNITED AC 2015; 1:52-56. [PMID: 26495437 DOI: 10.17554/j.issn.2409-3548.2015.01.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain arteriovenous malformation (BAVM) is an important risk factor for intracranial hemorrhage, especially in children and young adults. Inflammation has been implicated in BAVM lesion progression. Among various inflammatory components, macrophage is one of the major inflammatory cells present in human ruptured and unruptured BAVM and in the BAVM lesions of animal models. The role of macrophage in BAVM pathogenesis is not fully understood. In this review, we summarize recent studies on macrophages and introduce a non-invasive imaging protocol as a potential tool for detecting macrophage in BAVM and predicting the risk of BAVM rupture.
Collapse
Affiliation(s)
- Li Ma
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America ; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Guo
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America ; Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yuan-Li Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China ; China National Clinical Research Center for Neurological Diseases, Beijing, China ; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China ; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
78
|
Tual-Chalot S, Oh SP, Arthur HM. Mouse models of hereditary hemorrhagic telangiectasia: recent advances and future challenges. Front Genet 2015; 6:25. [PMID: 25741358 PMCID: PMC4332371 DOI: 10.3389/fgene.2015.00025] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/19/2015] [Indexed: 12/15/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by a multi-systemic vascular dysplasia and hemorrhage. The precise factors leading to these vascular malformations are not yet understood and robust animal models of HHT are essential to gain a detailed understanding of the molecular and cellular events that lead to clinical symptoms, as well as to test new therapeutic modalities. Most cases of HHT are caused by mutations in either endoglin (ENG) or activin receptor-like kinase 1 (ACVRL1, also known as ALK1). Both genes are associated with TGFβ/BMP signaling, and loss of function mutations in the co-receptor ENG are causal in HHT1, while HHT2 is associated with mutations in the signaling receptor ACVRL1. Significant advances in mouse genetics have provided powerful ways to study the function of Eng and Acvrl1 in vivo, and to generate mouse models of HHT disease. Mice that are null for either Acvrl1 or Eng genes show embryonic lethality due to major defects in angiogenesis and heart development. However mice that are heterozygous for mutations in either of these genes develop to adulthood with no effect on survival. Although these heterozygous mice exhibit selected vascular phenotypes relevant to the clinical pathology of HHT, the phenotypes are variable and generally quite mild. An alternative approach using conditional knockout mice allows us to study the effects of specific inactivation of either Eng or Acvrl1 at different times in development and in different cell types. These conditional knockout mice provide robust and reproducible models of arteriovenous malformations, and they are currently being used to unravel the causal factors in HHT pathologies. In this review, we will summarize the strengths and limitations of current mouse models of HHT, discuss how knowledge obtained from these studies has already informed clinical care and explore the potential of these models for developing improved treatments for HHT patients in the future.
Collapse
Affiliation(s)
| | - S Paul Oh
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, FL, USA
| | - Helen M Arthur
- Institute of Genetic Medicine, Newcastle University , Newcastle, UK
| |
Collapse
|
79
|
Thalgott J, Dos-Santos-Luis D, Lebrin F. Pericytes as targets in hereditary hemorrhagic telangiectasia. Front Genet 2015; 6:37. [PMID: 25763012 PMCID: PMC4327729 DOI: 10.3389/fgene.2015.00037] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/26/2015] [Indexed: 12/04/2022] Open
Abstract
Defective paracrine Transforming Growth Factor-β (TGF-β) signaling between endothelial cells and the neighboring mural cells have been thought to lead to the development of vascular lesions that are characteristic of Hereditary Hemorrhagic Telangiectasia (HHT). This review highlights recent progress in our understanding of TGF-β signaling in mural cell recruitment and vessel stabilization and how perturbed TGF-β signaling might contribute to defective endothelial-mural cell interaction affecting vessel functionalities. Our recent findings have provided exciting insights into the role of thalidomide, a drug that reduces both the frequency and the duration of epistaxis in individuals with HHT by targeting mural cells. These advances provide opportunities for the development of new therapies for vascular malformations.
