51
|
Sharma R, Sharma S, Thakur A, Singh A, Singh J, Nepali K, Liou JP. The Role of Epigenetic Mechanisms in Autoimmune, Neurodegenerative, Cardiovascular, and Imprinting Disorders. Mini Rev Med Chem 2022; 22:1977-2011. [PMID: 35176978 DOI: 10.2174/1389557522666220217103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic mutations like aberrant DNA methylation, histone modifications, or RNA silencing are found in a number of human diseases. This review article discusses the epigenetic mechanisms involved in neurodegenerative disorders, cardiovascular disorders, auto-immune disorder, and genomic imprinting disorders. In addition, emerging epigenetic therapeutic strategies for the treatment of such disorders are presented. Medicinal chemistry campaigns highlighting the efforts of the chemists invested towards the rational design of small molecule inhibitors have also been included. Pleasingly, several classes of epigenetic inhibitors, DNMT, HDAC, BET, HAT, and HMT inhibitors along with RNA based therapies have exhibited the potential to emerge as therapeutics in the longer run. It is quite hopeful that epigenetic modulator-based therapies will advance to clinical stage investigations by leaps and bounds.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jagjeet Singh
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.,Department of Pharmacy, Rayat-Bahara Group of Institutes, Hoshiarpur, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW With cardiovascular disease (CVD) being the top cause of deaths worldwide, it is important to ensure healthy cardiovascular aging through enhanced understanding and prevention of adverse health effects exerted by external factors. This review aims to provide an updated understanding of environmental influences on cardiovascular aging, by summarizing epidemiological and mechanistic evidence for the cardiovascular health impact of major environmental stressors, including air pollution, endocrine-disrupting chemicals (EDCs), metals, and climate change. RECENT FINDINGS Recent studies generally support positive associations of exposure to multiple chemical environmental stressors (air pollution, EDCs, toxic metals) and extreme temperatures with increased risks of cardiovascular mortality and morbidity in the population. Environmental stressors have also been associated with a number of cardiovascular aging-related subclinical changes including biomarkers in the population, which are supported by evidence from relevant experimental studies. The elderly and patients are the most vulnerable demographic groups to majority environmental stressors. Future studies should account for the totality of individuals' exposome in addition to single chemical pollutants or environmental factors. Specific factors most responsible for the observed health effects related to cardiovascular aging remain to be elucidated.
Collapse
Affiliation(s)
- Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China.
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
53
|
Kato D, Takegami Y, Seki T, Nakashima H, Osawa Y, Suzuki K, Yamada H, Hasegawa Y, Imagama S. DNA methylation is associated with muscle loss in community-dwelling older men -the Yakumo study- : a preliminary experimental study. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:60-68. [PMID: 35392004 PMCID: PMC8971031 DOI: 10.18999/nagjms.84.1.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/17/2021] [Indexed: 12/04/2022]
Abstract
Frailty is a state of reduced muscle strength and activity in older people. DNA methylation is associated with osteoporosis and muscle loss in murine and other animal studies, but there are no epidemiological studies in humans. This study aimed to assess the association of osteoporosis and muscle loss with DNA methylation in community-dwelling older people. This cross-sectional study was performed in a rural part of Japan. We analyzed 204 subjects (98 men and 106 women). In univariate analysis, the two groups were compared according to the presence or absence of osteoporosis and of muscle loss. Logistic regression analysis was performed to determine predictors of frailty in the muscle loss group. We used age, sex, body mass index, smoking history, drinking history, serum albumin and C-reactive protein levels, diabetes, hypertension, hyperlipidemia, heart disease history, and LINE-1 DNA methylation as the factors. Probability values < 0.05 were considered to be statistically significant. The levels of LINE-1 DNA methylation in leukocytes were associated with muscle loss in men over the age of 60. LINE-1 DNA methylation levels were not associated with bone mineral density in either the men or women over the age of 60. LINE-1 DNA methylation levels in leukocytes correlated significantly with the risk of frailty in men over the age of 60. Promoting an understanding of DNA methylation may lead to a better understanding of the pathophysiology of muscle loss.
Collapse
Affiliation(s)
- Daisaku Kato
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Takegami
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taisuke Seki
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Nakashima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Osawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yukiharu Hasegawa
- Department of Rehabilitation, Kansai University of Welfare Science, Kashiwabara, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
54
|
Jung M, Ahn YS, Chang SJ, Kim CB, Jeong KS, Koh SB, Gim JA. Variation in Genotype and DNA Methylation Patterns Based on Alcohol Use and CVD in the Korean Genome and Epidemiology Study (KoGES). Genes (Basel) 2022; 13:genes13020172. [PMID: 35205218 PMCID: PMC8871634 DOI: 10.3390/genes13020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
Alcohol consumption can increase the risk of chronic diseases, such as myocardial infarction, coronary artery disease, hyperlipidemia, and hypertension. We aimed to assess the association between genotype, DNA methylation patterns, alcohol consumption, and chronic diseases in Korean population. We analyzed 8840 subjects for genotypes and 446 for DNA methylation among the 9351 subjects from the Korean Genome and Epidemiology Study (KoGES). We further divided both groups into two sub-groups according to the presence/absence of chronic diseases. We selected genes whose methylation varied significantly with alcohol consumption, and visualized genotype and DNA methylation patterns specific to each group. Genome-wide association study (GWAS) revealed single nucleotide polymorphisms (SNPs) rs2074356 and rs11066280 in HECT domain E3 ubiquitin protein ligase 4 (HECTD4) to be significantly associated with alcohol consumption in both the presence. The rs12229654 genotype also displayed significantly different patterns with alcohol consumption. Furthermore, we retrieved differentially methylated regions (DMRs) from four groups based on sex and chronic diseases and compared them by drinking status. In genotype analysis, cardiovascular diseases (CVDs) showed a higher proportion in drinker than in non-drinker, but not in DMR analysis. Additionally, we analyzed the enriched Gene Ontology terms and Kyoto Gene and Genome Encyclopedia (KEGG) pathways and visualized the network, heatmap, and upset plot. We show that the pattern of DNA methylation associated with CVD is strongly influenced by alcoholism. Overall, this study identified genetic and epigenetic variants influenced by alcohol consumption and chronic diseases.
Collapse
Affiliation(s)
- Myoungjee Jung
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea; (M.J.); (S.-J.C.); (C.-B.K.)
| | - Yeon-Soon Ahn
- Department of Preventive Medicine and Genomic Cohort Institute, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea;
| | - Sei-Jin Chang
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea; (M.J.); (S.-J.C.); (C.-B.K.)
| | - Chun-Bae Kim
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea; (M.J.); (S.-J.C.); (C.-B.K.)
| | - Kyoung Sook Jeong
- Department of Occupational and Environmental Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea;
| | - Sang-Baek Koh
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea; (M.J.); (S.-J.C.); (C.-B.K.)
- Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea
- Correspondence: (S.-B.K.); (J.-A.G.); Tel.: +82-33-741-0345 (S.-B.K.); +82-2-2626-2362 (J.-A.G.)
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University, 8 Gamasan-ro 20-gil, Guro-gu, Seoul 08308, Korea
- Correspondence: (S.-B.K.); (J.-A.G.); Tel.: +82-33-741-0345 (S.-B.K.); +82-2-2626-2362 (J.-A.G.)
| |
Collapse
|
55
|
Chen J, Liu Z, Ma L, Gao S, Fu H, Wang C, Lu A, Wang B, Gu X. Targeting Epigenetics and Non-coding RNAs in Myocardial Infarction: From Mechanisms to Therapeutics. Front Genet 2022; 12:780649. [PMID: 34987550 PMCID: PMC8721121 DOI: 10.3389/fgene.2021.780649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is a complicated pathology triggered by numerous environmental and genetic factors. Understanding the effect of epigenetic regulation mechanisms on the cardiovascular disease would advance the field and promote prophylactic methods targeting epigenetic mechanisms. Genetic screening guides individualised MI therapies and surveillance. The present review reported the latest development on the epigenetic regulation of MI in terms of DNA methylation, histone modifications, and microRNA-dependent MI mechanisms and the novel therapies based on epigenetics.
Collapse
Affiliation(s)
- Jinhong Chen
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Zhichao Liu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Li Ma
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Shengwei Gao
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Huanjie Fu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Can Wang
- Acupuncture Department, The First Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Anmin Lu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Baohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Xufang Gu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| |
Collapse
|
56
|
Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, Mitsis T, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med 2022; 49:9. [PMID: 34791505 PMCID: PMC8651226 DOI: 10.3892/ijmm.2021.5064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine‑tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non‑coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.
Collapse
Affiliation(s)
- Stefanos Leptidis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Flora Bacopoulou
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, 'Attikon' Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
57
|
Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics 2022; 17:59-80. [PMID: 33522387 PMCID: PMC8812767 DOI: 10.1080/15592294.2021.1873628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
58
|
Genome-Wide DNA Methylation Signatures Predict the Early Asymptomatic Doxorubicin-Induced Cardiotoxicity in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246291. [PMID: 34944912 PMCID: PMC8699582 DOI: 10.3390/cancers13246291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy with doxorubicin (DOX) may cause unpredictable cardiotoxicity. This study aimed to determine whether the methylation signature of peripheral blood mononuclear cells (PBMCs) prior to and after the first cycle of DOX-based chemotherapy could predict the risk of cardiotoxicity in breast cancer patients. Cardiotoxicity was defined as a decrease in left ventricular ejection fraction (LVEF) by >10%. DNA methylation of PBMCs from 9 patients with abnormal LVEF and 10 patients with normal LVEF were examined using Infinium HumanMethylation450 BeadChip. We have identified 14,883 differentially methylated CpGs at baseline and 18,718 CpGs after the first cycle of chemotherapy, which significantly correlated with LVEF status. Significant differentially methylated regions (DMRs) were found in the promoter and the gene body of SLFN12, IRF6 and RNF39 in patients with abnormal LVEF. The pathway analysis found enrichment for regulation of transcription, mRNA splicing, pathways in cancer and ErbB2/4 signaling. The preliminary results from this study showed that the DNA methylation profile of PBMCs may predict the risk of DOX-induced cardiotoxicity prior to chemotherapy. Further studies with larger cohorts of patients are needed to confirm these findings.
Collapse
|
59
|
Noro F, Marotta A, Bonaccio M, Costanzo S, Santonastaso F, Orlandi S, Tirozzi A, Parisi R, De Curtis A, Persichillo M, Gianfagna F, Di Castelnuovo A, Donati MB, Cerletti C, de Gaetano G, Iacoviello L, Gialluisi A, Izzi B. Fine-grained investigation of the relationship between human nutrition and global DNA methylation patterns. Eur J Nutr 2021; 61:1231-1243. [PMID: 34741648 DOI: 10.1007/s00394-021-02716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Nutrition is an important, modifiable, environmental factor affecting human health by modulating epigenetic processes, including DNA methylation (5mC). Numerous studies investigated the association of nutrition with global and gene-specific DNA methylation and evidences on animal models highlighted a role in DNA hydroxymethylation (5hmC) regulation. However, a more comprehensive analysis of different layers of nutrition in association with global levels of 5mC and 5hmC is lacking. We investigated the association between global levels of 5mC and 5hmC and human nutrition, through the stratification and analysis of dietary patterns into different nutritional layers: adherence to Mediterranean diet (MD), main food groups, macronutrients and micronutrients intake. METHODS ELISA technique was used to measure global 5mC and 5hmC levels in 1080 subjects from the Moli-sani cohort. Food intake during the 12 months before enrolment was assessed using the semi-quantitative EPIC food frequency questionnaire. Complementary approaches involving both classical statistics and supervised machine learning analyses were used to investigate the associations between global 5mC and 5hmC levels and adherence to Mediterranean diet, main food groups, macronutrients and micronutrients intake. RESULTS We found that global DNA methylation, but not hydroxymethylation, was associated with daily intake of zinc and vitamin B3. Random Forests algorithms predicting 5mC and 5hmC through intakes of food groups, macronutrients and micronutrients revealed a significant contribution of zinc, while vitamin B3 was reported among the most influential features. CONCLUSION We found that nutrition may affect global DNA methylation, suggesting a contribution of micronutrients previously implicated as cofactors in methylation pathways.
Collapse
Affiliation(s)
- Fabrizia Noro
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Annalisa Marotta
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Federica Santonastaso
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Sabatino Orlandi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Roberta Parisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Mariarosaria Persichillo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Francesco Gianfagna
- Mediterranea Cardiocentro, Naples, Italy.,Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | | | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy. .,Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy.
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | | |
Collapse
|
60
|
Shi H, Ossip DJ, Mayo NL, Lopez DA, Block RC, Post WS, Bertoni AG, Ding J, Chen S, Yan C, Xie Z, Hoeschele I, Liu Y, Li D. Role of DNA methylation on the association between physical activity and cardiovascular diseases: results from the longitudinal multi-ethnic study of atherosclerosis (MESA) cohort. BMC Genomics 2021; 22:790. [PMID: 34732130 PMCID: PMC8567593 DOI: 10.1186/s12864-021-08108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Background The complexity of physical activity (PA) and DNA methylation interaction in the development of cardiovascular disease (CVD) is rarely simultaneously investigated in one study. We examined the role of DNA methylation on the association between PA and CVD. Results The Multi-Ethnic Study of Atherosclerosis (MESA) cohort Exam 5 data with 1065 participants free of CVD were used for final analysis. The quartile categorical total PA variable was created by activity intensity (METs/week). During a median follow-up of 4.0 years, 69 participants developed CVD. Illumina HumanMethylation450 BeadChip was used to provide genome-wide DNA methylation profiles in purified human monocytes (CD14+). We identified 23 candidate DNA methylation loci to be associated with both PA and CVD. We used the structural equation modeling (SEM) approach to test the complex relationships among multiple variables and the roles of mediators. Three of the 23 identified loci (corresponding to genes VPS13D, PIK3CD and VPS45) remained as significant mediators in the final SEM model along with other covariates. Bridged by the three genes, the 2nd PA quartile (β = − 0.959; 95%CI: − 1.554 to − 0.449) and the 3rd PA quartile (β = − 0.944; 95%CI: − 1.628 to − 0.413) showed the greatest inverse associations with CVD development, while the 4th PA quartile had a relatively weaker inverse association (β = − 0.355; 95%CI: − 0.713 to − 0.124). Conclusions The current study is among the first to simultaneously examine the relationships among PA, DNA methylation, and CVD in a large cohort with long-term exposure. We identified three DNA methylation loci bridged the association between PA and CVD. The function of the identified genes warrants further investigation in the pathogenesis of CVD. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08108-w.
Collapse
Affiliation(s)
- Hangchuan Shi
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, 14642-0708, USA.,Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Deborah J Ossip
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Nicole L Mayo
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel A Lopez
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Robert C Block
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alain G Bertoni
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jingzhong Ding
- Department of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Si Chen
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA.,Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA.,Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Zidian Xie
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, 14642-0708, USA
| | - Ina Hoeschele
- Department of Statistics, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA.
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, 14642-0708, USA.
| |
Collapse
|
61
|
Ruiz de la Cruz M, de la Cruz Montoya AH, Rojas Jiménez EA, Martínez Gregorio H, Díaz Velásquez CE, Paredes de la Vega J, de la Cruz Hernández-Hernández F, Vaca Paniagua F. Cis-Acting Factors Causing Secondary Epimutations: Impact on the Risk for Cancer and Other Diseases. Cancers (Basel) 2021; 13:cancers13194807. [PMID: 34638292 PMCID: PMC8508567 DOI: 10.3390/cancers13194807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022] Open
Abstract
Epigenetics affects gene expression and contributes to disease development by alterations known as epimutations. Hypermethylation that results in transcriptional silencing of tumor suppressor genes has been described in patients with hereditary cancers and without pathogenic variants in the coding region of cancer susceptibility genes. Although somatic promoter hypermethylation of these genes can occur in later stages of the carcinogenic process, constitutional methylation can be a crucial event during the first steps of tumorigenesis, accelerating tumor development. Primary epimutations originate independently of changes in the DNA sequence, while secondary epimutations are a consequence of a mutation in a cis or trans-acting factor. Secondary epimutations have a genetic basis in cis of the promoter regions of genes involved in familial cancers. This highlights epimutations as a novel carcinogenic mechanism whose contribution to human diseases is underestimated by the scarcity of the variants described. In this review, we provide an overview of secondary epimutations and present evidence of their impact on cancer. We propose the necessity for genetic screening of loci associated with secondary epimutations in familial cancer as part of prevention programs to improve molecular diagnosis, secondary prevention, and reduce the mortality of these diseases.
Collapse
Affiliation(s)
- Miguel Ruiz de la Cruz
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | | | - Ernesto Arturo Rojas Jiménez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Héctor Martínez Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Clara Estela Díaz Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
| | - Jimena Paredes de la Vega
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Fidel de la Cruz Hernández-Hernández
- Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Felipe Vaca Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
- Correspondence: ; Tel.: +52-55-5623-1333 (ext. 39788)
| |
Collapse
|
62
|
Ma Y, Fan D, Xu S, Deng J, Gao X, Guan S, Zhang X, Pan F. Ankylosing Spondylitis Patients Display Aberrant ERAP1 Gene DNA Methylation and Expression. Immunol Invest 2021; 51:1548-1560. [PMID: 34555981 DOI: 10.1080/08820139.2021.1982965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Endoplasmic reticulum aminopeptidase 1 (ERAP1) is known to participate in the pathogenesis of ankylosing spondylitis (AS). This study aimed to evaluate the relationship between promoter methylation and mRNA levels of ERAP1 and AS susceptibility. METHODS DNA methylation levels of 100 AS patients and 100 healthy controls (HCs) were tested using a targeted bisulfite sequencing assay. To verify the results of DNA methylation, mRNA levels of ERAP1 were measured in 20 AS patients and HCs used quantitative real-time reverse transcription-polymerase chain reaction. RESULTS The DNA methylation levels of two CpG islands containing 31 loci in ERAP1 promoter were measured. ERAP1_1 (P< .001) and ERAP1_2 (P< .001) islands were significantly hypermethylated in AS patients compared with HCs. In the verification study, the mRNA levels of ERAP1 were significantly decreased in AS patients. The ROC curve analysis showed that the sensitivity, specificity and area under curve were 0.717, 0.737, and 0.779 of differential methylated CpG loci of ERAP1 for AS diagnosis. In AS patients, the methylation levels of EARP1 were associated with family history, non-steroidal anti-inflammatory drugs use, X-ray classification, and clinical manifestations. CONCLUSIONS Our study demonstrated that the ERAP1 gene is significantly hypermethylated, and mRNA levels of EARP1 decreased, in AS patients. Our findings suggested that the aberrant methylation of ERAP1 promoter may be involved in the pathogenesis of AS and could be considered as a diagnostic tool and therapeutic target of AS.Abbreviations AS: Ankylosing Spondylitis; AUC: Area Under Curve; BASDAI: Bath Ankylosing Spondylitis Disease Activity Index; BASFI: Bath Ankylosing Spondylitis Functional Index; CI: Confidence Interval; CpG: Cytosine-guanine Dinucleotide; CRP: C-reactive Protein; ERAP1: Endoplasmic Reticulum Aminopeptidase 1; ESR: Erythrocyte Sedimentation Rate; EWAS: Epigenome-Wide Association Study; HLA: Human Leukocyte Antigen; OR: Odds Ratio; PCR: Polymerase Chain Reaction; ROC: Receiver Operating Characteristic; NSAIDs: Non-Steroidal Anti-Inflammatory Drugs.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Shiyang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
63
|
Brandes RP, Gilsbach R. Is It in the EPIgenome?: Epigenetics Marks at Birth Are Associated With Arterial Stiffness in Children. Hypertension 2021; 78:801-803. [PMID: 34379434 DOI: 10.1161/hypertensionaha.121.17777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ralf P Brandes
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Germany. DZHK - German Center for Cardiovascular Research, Partner site Rhine-Main
| | - Ralf Gilsbach
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Germany. DZHK - German Center for Cardiovascular Research, Partner site Rhine-Main
| |
Collapse
|
64
|
Gondalia R, Baldassari A, Holliday KM, Justice AE, Stewart JD, Liao D, Yanosky JD, Engel SM, Sheps D, Jordahl KM, Bhatti P, Horvath S, Assimes TL, Demerath EW, Guan W, Fornage M, Bressler J, North KE, Conneely KN, Li Y, Hou L, Baccarelli AA, Whitsel EA. Epigenetically mediated electrocardiographic manifestations of sub-chronic exposures to ambient particulate matter air pollution in the Women's Health Initiative and Atherosclerosis Risk in Communities Study. ENVIRONMENTAL RESEARCH 2021; 198:111211. [PMID: 33895111 PMCID: PMC8179344 DOI: 10.1016/j.envres.2021.111211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 06/03/2023]
Abstract
BACKGROUND Short-duration exposure to ambient particulate matter (PM) air pollution is associated with cardiac autonomic dysfunction and prolonged ventricular repolarization. However, associations with sub-chronic exposures to coarser particulates are relatively poorly characterized as are molecular mechanisms underlying their potential relationships with cardiovascular disease. MATERIALS AND METHODS We estimated associations between monthly mean concentrations of PM < 10 μm and 2.5-10 μm in diameter (PM10; PM2.5-10) with time-domain measures of heart rate variability (HRV) and QT interval duration (QT) among U.S. women and men in the Women's Health Initiative and Atherosclerosis Risk in Communities Study (nHRV = 82,107; nQT = 76,711). Then we examined mediation of the PM-HRV and PM-QT associations by DNA methylation (DNAm) at three Cytosine-phosphate-Guanine (CpG) sites (cg19004594, cg24102420, cg12124767) with known sensitivity to monthly mean PM concentrations in a subset of the participants (nHRV = 7,169; nQT = 6,895). After multiply imputing missing PM, electrocardiographic and covariable data, we estimated associations using attrition-weighted, linear, mixed, longitudinal models adjusting for sociodemographic, behavioral, meteorological, and clinical characteristics. We assessed mediation by estimating the proportions of PM-HRV and PM-QT associations mediated by DNAm. RESULTS We found little evidence of PM-HRV association, PM-QT association, or mediation by DNAm. CONCLUSIONS The findings suggest that among racially/ethnically and environmentally diverse U.S. populations, sub-chronic exposures to coarser particulates may not exert appreciable, epigenetically mediated effects on cardiac autonomic function or ventricular repolarization. Further investigation in better-powered studies is warranted, with additional focus on shorter duration exposures to finer particulates and non-electrocardiographic outcomes among relatively susceptible populations.
Collapse
Affiliation(s)
- Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Antoine Baldassari
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Katelyn M Holliday
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Community and Family Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Anne E Justice
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Geisinger Health System, Danville, PA, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - David Sheps
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Kristina M Jordahl
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Parveen Bhatti
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, USA
| | | | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA; Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
65
|
Infante T, Franzese M, Ruocco A, Schiano C, Affinito O, Pane K, Memoli D, Rizzo F, Weisz A, Bontempo P, Grimaldi V, Berrino L, Soricelli A, Mauro C, Napoli C. ABCA1, TCF7, NFATC1, PRKCZ, and PDGFA DNA methylation as potential epigenetic-sensitive targets in acute coronary syndrome via network analysis. Epigenetics 2021; 17:547-563. [PMID: 34151742 DOI: 10.1080/15592294.2021.1939481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Acute coronary syndrome (ACS) is the most severe clinical manifestation of coronary heart disease.We performed an epigenome-wide analysis of circulating CD4+ and CD8+ T cells isolated from ACS patients and healthy subjects (HS), enrolled in the DIANA clinical trial, by reduced-representation bisulphite sequencing (RRBS). In CD4+ T cells, we identified 61 differentially methylated regions (DMRs) associated with 57 annotated genes (53% hyper- and 47% hypo-methylated) by comparing ACS patients vs HS. In CD8+ T cells, we identified 613 DMRs associated with 569 annotated genes (28% hyper- and 72% hypo-methylated) in ACS patients as compared to HS. In CD4+ vs CD8+ T cells of ACS patients we identified 175 statistically significant DMRs associated with 157 annotated genes (41% hyper- and 59% hypo-methylated). From pathway analyses, we selected six differentially methylated hub genes (NFATC1, TCF7, PDGFA, PRKCB, PRKCZ, ABCA1) and assessed their expression levels by q-RT-PCR. We found an up-regulation of selected genes in ACS patients vs HS (P < 0.001). ABCA1, TCF7, PDGFA, and PRKCZ gene expression was positively associated with CK-MB serum concentrations (r = 0.75, P = 0.03; r = 0.760, P = 0.029; r = 0.72, P = 0.044; r = 0.74, P = 0.035, respectively).This pilot study is the first single-base resolution map of DNA methylome by RRBS in CD4+ and CD8+ T cells and provides specific methylation signatures to clarify the role of aberrant methylation in ACS pathogenesis, thus supporting future research for novel epigenetic-sensitive biomarkers in the prevention and early diagnosis of this pathology.