Collapse
Affiliation(s)
- Jérémy Thalgott
- INSERM, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, Group Pathological Angiogenesis and Vessel Normalization, Collège de France Paris, France
| | - Damien Dos-Santos-Luis
- INSERM, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, Group Pathological Angiogenesis and Vessel Normalization, Collège de France Paris, France
| | - Franck Lebrin
- INSERM, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, Group Pathological Angiogenesis and Vessel Normalization, Collège de France Paris, France
| |
Collapse
|
80
|
Shoemaker LD, Fuentes LF, Santiago SM, Allen BM, Cook DJ, Steinberg GK, Chang SD. Human brain arteriovenous malformations express lymphatic-associated genes. Ann Clin Transl Neurol 2014; 1:982-95. [PMID: 25574473 PMCID: PMC4284124 DOI: 10.1002/acn3.142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 12/19/2022] Open
Abstract
Objective Brain arteriovenous malformations (AVMs) are devastating, hemorrhage-prone, cerebrovascular lesions characterized by well-defined feeding arteries, draining vein(s) and the absence of a capillary bed. The endothelial cells (ECs) that comprise AVMs exhibit a loss of arterial and venous specification. Given the role of the transcription factor COUP-TFII in vascular development, EC specification, and pathological angiogenesis, we examined human AVM tissue to determine if COUP-FTII may have a role in AVM disease biology. Methods We examined 40 human brain AVMs by immunohistochemistry (IHC) and qRT-PCR for the expression of COUP-TFII as well as other genes involved in venous and lymphatic development, maintenance, and signaling. We also examined proliferation and EC tube formation with human umbilical ECs (HUVEC) following COUP-TFII overexpression. Results We report that AVMs expressed COUP-TFII, SOX18, PROX1, NFATC1, FOXC2, TBX1, LYVE1, Podoplanin, and vascular endothelial growth factor (VEGF)-C, contained Ki67-positive cells and heterogeneously expressed genes involved in Hedgehog, Notch, Wnt, and VEGF signaling pathways. Overexpression of COUP-TFII alone in vitro resulted in increased EC proliferation and dilated tubes in an EC tube formation assay in HUVEC. Interpretation This suggests AVM ECs are further losing their arterial/venous specificity and acquiring a partial lymphatic molecular phenotype. There was significant correlation of gene expression with presence of clinical edema and acute hemorrhage. While the precise role of these genes in the formation, stabilization, growth and risk of hemorrhage of AVMs remains unclear, these findings have potentially important implications for patient management and treatment choice, and opens new avenues for future work on AVM disease mechanisms.
Collapse
Affiliation(s)
- Lorelei D Shoemaker
- Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University 300 Pasteur Drive, Stanford, California, 94305
| | - Laurel F Fuentes
- Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University 300 Pasteur Drive, Stanford, California, 94305
| | - Shauna M Santiago
- Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University 300 Pasteur Drive, Stanford, California, 94305
| | - Breanna M Allen
- Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University 300 Pasteur Drive, Stanford, California, 94305
| | - Douglas J Cook
- Centre for Neuroscience Studies and the Department of Surgery, Queen's University Kingston, Ontario, Canada
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University 300 Pasteur Drive, Stanford, California, 94305
| | - Steven D Chang
- Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University 300 Pasteur Drive, Stanford, California, 94305
| |
Collapse
|
81
|
|
82
|
Rutledge WC, Ko NU, Lawton MT, Kim H. Hemorrhage rates and risk factors in the natural history course of brain arteriovenous malformations. Transl Stroke Res 2014; 5:538-42. [PMID: 24930128 DOI: 10.1007/s12975-014-0351-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 12/31/2022]
Abstract
Brain arteriovenous malformations (AVMs) are abnormal connections of arteries and veins, resulting in arteriovenous shunting of blood. Primary medical therapy is lacking; treatment options include surgery, radiosurgery, and embolization, often in combination. Judicious selection of AVM patients for treatment requires balancing risk of treatment complications against the risk of hemorrhage in the natural history course. This review focuses on the epidemiology, hemorrhage risk, and factors influencing risk of hemorrhage in the untreated natural course associated with sporadic brain AVM.