Collapse
Affiliation(s)
- Teresa Infante
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Antonio Ruocco
- Unit of Cardiovascular Diseases and Arrhythmias, "Antonio Cardarelli" Hospital, Naples, Italy
| | - Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, SA, Italy.,Genome Research Center for Health, Campus of Medicine, Baronissi, SA, Italy
| | - Francesca Rizzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, SA, Italy.,Genome Research Center for Health, Campus of Medicine, Baronissi, SA, Italy
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, SA, Italy.,Genome Research Center for Health, Campus of Medicine, Baronissi, SA, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Grimaldi
- IRCCS SDN, Naples, Italy.,U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Soricelli
- IRCCS SDN, Naples, Italy.,Department of Exercise and Wellness Sciences, University of Naples Parthenope, Naples, Italy
| | - Ciro Mauro
- Unit of Cardiovascular Diseases and Arrhythmias, "Antonio Cardarelli" Hospital, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.,IRCCS SDN, Naples, Italy
| |
Collapse
|
66
|
Hamdani N, Costantino S, Mügge A, Lebeche D, Tschöpe C, Thum T, Paneni F. Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. Eur Heart J 2021; 42:1940-1958. [PMID: 36282124 DOI: 10.1093/eurheartj/ehab197] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Described as the 'single largest unmet need in cardiovascular medicine', heart failure with preserved ejection fraction (HFpEF) remains an untreatable disease currently representing 65% of new heart failure diagnoses. HFpEF is more frequent among women and associates with a poor prognosis and unsustainable healthcare costs. Moreover, the variability in HFpEF phenotypes amplifies complexity and difficulties in the approach. In this perspective, unveiling novel molecular targets is imperative. Epigenetic modifications-defined as changes of DNA, histones, and non-coding RNAs (ncRNAs)-represent a molecular framework through which the environment modulates gene expression. Epigenetic signals acquired over the lifetime lead to chromatin remodelling and affect transcriptional programmes underlying oxidative stress, inflammation, dysmetabolism, and maladaptive left ventricular remodelling, all conditions predisposing to HFpEF. The strong involvement of epigenetic signalling in this setting makes the epigenetic information relevant for diagnostic and therapeutic purposes in patients with HFpEF. The recent advances in high-throughput sequencing, computational epigenetics, and machine learning have enabled the identification of reliable epigenetic biomarkers in cardiovascular patients. Contrary to genetic tools, epigenetic biomarkers mirror the contribution of environmental cues and lifestyle changes and their reversible nature offers a promising opportunity to monitor disease states. The growing understanding of chromatin and ncRNAs biology has led to the development of several Food and Drug Administration approved 'epidrugs' (chromatin modifiers, mimics, anti-miRs) able to prevent transcriptional alterations underpinning left ventricular remodelling and HFpEF. In the present review, we discuss the importance of clinical epigenetics as a new tool to be employed for a personalized management of HFpEF.
Collapse
Affiliation(s)
- Nazha Hamdani
- Institute of Physiology, Ruhr University, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr University, Bochum, Germany.,Department of Cardiology, St-Josef Hospital, Ruhr University, Bochum, Germany.,Clinical Pharmacology, Ruhr University, Bochum, Germany
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren CH-8952, Switzerland
| | - Andreas Mügge
- Molecular and Experimental Cardiology, Ruhr University, Bochum, Germany.,Department of Cardiology, St-Josef Hospital, Ruhr University, Bochum, Germany
| | - Djamel Lebeche
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY 10029, USA.,Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Medicine, Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover 30625, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren CH-8952, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
67
|
Pasyukova EG, Symonenko AV, Rybina OY, Vaiserman AM. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting. Ageing Res Rev 2021; 67:101312. [PMID: 33657446 DOI: 10.1016/j.arr.2021.101312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The development of interventions aimed at improving healthspan is one of the priority tasks for the academic and public health authorities. It is also the main objective of a novel branch in biogerontological research, geroscience. According to the geroscience concept, targeting aging is an effective way to combat age-related disorders. Since aging is an exceptionally complex process, system-oriented integrated approaches seem most appropriate for such an interventional strategy. Given the high plasticity and adaptability of the epigenome, epigenome-targeted interventions appear highly promising in geroscience research. Pharmaceuticals targeted at mechanisms involved in epigenetic control of gene activity are actively developed and implemented to prevent and treat various aging-related conditions such as cardiometabolic, neurodegenerative, inflammatory disorders, and cancer. In this review, we describe the roles of epigenetic mechanisms in aging; characterize enzymes contributing to the regulation of epigenetic processes; particularly focus on epigenetic drugs, such as inhibitors of DNA methyltransferases and histone deacetylases that may potentially affect aging-associated diseases and longevity; and discuss possible caveats associated with the use of epigenetic drugs.
Collapse
Affiliation(s)
- Elena G Pasyukova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Alexander V Symonenko
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Olga Y Rybina
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia; Federal State Budgetary Educational Institution of Higher Education «Moscow Pedagogical State University», M. Pirogovskaya Str. 1/1, Moscow, 119991, Russia
| | | |
Collapse
|
68
|
Papazoglou P, Peng L, Sachinidis A. Epigenetic Mechanisms Involved in the Cardiovascular Toxicity of Anticancer Drugs. Front Cardiovasc Med 2021; 8:658900. [PMID: 33987212 PMCID: PMC8110725 DOI: 10.3389/fcvm.2021.658900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The cardiovascular toxicity of anticancer drugs promotes the development of cardiovascular diseases. Therefore, cardiovascular toxicity is an important safety issue that must be considered when developing medications and therapeutic applications to treat cancer. Among anticancer drugs, members of the anthracycline family, such as doxorubicin, daunorubicin and mitoxantrone, are known to cause cardiotoxicity and even heart failure. Using human-induced pluripotent stem cell-derived cardiomyocytes in combination with "Omic" technologies, we identified several cardiotoxicity mechanisms and signal transduction pathways. Moreover, these drugs acted as cardiovascular toxicants through a syndrome of mechanisms, including epigenetic ones. Herein, we discuss the main cardiovascular toxicity mechanisms, with an emphasis on those associated with reactive oxygen species and mitochondria that contribute to cardiotoxic epigenetic modifications. We also discuss how to mitigate the cardiotoxic effects of anticancer drugs using available pharmaceutical "weapons."
Collapse
Affiliation(s)
| | - Luying Peng
- Heart Health Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
69
|
Ashtary-Larky D, Bagheri R, Ghanavati M, Asbaghi O, Tinsley GM, Mombaini D, Kooti W, Kashkooli S, Wong A. Effects of betaine supplementation on cardiovascular markers: A systematic review and Meta-analysis. Crit Rev Food Sci Nutr 2021; 62:6516-6533. [PMID: 33764214 DOI: 10.1080/10408398.2021.1902938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Controversy regarding the effects of betaine supplementation on cardiovascular markers has persisted for decades. This systematic review and meta-analysis compared the effects of betaine supplementation on cardiovascular disease (CVD) markers. Studies examining betaine supplementation on CVD markers published up to February 2021 were identified through PubMed, the Cochrane Library, Web of Science, Embase, and SCOPUS. Betaine supplementation had a significant effect on concentrations of betaine (MD: 82.14 μmol/L, 95% CI: 67.09 to 97.20), total cholesterol (TC) (MD: 14.12 mg/dl, 95% CI%: 9.23 to 19.02), low-density lipoprotein (LDL) (MD: 10.26 mg/dl, 95% CI: 6.14 to 14.38)], homocysteine (WMD: -1.30 micromol/L, 95% CI: -1.61 to -0.98), dimethylglycine (DMG) (MD: 21.33 micromol/L, 95% CI: 13.87 to 28.80), and methionine (MD: 2.06 micromol/L, 95% CI: 0.23 to 3.88). Moreover, our analysis indicated that betaine supplementation did not affect serum concentrations of triglyceride (TG), high-density lipoprotein (HDL), fasting blood glucose (FBG), C-reactive protein (CRP), liver enzymes [alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT)], and blood pressure. Our subgroup analysis suggested that a maximum dose of 4 g/d might have homocysteine-lowering effects without any adverse effect on lipid profiles reported with doses of ≥4 g/d. In conclusion, the present systematic review and meta-analysis supports the advantage of a lower dose of betaine supplementation (<4 g/d) on homocysteine concentrations without the lipid-augmenting effect observed with a higher dosage.
Collapse
Affiliation(s)
- Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Matin Ghanavati
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Grant M Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Delsa Mombaini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Wesam Kooti
- Lung Diseases & Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sara Kashkooli
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, Texas, USA
| |
Collapse
|
70
|
Colicino E, Just A, Kioumourtzoglou MA, Vokonas P, Cardenas A, Sparrow D, Weisskopf M, Nie LH, Hu H, Schwartz JD, Wright RO, Baccarelli AA. Blood DNA methylation biomarkers of cumulative lead exposure in adults. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:108-116. [PMID: 31636367 PMCID: PMC7170756 DOI: 10.1038/s41370-019-0183-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Lead is a ubiquitous toxicant following three compartment kinetics with the longest half-life found in bones. Patella and tibia lead levels-validated measures of cumulative exposure-require specialized X-ray-fluorescence-spectroscopy available only in a few centers worldwide. We developed minimally invasive biomarkers reflecting individual cumulative lead exposure using blood DNA methylation profiles-obtainable via Illumina 450K or IlluminaEPIC bead-chip assays. METHODS We developed and tested two methylation-based biomarkers from 348 Normative Aging Study (NAS) elderly men. We selected methylation sites with strong associations with bone lead levels via robust regressions analysis and constructed the biomarkers using elastic nets. Results were validated in a NAS subset, reporting specificity, and sensitivity. FINDINGS Participants were 73 years old on average (standard deviation, SD = 6), with moderate lead levels of (mean ± SD patella: 27 ± 18 µg/g; tibia:21 ± 13 µg/g). Methylation-based biomarkers for lead in patella and tibia included 59 and 138 DNA methylation sites, respectively. Estimated lead levels were significantly correlated with actual measured values, (r = 0.62 patella, r = 0.59 tibia) and had low mean square error (MSE) (MSE = 0.68 patella, MSE = 0.53 tibia). Means and distributions of the estimated and actual lead levels were not significantly different across patella and tibia bones (p > 0.05). Methylation-based biomarkers discriminated participants highly exposed (>median) to lead with a specificity of 74 and 73% for patella and tibia lead levels, respectively, with 70% sensitivity. INTERPRETATION DNA methylation-based lead biomarkers are novel tools that can be used to reconstruct decades' worth of individual cumulative lead exposure using only blood DNA methylation profiles and may help identify the consequences of cumulative exposure.
Collapse
Affiliation(s)
- Elena Colicino
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Allan Just
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Pantel Vokonas
- Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Andres Cardenas
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - David Sparrow
- VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| | - Marc Weisskopf
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Linda H Nie
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Howard Hu
- School of Public Health, University of Washington, Seattle, WA, F-226B, USA
| | | | | | | |
Collapse
|
71
|
Sumi MP, Mahajan B, Sattar RSA, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Saluja SS. Elucidation of Epigenetic Landscape in Coronary Artery Disease: A Review on Basic Concept to Personalized Medicine. Epigenet Insights 2021; 14:2516865720988567. [PMID: 33598635 PMCID: PMC7863167 DOI: 10.1177/2516865720988567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Despite extensive clinical research and management protocols applied in the field of coronary artery diseases (CAD), it still holds the number 1 position in mortality worldwide. This indicates that we need to work on precision medicine to discover the diagnostic, therapeutic, and prognostic targets to improve the outcome of CAD. In precision medicine, epigenetic changes play a vital role in disease onset and progression. Epigenetics is the study of heritable changes that do not affect the alterations of DNA sequence in the genome. It comprises various covalent modifications that occur in DNA or histone proteins affecting the spatial arrangement of the DNA and histones. These multiple modifications include DNA/histone methylation, acetylation, phosphorylation, and SUMOylation. Besides these covalent modifications, non-coding RNAs-viz. miRNA, lncRNA, and circRNA are also involved in epigenetics. Smoking, alcohol, diet, environmental pollutants, obesity, and lifestyle are some of the prime factors affecting epigenetic alterations. Novel molecular techniques such as next-generation sequencing, chromatin immunoprecipitation, and mass spectrometry have been developed to identify important cross points in the epigenetic web in relation to various diseases. The studies regarding exploration of epigenetics, have led researchers to identify multiple diagnostic markers and therapeutic targets that are being used in different disease diagnosis and management. Here in this review, we will discuss various ground-breaking contributions of past and recent studies in the epigenetic field in concert with coronary artery diseases. Future prospects of epigenetics and its implication in CAD personalized medicine will also be discussed in brief.
Collapse
Affiliation(s)
- Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
- Department of Biochemistry, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Abhay Kumar Sharma
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Ejaz Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| |
Collapse
|
72
|
Zhao Q, Zhang Y, Shao S, Sun Y, Lin Z. Identification of hub genes and biological pathways in hepatocellular carcinoma by integrated bioinformatics analysis. PeerJ 2021; 9:e10594. [PMID: 33552715 PMCID: PMC7821758 DOI: 10.7717/peerj.10594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC), the main type of liver cancer in human, is one of the most prevalent and deadly malignancies in the world. The present study aimed to identify hub genes and key biological pathways by integrated bioinformatics analysis. Methods A bioinformatics pipeline based on gene co-expression network (GCN) analysis was built to analyze the gene expression profile of HCC. Firstly, differentially expressed genes (DEGs) were identified and a GCN was constructed with Pearson correlation analysis. Then, the gene modules were identified with 3 different community detection algorithms, and the correlation analysis between gene modules and clinical indicators was performed. Moreover, we used the Search Tool for the Retrieval of Interacting Genes (STRING) database to construct a protein protein interaction (PPI) network of the key gene module, and we identified the hub genes using nine topology analysis algorithms based on this PPI network. Further, we used the Oncomine analysis, survival analysis, GEO data set and random forest algorithm to verify the important roles of hub genes in HCC. Lastly, we explored the methylation changes of hub genes using another GEO data (GSE73003). Results Firstly, among the expression profiles, 4,130 up-regulated genes and 471 down-regulated genes were identified. Next, the multi-level algorithm which had the highest modularity divided the GCN into nine gene modules. Also, a key gene module (m1) was identified. The biological processes of GO enrichment of m1 mainly included the processes of mitosis and meiosis and the functions of catalytic and exodeoxyribonuclease activity. Besides, these genes were enriched in the cell cycle and mitotic pathway. Furthermore, we identified 11 hub genes, MCM3, TRMT6, AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NCAPD2 and KPNA2 which played key roles in HCC. The results of multiple verification methods indicated that the 11 hub genes had highly diagnostic efficiencies to distinguish tumors from normal tissues. Lastly, the methylation changes of gene CDC20, TOP2A, TK1, FEN1 in HCC samples had statistical significance (P-value < 0.05). Conclusion MCM3, TRMT6, AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NCAPD2 and KPNA2 could be potential biomarkers or therapeutic targets for HCC. Meanwhile, the metabolic pathway, the cell cycle and mitotic pathway might played vital roles in the progression of HCC.
Collapse
Affiliation(s)
- Qian Zhao
- College of Information Science and Technology, Dalian Martime University, Dalian, Liaoning, China
| | - Yan Zhang
- College of Information Science and Technology, Dalian Martime University, Dalian, Liaoning, China
| | - Shichun Shao
- College of Environmental Science and Engineering, Dalian Martime University, Dalian, Liaoning, China
| | - Yeqing Sun
- College of Environmental Science and Engineering, Dalian Martime University, Dalian, Liaoning, China
| | - Zhengkui Lin
- College of Information Science and Technology, Dalian Martime University, Dalian, Liaoning, China
| |
Collapse
|
73
|
Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108365. [PMID: 34083039 PMCID: PMC8287787 DOI: 10.1016/j.mrrev.2021.108365] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Smoking is a major risk factor for a variety of diseases, including cancer and immune-mediated inflammatory diseases. Tobacco smoke contains a mixture of chemicals, including a host of reactive oxygen- and nitrogen species (ROS and RNS), among others, that can damage cellular and sub-cellular targets, such as lipids, proteins, and nucleic acids. A growing body of evidence supports a key role for smoking-induced ROS and the resulting oxidative stress in inflammation and carcinogenesis. This comprehensive and up-to-date review covers four interrelated topics, including 'smoking', 'oxidative stress', 'inflammation', and 'cancer'. The review discusses each of the four topics, while exploring the intersections among the topics by highlighting the macromolecular damage attributable to ROS. Specifically, oxidative damage to macromolecular targets, such as lipid peroxidation, post-translational modification of proteins, and DNA adduction, as well as enzymatic and non-enzymatic antioxidant defense mechanisms, and the multi-faceted repair pathways of oxidized lesions are described. Also discussed are the biological consequences of oxidative damage to macromolecules if they evade the defense mechanisms and/or are not repaired properly or in time. Emphasis is placed on the genetic- and epigenetic alterations that may lead to transcriptional deregulation of functionally-important genes and disruption of regulatory elements. Smoking-associated oxidative stress also activates the inflammatory response pathway, which triggers a cascade of events of which ROS production is an initial yet indispensable step. The release of ROS at the site of damage and inflammation helps combat foreign pathogens and restores the injured tissue, while simultaneously increasing the burden of oxidative stress. This creates a vicious cycle in which smoking-related oxidative stress causes inflammation, which in turn, results in further generation of ROS, and potentially increased oxidative damage to macromolecular targets that may lead to cancer initiation and/or progression.
Collapse
Affiliation(s)
- Andrew W Caliri
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
74
|
Li B, Li Y, Xu S, Chen H, Dai S, Peng X, Wang L, Liang Y, Li C, Tang B, Zhu L, Zhang T, Lv C, Wang C, Han L. A comprehensive association analysis between homocysteine metabolic pathway gene methylation and ischemic stroke in a Chinese hypertensive population. J Clin Lab Anal 2020; 35:e23689. [PMID: 33382484 PMCID: PMC7957978 DOI: 10.1002/jcla.23689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a serious global health burden. In order to improve our understanding of the risk factors associated with IS, we investigated the combined effect of the methylation of five genes related to the metabolism of homocysteine on developing IS. METHODS Quantitative methylation-specific PCR was used to measure the levels of promoter methylation in hypertensive and stroke patients. The cutoff value calculated by the maximum Youden index was used to classify the levels of gene methylation as hypomethylation and hypermethylation. Logistic regression was used to explore the relationship between gene methylation and IS. RESULTS The methylation levels of the genes encoding methylenetetrahydrofolate dehydrogenase 1 [MTHFD1], cystathionine β-synthase [CBS], and dihydrofolate reductase [DHFR] in hypertensive patients were higher than those in stroke patients (all p < 0.01). MTHFD1 hypermethylation, CBS hypermethylation, and DHFR hypermethylation were protective factors for stroke after adjustment for confounding factors. Compared with individuals carrying none of the biomarkers, the ORs [95% CIs] for stroke of those with 1 and 2 elevated biomarkers were 4.068 [1.670-9.913] and 15.345 [6.198-37.994] after adjustment for confounding factors. The participants with a larger number of biomarkers had an increased risk of stroke (p for trend <0.001). For the combination biomarkers, the area under the curve of the receiver operating characteristic was 0.716. CONCLUSION A significant linear relationship between the number of elevated biomarkers and the risk of stroke has been observed, suggesting that elevations of these biomarkers could be used for potentially predicting the disease.
Collapse
Affiliation(s)
- Bo Li
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Yuying Li
- Shenzhen Polytechnic, Shenzhen, China
| | - Shan Xu
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Hongen Chen
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Shudong Dai
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Xiaoling Peng
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Li Wang
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Yaping Liang
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Cheng Li
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Biwei Tang
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Liqing Zhu
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Tao Zhang
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Chunfang Lv
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Changyi Wang
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Liyuan Han
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
75
|
Tao J, Xia L, Cai Z, Liang L, Chen Y, Meng J, Wang Z. Interaction Between microRNA and DNA Methylation in Atherosclerosis. DNA Cell Biol 2020; 40:101-115. [PMID: 33259723 DOI: 10.1089/dna.2020.6138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease accompanied by complex pathological changes, such as endothelial dysfunction, foam cell formation, and vascular smooth muscle cell proliferation. Many approaches, including regulating AS-related gene expression in the transcriptional or post-transcriptional level, contribute to alleviating AS development. The DNA methylation is a crucial epigenetic modification in regulating cell function by silencing the relative gene expression. The microRNA (miRNA) is a type of noncoding RNA that plays an important role in gene post-transcriptional regulation and disease development. The DNA methylation and the miRNA are important epigenetic factors in AS. However, recent studies have found a mutual regulation between these two factors in AS development. In this study, recent insights into the roles of miRNA and DNA methylation and their interaction in the AS progression are reviewed.
Collapse
Affiliation(s)
- Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Linzhen Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Zemin Cai
- Department of Pediatrics and The First Affiliated Hospital of University of South China, Hengyang, China
| | - Lingli Liang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yanjun Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
76
|
Hyun J, Jung Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:8138. [PMID: 33143364 PMCID: PMC7662478 DOI: 10.3390/ijms21218138] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread hepatic disorder in the United States and other Westernized countries. Nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD, can progress to end-stage liver disease, including cirrhosis and liver cancer. Poor understanding of mechanisms underlying NAFLD progression from simple steatosis to NASH has limited the development of effective therapies and biomarkers. An accumulating body of studies has suggested the importance of DNA methylation, which plays pivotal roles in NAFLD pathogenesis. DNA methylation signatures that can affect gene expression are influenced by environmental and lifestyle experiences such as diet, obesity, and physical activity and are reversible. Hence, DNA methylation signatures and modifiers in NAFLD may provide the basis for developing biomarkers indicating the onset and progression of NAFLD and therapeutics for NAFLD. Herein, we review an update on the recent findings in DNA methylation signatures and their roles in the pathogenesis of NAFLD and broaden people's perspectives on potential DNA methylation-related treatments and biomarkers for NAFLD.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Cell and Matter Institute, Dankook University, Cheonan 31116, Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
77
|
Ammous F, Zhao W, Ratliff SM, Kho M, Shang L, Jones AC, Chaudhary NS, Tiwari HK, Irvin MR, Arnett DK, Mosley TH, Bielak LF, Kardia SLR, Zhou X, Smith J. Epigenome-wide association study identifies DNA methylation sites associated with target organ damage in older African Americans. Epigenetics 2020; 16:862-875. [PMID: 33100131 DOI: 10.1080/15592294.2020.1827717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Target organ damage (TOD) manifests as vascular injuries in the body organ systems associated with long-standing hypertension. DNA methylation in peripheral blood leukocytes can capture inflammatory processes and gene expression changes underlying TOD. We investigated the association between epigenome-wide DNA methylation and five measures of TOD (estimated glomerular filtration rate (eGFR), urinary albumin-creatinine ratio (UACR), left ventricular mass index (LVMI), relative wall thickness (RWT), and white matter hyperintensity (WMH)) in 961 African Americans from hypertensive sibships. A multivariate (multi-trait) model of eGFR, UACR, LVMI, and RWT identified seven CpGs associated with at least one of the traits (cg21134922, cg04816311 near C7orf50, cg09155024, cg10254690 near OAT, cg07660512, cg12661888 near IFT43, and cg02264946 near CATSPERD) at FDR q < 0.1. Adjusting for blood pressure, body mass index, and type 2 diabetes attenuated the association for four CpGs. DNA methylation was associated with cis-gene expression for some CpGs, but no significant mediation by gene expression was detected. Mendelian randomization analyses suggested causality between three CpGs and eGFR (cg04816311, cg10254690, and cg07660512). We also assessed whether the identified CpGs were associated with TOD in 614 African Americans in the Hypertension Genetic Epidemiology Network (HyperGEN) study. Out of three CpGs available for replication, cg04816311 was significantly associated with eGFR (p = 0.0003), LVMI (p = 0.0003), and RWT (p = 0.002). This study found evidence of an association between DNA methylation and TOD in African Americans and highlights the utility of using a multivariate-based model that leverages information across related traits in epigenome-wide association studies.