Collapse
Affiliation(s)
- W Caleb Rutledge
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
83
|
Tual-Chalot S, Mahmoud M, Allinson KR, Redgrave RE, Zhai Z, Oh SP, Fruttiger M, Arthur HM. Endothelial depletion of Acvrl1 in mice leads to arteriovenous malformations associated with reduced endoglin expression. PLoS One 2014; 9:e98646. [PMID: 24896812 PMCID: PMC4045906 DOI: 10.1371/journal.pone.0098646] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/06/2014] [Indexed: 01/28/2023] Open
Abstract
Rare inherited cardiovascular diseases are frequently caused by mutations in genes that are essential for the formation and/or function of the cardiovasculature. Hereditary Haemorrhagic Telangiectasia is a familial disease of this type. The majority of patients carry mutations in either Endoglin (ENG) or ACVRL1 (also known as ALK1) genes, and the disease is characterized by arteriovenous malformations and persistent haemorrhage. ENG and ACVRL1 encode receptors for the TGFβ superfamily of ligands, that are essential for angiogenesis in early development but their roles are not fully understood. Our goal was to examine the role of Acvrl1 in vascular endothelial cells during vascular development and to determine whether loss of endothelial Acvrl1 leads to arteriovenous malformations. Acvrl1 was depleted in endothelial cells either in early postnatal life or in adult mice. Using the neonatal retinal plexus to examine angiogenesis, we observed that loss of endothelial Acvrl1 led to venous enlargement, vascular hyperbranching and arteriovenous malformations. These phenotypes were associated with loss of arterial Jag1 expression, decreased pSmad1/5/8 activity and increased endothelial cell proliferation. We found that Endoglin was markedly down-regulated in Acvrl1-depleted ECs showing endoglin expression to be downstream of Acvrl1 signalling in vivo. Endothelial-specific depletion of Acvrl1 in pups also led to pulmonary haemorrhage, but in adult mice resulted in caecal haemorrhage and fatal anaemia. We conclude that during development, endothelial Acvrl1 plays an essential role to regulate endothelial cell proliferation and arterial identity during angiogenesis, whilst in adult life endothelial Acvrl1 is required to maintain vascular integrity.
Collapse
Affiliation(s)
- Simon Tual-Chalot
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Marwa Mahmoud
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | | | - Rachael E. Redgrave
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Zhenhua Zhai
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - S. Paul Oh
- Department of Physiology, University of Florida, Gainesville, Florida, United States of America
| | | | - Helen M. Arthur
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
- * E-mail:
| |
Collapse
|
84
|
Brain arteriovenous malformation modeling, pathogenesis, and novel therapeutic targets. Transl Stroke Res 2014; 5:316-29. [PMID: 24723256 DOI: 10.1007/s12975-014-0343-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
Abstract
Patients harboring brain arteriovenous malformation (bAVM) are at life-threatening risk of rupture and intracranial hemorrhage (ICH). The pathogenesis of bAVM has not been completely understood. Current treatment options are invasive, and ≈ 20 % of patients are not offered interventional therapy because of excessive treatment risk. There are no specific medical therapies to treat bAVMs. The lack of validated animal models has been an obstacle for testing hypotheses of bAVM pathogenesis and testing new therapies. In this review, we summarize bAVM model development and bAVM pathogenesis and potential therapeutic targets that have been identified during model development.
Collapse
|
85
|
Choi EJ, Chen W, Jun K, Arthur HM, Young WL, Su H. Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia. PLoS One 2014; 9:e88511. [PMID: 24520391 PMCID: PMC3919779 DOI: 10.1371/journal.pone.0088511] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/08/2014] [Indexed: 12/24/2022] Open
Abstract
Endoglin (ENG) is a causative gene of type 1 hereditary hemorrhagic telangiectasia (HHT1). HHT1 patients have a higher prevalence of brain arteriovenous malformation (AVM) than the general population and patients with other HHT subtypes. The pathogenesis of brain AVM in HHT1 patients is currently unknown and no specific medical therapy is available to treat patients. Proper animal models are crucial for identifying the underlying mechanisms for brain AVM development and for testing new therapies. However, creating HHT1 brain AVM models has been quite challenging because of difficulties related to deleting Eng-floxed sequence in Eng2fl/2fl mice. To create an HHT1 brain AVM mouse model, we used several Cre transgenic mouse lines to delete Eng in different cell-types in Eng2fl/2fl mice: R26CreER (all cell types after tamoxifen treatment), SM22α-Cre (smooth muscle and endothelial cell) and LysM-Cre (lysozyme M-positive macrophage). An adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF) was injected into the brain to induce focal angiogenesis. We found that SM22α-Cre-mediated Eng deletion in the embryo caused AVMs in the postnatal brain, spinal cord, and intestines. Induction of Eng deletion in adult mice using R26CreER plus local VEGF stimulation induced the brain AVM phenotype. In both models, Eng-null endothelial cells were detected in the brain AVM lesions, and formed mosaicism with wildtype endothelial cells. However, LysM-Cre-mediated Eng deletion in the embryo did not cause AVM in the postnatal brain even after VEGF stimulation. In this study, we report two novel HHT1 brain AVM models that mimic many phenotypes of human brain AVM and can thus be used for studying brain AVM pathogenesis and testing new therapies. Further, our data indicate that macrophage Eng deletion is insufficient and that endothelial Eng homozygous deletion is required for HHT1 brain AVM development.