Collapse
Affiliation(s)
- Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Lulu Shang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Alana C Jones
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ninad S Chaudhary
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Donna K Arnett
- Dean's Office, School of Public Health, University of Kentucky, Lexington, KY, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.,Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
78
|
Lin CY, Lee HL, Hwang YT, Wang C, Hsieh CJ, Wu C, Sung FC, Su TC. The association between urine di-(2-ethylhexyl) phthalate metabolites, global DNA methylation, and subclinical atherosclerosis in a young Taiwanese population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114912. [PMID: 32540595 DOI: 10.1016/j.envpol.2020.114912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/04/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) has been utilized in many products for years. DEHP exposure has been linked to cardiovascular diseases (CVD) and its risk factors. Recent evidence has found a crucial role for epigenetics, including DNA methylation, in CVD. Moreover, DEHP exposure has proved to alter DNA methylation in epidemiological studies. However, the interplay between DEHP exposure, global DNA methylation, and atherosclerosis has never been reported. In this current study, we enrolled 793 participants (12-30 years) from a Taiwanese population to investigate the association between concentrations of DEHP metabolites, 5mdC/dG (global DNA methylation marker) and the carotid intima-media thickness (CIMT). The results showed urine mono-2-ethylhexyl phthalate (MEHP) level was positively correlated with 5mdC/dG and CIMT, respectively. In logistic regression models, the odds ratios (OR) of thicker CIMT (greater than 75th percentile) with one unit increase in ln-MEHP level was higher when levels of 5mdC/dG were above 50%. In structural equation model, the result showed urine MEHP levels are directly associated with CIMT. Moreover, MEHP had an indirect association with CIMT through the 5mdC/dG after adjusting other confounding effects. In the current study, urine DEHP metabolite levels were positively correlated with 5mdC/dG, and CIMT. Our results showed DEHP had a direct and indirect association with CIMT through the 5mdC/dG. The finding implies that DNA methylation may mediate the association between DEHP exposures and subclinical atherosclerosis in this young population. Future effort is needed to elucidate the causal relationship between DEHP exposure, DNA methylation and CVD.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Yi-Ting Hwang
- Department of Statistics, National Taipei University, New Taipei City, 237, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualian County, 970, Taiwan
| | - Charlene Wu
- Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
79
|
Shu C, Justice AC, Zhang X, Wang Z, Hancock DB, Johnson EO, Xu K. DNA methylation mediates the effect of cocaine use on HIV severity. Clin Epigenetics 2020; 12:140. [PMID: 32928285 PMCID: PMC7491141 DOI: 10.1186/s13148-020-00934-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cocaine use accelerates human immunodeficiency virus (HIV) progression and worsens HIV outcomes. We assessed whether DNA methylation in blood mediates the association between cocaine use and HIV severity in a veteran population. Methods We analyzed 1435 HIV-positive participants from the Veterans Aging Cohort Study Biomarker Cohort (VACS-BC). HIV severity was measured by the Veteran Aging Cohort Study (VACS) index. We assessed the effect of cocaine use on VACS index and mortality among the HIV-positive participants. We selected candidate mediators that were associated with both persistent cocaine use and VACS index by epigenome-wide association (EWA) scans at a liberal p value cutoff of 0.001. Mediation analysis of the candidate CpG sites between cocaine’s effect and the VACS index was conducted, and the joint mediation effect of multiple CpGs was estimated. A two-step epigenetic Mendelian randomization (MR) analysis was conducted as validation. Results More frequent cocaine use was significantly associated with a higher VACS index (β = 1.00, p = 2.7E−04), and cocaine use increased the risk of 10-year mortality (hazard ratio = 1.10, p = 0.011) with adjustment for confounding factors. Fifteen candidate mediator CpGs were selected from the EWA scan. Twelve of these CpGs showed significant mediation effects, with each explaining 11.3–29.5% of the variation. The mediation effects for 3 of the 12 CpGs were validated by the two-step epigenetic MR analysis. The joint mediation effect of the 12 CpGs accounted for 47.2% of cocaine’s effect on HIV severity. Genes harboring these 12 CpGs are involved in the antiviral response (IFIT3, IFITM1, NLRC5, PLSCR1, PARP9) and HIV progression (CX3CR1, MX1). Conclusions We identified 12 DNA methylation CpG sites that appear to play a mediation role in the association between cocaine use and HIV severity.
Collapse
Affiliation(s)
- Chang Shu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Connecticut Veteran Healthcare System, West Haven, CT, USA
| | - Amy C Justice
- Connecticut Veteran Healthcare System, West Haven, CT, USA.,Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Xinyu Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Connecticut Veteran Healthcare System, West Haven, CT, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Dana B Hancock
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA.,Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA. .,Connecticut Veteran Healthcare System, West Haven, CT, USA.
| |
Collapse
|
80
|
Lionetti V, Tuana BS, Casieri V, Parikh M, Pierce GN. Importance of functional food compounds in cardioprotection through action on the epigenome. Eur Heart J 2020; 40:575-582. [PMID: 30325400 DOI: 10.1093/eurheartj/ehy597] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/05/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Food constituents can either promote cardiovascular health or serve in its demise. In view of the lack of more effective pharmacological interventions in cardiovascular disease (CVDs), attention has focused on the potential protective effects of diet. Food components and their metabolites are emerging as major regulators of the human epigenome, which is being linked to CVDs. In this review, we summarize data from studies that suggest an important role for bioactive food compounds in cardioprotection and the potential for harnessing the epigenome as a nutrient sensor target in CVDs. While clinical data strongly support a role for effective diet intervention in CVDs protection, studies linking changes to human epigenome are now warranted for mechanistic insight and development of personalized care.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, Italy.,Fondazione CNR/Regione Toscana 'G. Monasterio', UOS Anesthesiology, Via G. Moruzzi 1, Pisa, Italy
| | - Balwant S Tuana
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, Italy.,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada.,University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
| | - Valentina Casieri
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, Italy
| | - Mihir Parikh
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, 745 Bannatyne Avenue, MB, Winnipeg, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, 745 Bannatyne Avenue, MB, Winnipeg, Canada
| |
Collapse
|
81
|
Pi T, Liu B, Shi J. Abnormal Homocysteine Metabolism: An Insight of Alzheimer's Disease from DNA Methylation. Behav Neurol 2020; 2020:8438602. [PMID: 32963633 PMCID: PMC7495165 DOI: 10.1155/2020/8438602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease in the central nervous system that has complex pathogenesis in the elderly. The current review focuses on the epigenetic mechanisms of AD, according to the latest findings. One of the best-characterized chromatin modifications in epigenetic mechanisms is DNA methylation. Highly replicable data shows that AD occurrence is often accompanied by methylation level changes of the AD-related gene. Homocysteine (Hcy) is not only an intermediate product of one-carbon metabolism but also an important independent risk factor of AD; it can affect the cognitive function of the brain by changing the one-carbon metabolism and interfering with the DNA methylation process, resulting in cerebrovascular disease. In general, Hcy may be an environmental factor that affects AD via the DNA methylation pathway with a series of changes in AD-related substance. This review will concentrate on the relation between DNA methylation and Hcy and try to figure out their rule in the pathophysiology of AD.
Collapse
Affiliation(s)
- Tingting Pi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bo Liu
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
82
|
Song Y, Zhou X, Zhang M, Zhao W, Liu Y, Kardia SLR, Diez Roux AV, Needham BL, Smith JA, Mukherjee B. Bayesian shrinkage estimation of high dimensional causal mediation effects in omics studies. Biometrics 2020; 76:700-710. [PMID: 31733066 PMCID: PMC7228845 DOI: 10.1111/biom.13189] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022]
Abstract
Causal mediation analysis aims to examine the role of a mediator or a group of mediators that lie in the pathway between an exposure and an outcome. Recent biomedical studies often involve a large number of potential mediators based on high-throughput technologies. Most of the current analytic methods focus on settings with one or a moderate number of potential mediators. With the expanding growth of -omics data, joint analysis of molecular-level genomics data with epidemiological data through mediation analysis is becoming more common. However, such joint analysis requires methods that can simultaneously accommodate high-dimensional mediators and that are currently lacking. To address this problem, we develop a Bayesian inference method using continuous shrinkage priors to extend previous causal mediation analysis techniques to a high-dimensional setting. Simulations demonstrate that our method improves the power of global mediation analysis compared to simpler alternatives and has decent performance to identify true nonnull contributions to the mediation effects of the pathway. The Bayesian method also helps us to understand the structure of the composite null cases for inactive mediators in the pathway. We applied our method to Multi-Ethnic Study of Atherosclerosis and identified DNA methylation regions that may actively mediate the effect of socioeconomic status on cardiometabolic outcomes.
Collapse
Affiliation(s)
- Yanyi Song
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, U.S.A
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, U.S.A
| | - Min Zhang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, U.S.A
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, U.S.A
| | | | - Ana V. Diez Roux
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, U.S.A
| | - Belinda L. Needham
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Jennifer A. Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, U.S.A
| |
Collapse
|
83
|
Erasmus M, Samodien E, Lecour S, Cour M, Lorenzo O, Dludla P, Pheiffer C, Johnson R. Linking LOXL2 to Cardiac Interstitial Fibrosis. Int J Mol Sci 2020; 21:E5913. [PMID: 32824630 PMCID: PMC7460598 DOI: 10.3390/ijms21165913] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide. CVD pathophysiology is often characterized by increased stiffening of the heart muscle due to fibrosis, thus resulting in diminished cardiac function. Fibrosis can be caused by increased oxidative stress and inflammation, which is strongly linked to lifestyle and environmental factors such as diet, smoking, hyperglycemia, and hypertension. These factors can affect gene expression through epigenetic modifications. Lysyl oxidase like 2 (LOXL2) is responsible for collagen and elastin cross-linking in the heart, and its dysregulation has been pathologically associated with increased fibrosis. Additionally, studies have shown that, LOXL2 expression can be regulated by DNA methylation and histone modification. However, there is a paucity of data on LOXL2 regulation and its role in CVD. As such, this review aims to gain insight into the mechanisms by which LOXL2 is regulated in physiological conditions, as well as determine the downstream effectors responsible for CVD development.
Collapse
Affiliation(s)
- Melisse Erasmus
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7501, South Africa; (M.E.); (E.S.); (P.D.); (C.P.)
- Department of Medical Physiology, Stellenbosch University, Cape Town 7505, South Africa
| | - Ebrahim Samodien
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7501, South Africa; (M.E.); (E.S.); (P.D.); (C.P.)
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa (HICRA), University of Cape Town, Cape Town 7925, South Africa;
| | - Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, Place d’Arsonval, 69437 Lyon, France;
| | - Oscar Lorenzo
- Institute de Investigación Sanitaria-FJD, Faculty of Medicine, University Autónoma de Madrid, 28049 Madrid, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - Phiwayinkosi Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7501, South Africa; (M.E.); (E.S.); (P.D.); (C.P.)
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7501, South Africa; (M.E.); (E.S.); (P.D.); (C.P.)
- Department of Medical Physiology, Stellenbosch University, Cape Town 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7501, South Africa; (M.E.); (E.S.); (P.D.); (C.P.)
- Department of Medical Physiology, Stellenbosch University, Cape Town 7505, South Africa
| |
Collapse
|
84
|
Ma J, Rebholz CM, Braun KV, Reynolds LM, Aslibekyan S, Xia R, Biligowda NG, Huan T, Liu C, Mendelson MM, Joehanes R, Hu EA, Vitolins MZ, Wood AC, Lohman K, Ochoa-Rosales C, van Meurs J, Uitterlinden A, Liu Y, Elhadad MA, Heier M, Waldenberger M, Peters A, Colicino E, Whitsel EA, Baldassari A, Gharib SA, Sotoodehnia N, Brody JA, Sitlani CM, Tanaka T, Hill WD, Corley J, Deary IJ, Zhang Y, Schöttker B, Brenner H, Walker ME, Ye S, Nguyen S, Pankow J, Demerath EW, Zheng Y, Hou L, Liang L, Lichtenstein AH, Hu FB, Fornage M, Voortman T, Levy D. Whole Blood DNA Methylation Signatures of Diet Are Associated With Cardiovascular Disease Risk Factors and All-Cause Mortality. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:e002766. [PMID: 32525743 PMCID: PMC7442697 DOI: 10.1161/circgen.119.002766] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND DNA methylation patterns associated with habitual diet have not been well studied. METHODS Diet quality was characterized using a Mediterranean-style diet score and the Alternative Healthy Eating Index score. We conducted ethnicity-specific and trans-ethnic epigenome-wide association analyses for diet quality and leukocyte-derived DNA methylation at over 400 000 CpGs (cytosine-guanine dinucleotides) in 5 population-based cohorts including 6662 European ancestry, 2702 African ancestry, and 360 Hispanic ancestry participants. For diet-associated CpGs identified in epigenome-wide analyses, we conducted Mendelian randomization (MR) analysis to examine their relations to cardiovascular disease risk factors and examined their longitudinal associations with all-cause mortality. RESULTS We identified 30 CpGs associated with either Mediterranean-style diet score or Alternative Healthy Eating Index, or both, in European ancestry participants. Among these CpGs, 12 CpGs were significantly associated with all-cause mortality (Bonferroni corrected P<1.6×10-3). Hypermethylation of cg18181703 (SOCS3) was associated with higher scores of both Mediterranean-style diet score and Alternative Healthy Eating Index and lower risk for all-cause mortality (P=5.7×10-15). Ten additional diet-associated CpGs were nominally associated with all-cause mortality (P<0.05). MR analysis revealed 8 putatively causal associations for 6 CpGs with 4 cardiovascular disease risk factors (body mass index, triglycerides, high-density lipoprotein cholesterol concentrations, and type 2 diabetes mellitus; Bonferroni corrected MR P<4.5×10-4). For example, hypermethylation of cg11250194 (FADS2) was associated with lower triglyceride concentrations (MR, P=1.5×10-14).and hypermethylation of cg02079413 (SNORA54; NAP1L4) was associated with body mass index (corrected MR, P=1×10-6). CONCLUSIONS Habitual diet quality was associated with differential peripheral leukocyte DNA methylation levels of 30 CpGs, most of which were also associated with multiple health outcomes, in European ancestry individuals. These findings demonstrate that integrative genomic analysis of dietary information may reveal molecular targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Jiantao Ma
- Nutrition Epidemiology & Data Science, Friedman School of Nutrition Science and Policy, Tufts Univ, Boston
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD & the Framingham Heart Study, Framingham, MA
| | - Casey M. Rebholz
- Dept of Epidemiology, Bloomberg School of Public Health, Johns Hopkins Univ, Baltimore, MD
| | - Kim V.E. Braun
- Dept of Epidemiology, Erasmus Univ Medical Ctr, Rotterdam, The Netherlands
| | - Lindsay M. Reynolds
- Dept of Epidemiology & Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | | | - Rui Xia
- Inst of Molecular Medicine, The Univ of Texas Health Science Ctr at Houston, Houston, TX
| | | | - Tianxiao Huan
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD & the Framingham Heart Study, Framingham, MA
| | - Chunyu Liu
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD & the Framingham Heart Study, Framingham, MA
- Dept of Biostatistics, Boston Univ, Boston, MA
| | - Michael M. Mendelson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD & the Framingham Heart Study, Framingham, MA
- Dept of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD & the Framingham Heart Study, Framingham, MA
| | - Emily A. Hu
- Dept of Epidemiology, Bloomberg School of Public Health, Johns Hopkins Univ, Baltimore, MD
| | - Mara Z. Vitolins
- Dept of Epidemiology & Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Alexis C. Wood
- USDA/ARS Children’s Nutrition Rsrch Ctr, Baylor College of Medicine, Houston, TX
| | - Kurt Lohman
- Dept of Biostatistics, Wake Forest School of Medicine, Winston-Salem, NC
| | - Carolina Ochoa-Rosales
- Dept of Epidemiology, Erasmus Univ Medical Ctr, Rotterdam, The Netherlands
- Centro de Vida Saludable de la Universidad de Concepción, Concepción, Chile
| | - Joyce van Meurs
- Dept of Internal Medicine, Erasmus Univ Medical Ctr, Rotterdam, The Netherlands
| | - Andre Uitterlinden
- Dept of Internal Medicine, Erasmus Univ Medical Ctr, Rotterdam, The Netherlands
| | - Yongmei Liu
- Dept of Epidemiology & Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Mohamed A. Elhadad
- Inst of Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- Rsrch Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- DZHK (German Centre for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
| | - Margit Heier
- Inst of Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- KORA Study Centre, Univ Hospital of Augsburg, Augsburg, Germany
| | - Melanie Waldenberger
- Inst of Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- Rsrch Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- DZHK (German Centre for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
| | - Annette Peters
- Inst of Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- Rsrch Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- DZHK (German Centre for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
| | - Elena Colicino
- Dept of Environmental Health Sciences, Columbia Univ, New York City, NY
| | - Eric A. Whitsel
- Dept of Epidemiology, Gillings School of Global Public Health, Univ of North Carolina, Chapel Hill, NC
- Dept of Medicine, School of Medicine, Univ of North Carolina, Chapel Hill, NC
| | - Antoine Baldassari
- Dept of Epidemiology, Gillings School of Global Public Health, Univ of North Carolina, Chapel Hill, NC
| | - Sina A. Gharib
- The Cardiovascular Health Research Unit, Univ of Washington, Seattle, WA
| | - Nona Sotoodehnia
- The Cardiovascular Health Research Unit, Univ of Washington, Seattle, WA
| | - Jennifer A. Brody
- The Cardiovascular Health Research Unit, Univ of Washington, Seattle, WA
| | - Colleen M. Sitlani
- The Cardiovascular Health Research Unit, Univ of Washington, Seattle, WA
| | - Toshiko Tanaka
- Longitudinal Study Section, Nat Inst of Aging, NIH, Bethesda, MD
| | - W. David Hill
- Lothian Birth Cohorts, Univ of Edinburgh, Edinburgh, UK
- Dept of Psychology, Univ of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Univ of Edinburgh, Edinburgh, UK
- Dept of Psychology, Univ of Edinburgh, Edinburgh, UK
| | - Ian J. Deary
- Lothian Birth Cohorts, Univ of Edinburgh, Edinburgh, UK
- Dept of Psychology, Univ of Edinburgh, Edinburgh, UK
| | - Yan Zhang
- Division of Clinical Epidemiology & Aging Research, German Cancer Rsrch Ctr (DKFZ)
| | - Ben Schöttker
- Division of Clinical Epidemiology & Aging Research, German Cancer Rsrch Ctr (DKFZ)
- Network Aging Research (NAR), Univ of Heidelberg, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology & Aging Research, German Cancer Rsrch Ctr (DKFZ)
- Network Aging Research (NAR), Univ of Heidelberg, Heidelberg, Germany
| | - Maura E. Walker
- Section of Preventive Medicine & Epidemiology, Boston Univ School of Medicine, Boston, MA
| | - Shumao Ye
- Cardiovascular Nutrition Laboratory, USDA Human Nutrition Rsrch Ctr on Aging, Tufts Univ, Boston
| | - Steve Nguyen
- Division of Epidemiology & Community Health, School of Public Health, Univ of Minnesota, Minneapolis, MN
| | - Jim Pankow
- Division of Epidemiology & Community Health, School of Public Health, Univ of Minnesota, Minneapolis, MN
| | - Ellen W. Demerath
- Division of Epidemiology & Community Health, School of Public Health, Univ of Minnesota, Minneapolis, MN
| | - Yinan Zheng
- Ctr for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Ctr & Dept of Preventive Medicine, Northwestern Univ Feinberg School of Medicine, Chicago, IL
| | - Lifang Hou
- Ctr for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Ctr & Dept of Preventive Medicine, Northwestern Univ Feinberg School of Medicine, Chicago, IL
| | - Liming Liang
- Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Dept of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Alice H. Lichtenstein
- Cardiovascular Nutrition Laboratory, USDA Human Nutrition Rsrch Ctr on Aging, Tufts Univ, Boston
| | - Frank B. Hu
- Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Dept of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Myriam Fornage
- Inst of Molecular Medicine, The Univ of Texas Health Science Ctr at Houston, Houston, TX
| | - Trudy Voortman
- Dept of Epidemiology, Erasmus Univ Medical Ctr, Rotterdam, The Netherlands
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD & the Framingham Heart Study, Framingham, MA
| |
Collapse
|
85
|
Zhang B, Jiang H, Dong Z, Sun A, Ge J. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis 2020; 8:746-758. [PMID: 34522705 PMCID: PMC8427257 DOI: 10.1016/j.gendis.2020.07.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is an emerging area of epigenetics, which is a reversible and dynamic modification mediating by ‘writers’ (methylase, adding methyl groups, METTL3, METTL14, and WTAP), ‘erasers’ (demethylase, deleting methyl groups, FTO and ALKBH5), and ‘readers’ (YTHDF1-3, YTHDC1 and YTHDC2). Recent studies in human, animal models and cell levels have disclosed a critical role of m6A modification in regulating the homeostasis of metabolic processes and cardiovascular function. Evidence from these studies identify m6A as a candidate of biomarker and therapeutic target for metabolic abnormality and cardiovascular diseases (CVD). Comprehensive understanding of the complexity of m6A regulation in metabolic diseases and CVD will be helpful for us to understand the pathogenesis of CVD. In this review, we discuss the regulatory role of m6A in metabolic abnormality and CVD. We will emphasize the clinical relevance of m6A dysregulation in CVD.
Collapse
Affiliation(s)
- Beijian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200003, PR China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, PR China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, PR China
| | - Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200003, PR China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, PR China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, PR China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200003, PR China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, PR China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, PR China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200003, PR China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, PR China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, PR China
- Corresponding author. Department of Cardiology, Zhongshan Hospital, Fudan University, No. 1609 Xietu Road, District Xuhui, Shanghai, 200025, PR China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200003, PR China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, PR China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, PR China
- Corresponding author. Shanghai Institute of Cardiovascular Diseases, No. 1609 Xietu Road, District Xuhui, Shanghai, 200025, PR China.
| |
Collapse
|
86
|
Wang Y, Shi Y, Tao M, Zhuang S, Liu N. Peritoneal fibrosis and epigenetic modulation. Perit Dial Int 2020; 41:168-178. [PMID: 32662737 DOI: 10.1177/0896860820938239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) is an effective treatment for patients with end-stage renal disease. However, peritoneal fibrosis (PF) is a common complication that ultimately leads to ultrafiltration failure and discontinuation of PD after long-term PD therapy. There is currently no effective therapy to prevent or delay this pathologic process. Recent studies have reported epigenetic modifications involved in PF, and accumulating evidence suggests that epigenetic therapies may have the potential to prevent and treat PF clinically. The major epigenetic modifications in PF include DNA methylation, histone modification, and noncoding RNAs. The mechanisms of epigenetic regulation in PF are complex, predominantly involving modification of signaling molecules, transcriptional factors, and genes. This review will describe the mechanisms of epigenetic modulation in PF and discuss the possibility of targeting them to prevent and treat this complication.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| |
Collapse
|
87
|
Cronjé HT, Elliott HR, Nienaber-Rousseau C, Pieters M. Leveraging the urban-rural divide for epigenetic research. Epigenomics 2020; 12:1071-1081. [PMID: 32657149 DOI: 10.2217/epi-2020-0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Urbanization coincides with a complex change in environmental exposure and a rapid increase in noncommunicable diseases (NCDs). Epigenetics, including DNA methylation (DNAm), is thought to mediate part of the association between genetic/environmental exposure and NCDs. The urban-rural divide provides a unique opportunity to investigate the effect of the combined presence of multiple forms of environmental exposure on DNAm and the related increase in disease risk. This review evaluates the ability of three epidemiological study designs (migration, income-comparative and urban-rural designs) to investigate the role of DNAm in the association between urbanization and the rise in NCD prevalence. We also discuss the ability of each study design to address the gaps in the current literature, including the complex methylation-mediated risk attributable to the cluster of forms of exposure characterizing urban and rural living, while providing a platform for developing countries to leverage their demographic discrepancies in future research ventures.