Collapse
Affiliation(s)
- Eun-Jung Choi
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| | - Wanqiu Chen
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| | - Kristine Jun
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| | - Helen M. Arthur
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, United Kingdom
| | - William L. Young
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
86
|
Chen W, Sun Z, Han Z, Jun K, Camus M, Wankhede M, Mao L, Arnold T, Young WL, Su H. De novo cerebrovascular malformation in the adult mouse after endothelial Alk1 deletion and angiogenic stimulation. Stroke 2014; 45:900-2. [PMID: 24457293 DOI: 10.1161/strokeaha.113.003655] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In humans, activin receptor-like kinase 1 (Alk1) deficiency causes arteriovenous malformations (AVMs) in multiple organs, including the brain. Focal Alk1 pan-cellular deletion plus vascular endothelial growth factor stimulation induces brain AVMs in the adult mouse. We hypothesized that deletion of Alk1 in endothelial cell (EC) alone plus focal vascular endothelial growth factor stimulation is sufficient to induce brain AVM in the adult mouse. METHODS Focal angiogenesis was induced in the brain of 8-week-old Pdgfb-iCreER;Alk1(2f/2f) mice by injection of adeno-associated viral vectors expressing vascular endothelial growth factor. Two weeks later, EC-Alk1 deletion was induced by tamoxifen treatment. Vascular morphology was analyzed, and EC proliferation and dysplasia index (number of vessels with diameter>15 μm per 200 vessels) were quantified 10 days after tamoxifen administration. RESULTS Tangles of enlarged vessels resembling AVMs were present in the brain angiogenic region of tamoxifen-treated Pdgfb-iCreER;Alk1(2f/2f) mice. Induced brain AVMs were marked by increased dysplasia index (P<0.001) and EC proliferation clustered within the dysplastic vessels. AVMs were also detected around the ear tag-wound and in other organs. CONCLUSIONS Deletion of Alk1 in EC in adult mice leads to an increased local EC proliferation during brain angiogenesis and de novo brain AVM.
Collapse
Affiliation(s)
- Wanqiu Chen
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (W.C., Z.H., K.J., M.C., M.W., L.M., W.L.Y., H.S.), Departments of Radiology (Z.S.), Pediatrics (T.A.), Neurological Surgery (W.L.Y.), and Neurology (W.L.Y.), University of California, San Francisco
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Brain arteriovenous malformations (bAVM) are tangles of abnormal, dilated vessels that directly shunt blood between the arteries and veins. The pathogenesis of bAVM is currently unknown. Patients with hereditary hemorrhagic telangiectasia (HHT) have a higher prevalence of bAVM than the general population. Animal models are important tools for dissecting the disease etiopathogenesis and for testing new therapies. Here, we introduce a method that induces the bAVM phenotype through regional deletion of activin-like kinase 1 (Alk1, the causal gene for HHT2) and vascular endothelial growth factor (VEGF) stimulation.
Collapse
Affiliation(s)
- Wanqiu Chen
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
88
|
Guo Y, Tihan T, Kim H, Hess C, Lawton MT, Young WL, Zhao Y, Su H. Distinctive distribution of lymphocytes in unruptured and previously untreated brain arteriovenous malformation. ACTA ACUST UNITED AC 2014; 1:147-152. [PMID: 25568888 DOI: 10.4103/2347-8659.143674] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIM To test the hypothesis that lymphocyte infiltration in brain arteriovenous malformation (bAVM) is not associated with iron deposition (indicator of microhemorrhage). METHODS Sections of unruptured, previously untreated bAVM specimens (n=19) were stained immunohistochemically for T-lymphocytes (CD3+), B-lymphocytes (CD20+), plasma cells (CD138+) and macrophages (CD68+). Iron deposition was assessed by hematoxylin and eosin and Prussian blue stains. Superficial temporal arteries (STA) were used as control. RESULTS Both T lymphocytes and macrophages were present in unruptured, previously untreated bAVM specimens, whereas few B cells and plasma cells were detected. Iron deposition was detected in 8 specimens (42%; 95% confidence interval =20-67%). The samples with iron deposition tended to have more macrophages than those without (666±313 vs 478±174 cells/mm2; P=0.11). T-cells were clustered on the luminal side of the endothelial surface, on the vessel-wall, and in the perivascular regions. There was no correlation between T lymphocyte load and iron deposition (P=0.88). No macrophages and lymphocytes were detected in STA controls. CONCLUSIONS T-lymphocytes were present in bAVM specimens. Unlike macrophages, the load and location of T-lymphocytes were not associated with iron deposition, suggesting the possibility of an independent cell-mediated immunological mechanism in bAVM pathogenesis.