Collapse
Affiliation(s)
- Héléne T Cronjé
- Centre of Excellence for Nutrition, North-West University, Potchefstroom Campus, Potchefstroom, 2520, North-West Province, South Africa
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Cornelie Nienaber-Rousseau
- Centre of Excellence for Nutrition, North-West University, Potchefstroom Campus, Potchefstroom, 2520, North-West Province, South Africa
| | - Marlien Pieters
- Centre of Excellence for Nutrition, North-West University, Potchefstroom Campus, Potchefstroom, 2520, North-West Province, South Africa
| |
Collapse
|
88
|
Association of smoking habits with TXNIP DNA methylation levels in leukocytes among general Japanese population. PLoS One 2020; 15:e0235486. [PMID: 32609762 PMCID: PMC7329107 DOI: 10.1371/journal.pone.0235486] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) inhibits the activity of thioredoxin (TXN), leading to increased oxidative stress. Expression of the TXNIP gene is regulated by DNA methylation. However, no study has reported the influence of lifestyle factors on TXNIP DNA methylation. Our goal was to determine the association between smoking habits and TXNIP DNA methylation levels in a Japanese population. We conducted a cross-sectional study of 417 subjects (180 males and 237 females) participating in a health examination. We used a pyrosequencing assay to determine TXNIP DNA methylation levels in leukocytes. The mean TXNIP DNA methylation level in current smokers (75.3%) was significantly lower than that in never and ex-smokers (never: 78.1%, p < 0.001; ex: 76.9%, p = 0.013). Multivariable logistic regression analyses showed that the OR for TXNIP DNA hypomethylation was significantly higher in current smokers than that in never smokers, and significantly higher in current smokers with years of smoking ≥ 35 and Brinkman Index ≥ 600 compared to that in non-smokers. In conclusion, we found that current smokers had TXNIP DNA hypomethylation compared to never and ex-smokers. Moreover, long-term smoking and high smoking exposure also were associated with TXNIP DNA hypomethylation.
Collapse
|
89
|
Koseler A, Ma F, Kilic ID, Morselli M, Kilic O, Pellegrini M. Genome-wide DNA Methylation Profiling of Blood from Monozygotic Twins Discordant for Myocardial Infarction. In Vivo 2020; 34:361-367. [PMID: 31882500 DOI: 10.21873/invivo.11782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND/AIM This study aimed to measure the DNA methylation state of thousands of CpG islands in the blood of two monozygotic twins that were discordant for cardiovascular disease (CVD). Twin 1 had suffered myocardial infarction, while the other was healthy. PATIENTS AND METHODS Since the aim of this study was to identify differentially methylated regions which might act as potential markers, reduced-representation bisulfite libraries were used for whole-genome methylation analysis. RESULTS According to the analysis, 11 genes lipid droplet associated hydrolase (LDAH), apolipoprotein B (APOB), acyl-CoA synthetase medium chain family member 2A (ACSM2A), acyl-CoA synthetase medium chain family member 5(ACSM5), acyl-CoA synthetase family member 3 (ACSF3), carboxylesterase 1 (CES1), carboxylesterase 1 pseudogene 1 (CES1P1), AFG3 like matrix AAA peptidase subunit 2 (AFG3L2), iron-sulfur cluster assembly enzyme (ISCU), SEC14 like lipid binding 2 (SEC14L2) and microsomal triglyceride transfer protein (MTTP) were all hypomethylated in DNA from twin 2, the unaffected twin. Methylation changes were observed at different multiple loci between the twins, suggesting loci that are affected by disease status in identical genetic backgrounds. CONCLUSION This twin study may contribute significantly to the understanding of the genetic basis of CVD and resulting myocardial infarction. This approach may allow identification of possible target loci associated with aberrant epigenetic regulation in CVD.
Collapse
Affiliation(s)
- Aylin Koseler
- Department of Biophysics, Pamukkale University School of Medicine, Denizli, Turkey
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA, U.S.A
| | - Ismail Dogu Kilic
- Department of Cardiology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA, U.S.A
| | - Oguz Kilic
- Department of Cardiology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA, U.S.A.
| |
Collapse
|
90
|
Integrated DNA methylation and gene expression analysis in the pathogenesis of coronary artery disease. Aging (Albany NY) 2020; 11:1486-1500. [PMID: 30844764 PMCID: PMC6428103 DOI: 10.18632/aging.101847] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
To evaluate DNA methylation sites and gene expression associated with coronary artery disease (CAD) and the possible pathological mechanism involved, we performed (1) genome-wide DNA methylation and mRNA expression profiling in peripheral blood datasets from the Gene Expression Omnibus repository of CAD samples and controls; (2) functional enrichment analysis and differential methylation gene regulatory network construction; (3) validation tests of 11 differential methylation positions of interest and the corresponding gene expression; and (4) correlation analysis for DNA methylation and mRNA expression data. A total of 669 differentially expressed mRNAs were matched to differentially methylated genes. After disease ontology, Kyoto Encyclopedia of Genes and Genomes pathway, gene ontology, protein-protein interaction and network construction and module analyses, 11 differentially methylated positions (DMPs) corresponding to 11 unique genes were observed: BDNF - cg26949694, BTRC - cg24381155, CDH5 - cg02223351, CXCL12 - cg11267527, EGFR - cg27637738, IL-6 - cg13104385, ITGB1 - cg20545410, PDGFRB - cg25613180, PIK3R1- cg00559992, PLCB1 - cg27178677 and PTPRC - cg09247619. After validation tests of 11 DMPs of interest and the corresponding gene expression, we found that CXCL12 was less hypomethylated in the CAD group, whereas the relative expression of ITGB1, PDGFRB and PIK3R1 was lower in CAD samples, and CXCL12 and ITGB1 methylation was negatively correlated with their expression. This study identified the correlation between DNA methylation and gene expression and highlighted the importance of CXCL12 in CAD pathogenesis.
Collapse
|
91
|
Cohen G, Steinberg DM, Keinan-Boker L, Yuval, Levy I, Chen S, Shafran-Nathan R, Levin N, Shimony T, Witberg G, Bental T, Shohat T, Broday DM, Kornowski R, Gerber Y. Preexisting coronary heart disease and susceptibility to long-term effects of traffic-related air pollution: A matched cohort analysis. Eur J Prev Cardiol 2020; 28:2047487320921987. [PMID: 32389024 DOI: 10.1177/2047487320921987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Individuals with coronary heart disease are considered susceptible to traffic-related air pollution exposure. Yet, cohort-based evidence on whether preexisting coronary heart disease modifies the association of traffic-related air pollution with health outcomes is lacking. AIM Using data of four Israeli cohorts, we compared associations of traffic-related air pollution with mortality and cancer between coronary heart disease patients and matched controls from the general population. METHODS Subjects hospitalized with acute coronary syndrome from two patient cohorts (inception years: 1992-1993 and 2006-2014) were age- and sex-matched to coronary heart disease-free participants of two cycles of the Israeli National Health and Nutrition Surveys (inception years: 1999-2001 and 2005-2006). Ambient concentrations of nitrogen oxides at the residential place served as a proxy for traffic-related air pollution exposure across all cohorts, based on a high-resolution national land use regression model (50 m). Data on all-cause mortality (last update: 2018) and cancer incidence (last update: 2016) were retrieved from national registries. Cox-derived stratum-specific hazard ratios with 95% confidence intervals were calculated, adjusted for harmonized covariates across cohorts, including age, sex, ethnicity, neighborhood socioeconomic status, smoking, diabetes, hypertension, prior stroke and prior malignancy (the latter only in the mortality analysis). Effect-modification was examined by testing nitrogen oxides-by-coronary heart disease interaction term in the entire matched cohort. RESULTS The cohort (mean (standard deviation) age 61.5 (14) years; 44% women) included 2393 matched pairs, among them 2040 were cancer-free at baseline. During a median (25th-75th percentiles) follow-up of 13 (10-19) and 11 (7-17) years, 1458 deaths and 536 new cancer cases were identified, respectively. In multivariable-adjusted models, a 10-parts per billion nitrogen oxides increment was positively associated with all-cause mortality among coronary heart disease patients (hazard ratio = 1.13, 95% confidence interval 1.05-1.22), but not among controls (hazard ratio = 1.00, 0.93-1.08) (pinteraction = 0.003). A similar pattern was seen for all-cancer incidence (hazard ratioCHD = 1.19 (1.03-1.37), hazard ratioCHD-Free = 0.93 (0.84-1.04) (pinteraction = 0.01)). Associations were robust to multiple sensitivity analyses. CONCLUSIONS Coronary heart disease patients might be at increased risk for traffic-related air pollution-associated mortality and cancer, irrespective of their age and sex. Patients and clinicians should be more aware of the adverse health effects on coronary heart disease patients of chronic exposure to vehicle emissions.
Collapse
Affiliation(s)
- Gali Cohen
- Department of Epidemiology and Preventive Medicine, Tel Aviv University, Israel
- Stanley Steyer Institute for Cancer Epidemiology and Research, Tel Aviv University, Israel
| | - David M Steinberg
- Department of Statistics and Operations Research, Tel Aviv University, Israel
| | - Lital Keinan-Boker
- Israel Center for Disease Control, Israel Ministry of Health, Israel
- School of Public Health, University of Haifa, Israel
| | - Yuval
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Ilan Levy
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Shimon Chen
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Rakefet Shafran-Nathan
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Noam Levin
- Department of Geography, Hebrew University of Jerusalem, Israel
- Remote Sensing Research Centre, School of Earth and Environmental Sciences, The University of Queensland, Australia
| | - Tal Shimony
- Israel Center for Disease Control, Israel Ministry of Health, Israel
| | - Guy Witberg
- Remote Sensing Research Centre, School of Earth and Environmental Sciences, The University of Queensland, Australia
- Department of Cardiology, Rabin Medical Center (Beilinson and Hasharon Hospitals), Israel
| | - Tamir Bental
- Remote Sensing Research Centre, School of Earth and Environmental Sciences, The University of Queensland, Australia
| | - Tamar Shohat
- Department of Epidemiology and Preventive Medicine, Tel Aviv University, Israel
| | - David M Broday
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Ran Kornowski
- Remote Sensing Research Centre, School of Earth and Environmental Sciences, The University of Queensland, Australia
- Deptartment of Cardiovascular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Yariv Gerber
- Department of Epidemiology and Preventive Medicine, Tel Aviv University, Israel
- Stanley Steyer Institute for Cancer Epidemiology and Research, Tel Aviv University, Israel
| |
Collapse
|
92
|
Zhao X, Li Y, Yan Y, Ma X, Guo C. Methylation of CpG sites in C1QTNF1 (C1q and tumor necrosis factor related protein 1) differs by gender in acute coronary syndrome in Han population: a case-control study. Genes Genomics 2020; 42:681-689. [PMID: 32383048 DOI: 10.1007/s13258-020-00936-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/15/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND ACS (acute coronary syndrome), a subgroup of coronary artery disease (CHD), is a leading cause of death worldwide. Reports shown the association between methylation and CHD, while the abnormal expression of C1QTNF1 (C1q and tumor necrosis factor related protein 1) in CHD patients, but the underlying mechanisms are still unclear. OBJECTIVE To analyze the methylation of CpG sites of C1QTNF1 in ACS patients. METHODS Peripheral blood samples were collected from healthy controls and ACS patients. The methylation of total C1QTNF1, promoter sequence and CpG sites of C1QTNF1 were measured using methylation detection kits. The outcomes were compared between patients and controls based on gender, clinical classification and clinical stages. RESULTS The promoter sequences from 37 ACS patients and 20 controls indicate that the methylation rate of C1QTNF1 was significantly lower in male patients compared to healthy controls at + 63 CpG sites (p = 0.03). Whereas, the methylation rate of C1QTNF1 in female patients was significantly lower than female health controls at - 89, + 39 and + 167 CpG sites (p = 0.021, 0.042, 0.021). In addition, the methylation rate of C1QTNF1 was significantly higher in male patients than female patients at - 89, - 41 and + 39 CpG sites (p = 0.011, 0.043, 0.006). Moreover, the methylation rate significantly decreased at - 24 sites (p = 0.021), but it significantly increased at - 14 site (p = 0.048) in patients with UA, compared to patients with STEMI (ST-segment elevation myocardial infarction). CONCLUSIONS There were significant differences in the methylation rate + 63 CpG sites between controls and male ACS patients. The - 14 site methylation increased in patients with UA, compared to patients with STEMI.