Collapse
Affiliation(s)
- Yi Guo
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA ; Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000 China
| | - Tarik Tihan
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Christopher Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Michael T Lawton
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94110, USA
| | - William L Young
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA ; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94110, USA ; Department of Neurology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 410011, China
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
89
|
Schwartze JT, Becker S, Sakkas E, Wujak ŁA, Niess G, Usemann J, Reichenberger F, Herold S, Vadász I, Mayer K, Seeger W, Morty RE. Glucocorticoids recruit Tgfbr3 and Smad1 to shift transforming growth factor-β signaling from the Tgfbr1/Smad2/3 axis to the Acvrl1/Smad1 axis in lung fibroblasts. J Biol Chem 2013; 289:3262-75. [PMID: 24347165 DOI: 10.1074/jbc.m113.541052] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glucocorticoids represent the mainstay therapy for many lung diseases, providing outstanding management of asthma but performing surprisingly poorly in patients with acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung fibrosis, and blunted lung development associated with bronchopulmonary dysplasia in preterm infants. TGF-β is a pathogenic mediator of all four of these diseases, prompting us to explore glucocorticoid/TGF-β signaling cross-talk. Glucocorticoids, including dexamethasone, methylprednisolone, budesonide, and fluticasone, potentiated TGF-β signaling by the Acvrl1/Smad1/5/8 signaling axis and blunted signaling by the Tgfbr1/Smad2/3 axis in NIH/3T3 cells, as well as primary lung fibroblasts, smooth muscle cells, and endothelial cells. Dexamethasone drove expression of the accessory type III TGF-β receptor Tgfbr3, also called betaglycan. Tgfbr3 was demonstrated to be a "switch" that blunted Tgfbr1/Smad2/3 and potentiated Acvrl1/Smad1 signaling in lung fibroblasts. The Acvrl1/Smad1 axis, which was stimulated by dexamethasone, was active in lung fibroblasts and antagonized Tgfbr1/Smad2/3 signaling. Dexamethasone acted synergistically with TGF-β to drive differentiation of primary lung fibroblasts to myofibroblasts, revealed by acquisition of smooth muscle actin and smooth muscle myosin, which are exclusively Smad1-dependent processes in fibroblasts. Administration of dexamethasone to live mice recapitulated these observations and revealed a lung-specific impact of dexamethasone on lung Tgfbr3 expression and phospho-Smad1 levels in vivo. These data point to an interesting and hitherto unknown impact of glucocorticoids on TGF-β signaling in lung fibroblasts and other constituent cell types of the lung that may be relevant to lung physiology, as well as lung pathophysiology, in terms of drug/disease interactions.
Collapse
Affiliation(s)
- Julian T Schwartze
- From the Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Hawinkels LJ, Garcia de Vinuesa A, Ten Dijke P. Activin receptor-like kinase 1 as a target for anti-angiogenesis therapy. Expert Opin Investig Drugs 2013; 22:1371-83. [PMID: 24053899 DOI: 10.1517/13543784.2013.837884] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Formation of blood vessels from pre-existing ones, also termed angiogenesis, is of crucial importance for the outgrowth of tumours beyond 1 - 2 mm³. Therefore, anti-angiogenic therapies, mainly focussing on inhibition of vascular endothelial growth factor (VEGF) are used in clinical therapy. However, although initially reducing tumour size, therapy resistance occurs frequently and new targets are needed. A possible target is activin receptor-like kinase (ALK)-1, a transforming growth factor (TGF)-β type-I receptor, which binds bone morphogenetic protein (BMP)-9 and -10 with high affinity and has an important role in regulating angiogenesis. AREAS COVERED Several approaches to interfere with ALK1 signalling have been developed, that is, ALK1 neutralising antibodies and a soluble ALK1 extracellular domain/Fc fusion protein (ALK1-Fc), acting as a ligand trap. In this review, we discuss the involvement of ALK1 in angiogenesis, in a variety of diseases and the current status of the development of ALK1 inhibitors for cancer therapy. EXPERT OPINION Based on current, mainly preclinical studies on inhibition of ALK1 signalling by ligand traps and neutralising antibodies, targeting ALK1 seems very promising. Both ALK1-Fc and neutralising antibodies strongly inhibit angiogenesis in vitro and in vivo. The results from the first Phase I clinical trials are to be reported soon and multiple Phase II studies are ongoing.
Collapse
Affiliation(s)
- Lukas Jac Hawinkels
- Leiden University Medical Centre, Cancer Genomics Centre Netherlands and Centre for BioMedical Genetics, Department of Molecular Cell Biology , Building-2, S1-P, PO box 9600, 2300 RC Leiden , The Netherlands +31 71 526 9272 ; +31 71 526 8270 ;
| | | | | |
Collapse
|