Collapse
Affiliation(s)
- Xizhe Zhao
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, 119# Nansihuanxilu, Fentai District, Beijing, 100070, China.,Department of Cardiology, Beijing Electric Power Hospital, Beijing, China
| | - Yi Li
- Department of Clinical Laboratory, Beijing Electric Power Hospital, Beijing, China
| | - Yan Yan
- Department of Physical Examination, Beijing Electric Power Hospital, Beijing, China
| | - Xuelian Ma
- Department of Physical Examination, Beijing Electric Power Hospital, Beijing, China
| | - Caixia Guo
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, 119# Nansihuanxilu, Fentai District, Beijing, 100070, China.
| |
Collapse
|
93
|
Liu Y, Tian X, Liu S, Liu D, Li Y, Liu M, Zhang X, Yan C, Han Y. DNA hypermethylation: A novel mechanism of CREG gene suppression and atherosclerogenic endothelial dysfunction. Redox Biol 2020; 32:101444. [PMID: 32067910 PMCID: PMC7264464 DOI: 10.1016/j.redox.2020.101444] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Cellular repressor of E1A-stimulated genes (CREG), a vasculoprotective molecule, is significantly downregulated in atherosclerotic vessels through unclear mechanisms. While epigenetic regulation is involved in atherosclerosis development, it is not known if the CREG gene is epigenetically regulated. The aim of this study was to assess the potential role of CREG methylation in contributing to atherosclerosis. APPROACH AND RESULTS Overexpression of DNA methyltransferase (DNMT)3B significantly inhibited CREG expression in human umbilical vein endothelial cells (HUVECs) and human coronary aortic endothelial cells (HCAECs).Conversely, inhibition of DNA methylation with 5-aza-2'-deoxycytidine (5-aza-dC) dose-dependently increased CREG expression. A CREG promoter analysis identified +168 to +255 bp as a key regulatory region and the CG site at +201/+202 bp as a key methylation site. The transcription factor GR-α could bind to the +201/+202 bp CG site promoting CREG transcription, a process significantly inhibited by DNMT3B overexpression. Treatment of cells with oxidized low-density lipoprotein (ox-LDL), a critical atherosclerogenic factor, significantly increased DNMT3B expression, increasing CREG promotor methylation, blocking GR-α binding, and inhibiting CREG expression. Consistently, CG sites in the CREG promoter fragment were hyper-methylated in human atherosclerotic arteries, and CREG expression was significantly reduced. A negative correlation between DNMT3B and CREG expression levels was observed in human atherosclerotic arteries. Finally, Ox-LDL-induced endothelium dysfunction was significantly attenuated by both 5-aza-dC and an anti-oxidative molecular N-acetylcysteine (NAC) administration through rescue the expression of CREG and activation of the p-eNOS/NO pathway. CONCLUSIONS Our study provides the first direct evidence that DNMT3B-mediated CREG gene hypermethylation is a novel mechanism that contributes to endothelial dysfunction and atherosclerosis development. Blocking CREG methylation may represent a novel therapeutic approach to treat ox-LDL-induced atherosclerosis.
Collapse
Affiliation(s)
- Yanxia Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxiang Tian
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Shan Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Li
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Meili Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China.
| | - Yaling Han
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
94
|
Hu J, Zhu H, Xu G, Chen Z, Li L, Wang S, Deng H, Bao X, Shen Z. Significant association between DHFR promoter methylation and ischemic stroke in a Chinese hypertensive population. J Clin Lab Anal 2020; 34:e23322. [PMID: 32319147 PMCID: PMC7439332 DOI: 10.1002/jcla.23322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
Objective DHFR encodes dihydrofolate reductase, a major enzyme in the metabolism of folate, and is a candidate gene for ischemic stroke (IS). Therefore, we aimed to investigate the association between DHFR promoter methylation and IS in a Chinese population with primary hypertension. Methods Quantitative methylation‐specific PCR was used to measure the level of DHFR promoter methylation. A multivariate logistic regression model was used to investigate the association between DHFR promoter methylation and IS. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic value of DHFR promoter methylation for IS. Results The level of methylation of the DHFR promoter in the IS group was significantly lower than that in the hypertensive group (median [interquartile range]: 9.11 [2.81‐16.20] vs 24.94 [7.16‐56.45], P < .001). DHFR promoter methylation and homocysteine (Hcy) levels were both related to IS, with an ORs (95% CI) of 0.976 (0.967‐0.984) and 1.057 (1.027‐1.108), respectively. The areas under the curve for the diagnosis of DHFR promoter hypomethylation in IS were 0.603 (95% CI, 0.527‐0.678) in men and 0.754 (95% CI, 0.693‐0.815) in women. A dual‐luciferase reporter assay revealed that the target sequence in the DHFR promoter upregulated gene expression. Conclusion There is a significant association between methylation of the DHFR promoter and IS in this Chinese hypertensive population. Hypomethylation of the DHFR promoter may serve as a novel marker for the diagnosis of IS in women.
Collapse
Affiliation(s)
- Jingcen Hu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Hong Zhu
- Gynecology & Obstetrics Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Guodong Xu
- Medical Record Statistics Room, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhu Chen
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Lian Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Shuyu Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Xiaoming Bao
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
95
|
Zhao Q, Zhang C, Li D, Huang X, Ren B, Yue L, Du B, Godfrey O, Zhang W. CBS gene polymorphism and promoter methylation‐mediating effects on the efficacy of folate therapy in patients with hyperhomocysteinemia. J Gene Med 2020; 22:e3156. [DOI: 10.1002/jgm.3156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/01/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Qinglin Zhao
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Chengda Zhang
- Department of International Medicine, Beaumont Health System Royal Oak MI USA
| | - Dankang Li
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Xiaowen Huang
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Bingnan Ren
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Limin Yue
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Binghui Du
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Opolot Godfrey
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Weidong Zhang
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| |
Collapse
|
96
|
Liu B, Shi X, Ding K, Lv M, Qian Y, Zhu S, Guo C, Zhang Y. The Joint Analysis of Multi-Omics Data Revealed the Methylation-Expression Regulations in Atrial Fibrillation. Front Bioeng Biotechnol 2020; 8:187. [PMID: 32226785 PMCID: PMC7080960 DOI: 10.3389/fbioe.2020.00187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/26/2020] [Indexed: 02/05/2023] Open
Abstract
Atrial fibrillation (AF) is one of the most prevalent heart rhythm disorder. The causes of AF include age, male sex, diabetes, hypertension, valve disease, and systolic/diastolic dysfunction. But on molecular level, its mechanisms are largely unknown. In this study, we collected 10 patients with persistent atrial fibrillation, 10 patients with paroxymal atrial fibrillation and 10 healthy individuals and did Methylation EPICBead Chip and RNA sequencing. By analyzing the methylation and gene expression data using machine learning based feature selection method Boruta, we identified the key genes that were strongly associated with AF and found their interconnections. The results suggested that the methylation of KIF15 may regulate the expression of PSMC3, TINAG, and NUDT6. The identified AF associated methylation-expression regulations may help understand the molecular mechanisms of AF from a multi-omics perspective.
Collapse
Affiliation(s)
- Ban Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Shi
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Keke Ding
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengwei Lv
- Shanghai East Hospital of Clinical Medical College, Nanjing Medical University, Shanghai, China.,Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Shijie Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
97
|
Schiano C, Benincasa G, Franzese M, Della Mura N, Pane K, Salvatore M, Napoli C. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther 2020; 210:107514. [PMID: 32105674 DOI: 10.1016/j.pharmthera.2020.107514] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complex pathobiology underlying cardiovascular diseases (CVDs) has yet to be explained. Aberrant epigenetic changes may result from alterations in enzymatic activities, which are responsible for putting in and/or out the covalent groups, altering the epigenome and then modulating gene expression. The identification of novel individual epigenetic-sensitive trajectories at single cell level might provide additional opportunities to establish predictive, diagnostic and prognostic biomarkers as well as drug targets in CVDs. To date, most of studies investigated DNA methylation mechanism and miRNA regulation as epigenetics marks. During atherogenesis, big epigenetic changes in DNA methylation and different ncRNAs, such as miR-93, miR-340, miR-433, miR-765, CHROME, were identified into endothelial cells, smooth muscle cells, and macrophages. During man development, lipid metabolism, inflammation and homocysteine homeostasis, alter vascular transcriptional mechanism of fundamental genes such as ABCA1, SREBP2, NOS, HIF1. At histone level, increased HDAC9 was associated with matrix metalloproteinase 1 (MMP1) and MMP2 expression in pro-inflammatory macrophages of human carotid plaque other than to have a positive effect on toll like receptor signaling and innate immunity. HDAC9 deficiency promoted inflammation resolution and reverse cholesterol transport, which might block atherosclerosis progression and promote lesion regression. Here, we describe main human epigenetic mechanisms involved in atherosclerosis, coronary heart disease, ischemic stroke, peripheral artery disease; cardiomyopathy and heart failure. Different epigenetics mechanisms are activated, such as regulation by circular RNAs, as MICRA, and epitranscriptomics at RNA level. Moreover, in order to open new frontiers for precision medicine and personalized therapy, we offer a panoramic view on the most innovative bioinformatic tools designed to identify putative genes and molecular networks underlying CVDs in man.
Collapse
Affiliation(s)
- Concetta Schiano
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | | | | | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy
| |
Collapse
|
98
|
Jeremias G, Gonçalves FJM, Pereira JL, Asselman J. Prospects for incorporation of epigenetic biomarkers in human health and environmental risk assessment of chemicals. Biol Rev Camb Philos Soc 2020; 95:822-846. [PMID: 32045110 DOI: 10.1111/brv.12589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic mechanisms have gained relevance in human health and environmental studies, due to their pivotal role in disease, gene × environment interactions and adaptation to environmental change and/or contamination. Epigenetic mechanisms are highly responsive to external stimuli and a wide range of chemicals has been shown to determine specific epigenetic patterns in several organisms. Furthermore, the mitotic/meiotic inheritance of such epigenetic marks as well as the resulting changes in gene expression and cell/organismal phenotypes has now been demonstrated. Therefore, epigenetic signatures are interesting candidates for linking environmental exposures to disease as well as informing on past exposures to stressors. Accordingly, epigenetic biomarkers could be useful tools in both prospective and retrospective risk assessment but epigenetic endpoints are currently not yet incorporated into risk assessments. Achieving a better understanding on this apparent impasse, as well as identifying routes to promote the application of epigenetic biomarkers within environmental risk assessment frameworks are the objectives of this review. We first compile evidence from human health studies supporting the use of epigenetic exposure-associated changes as reliable biomarkers of exposure. Then, specifically focusing on environmental science, we examine the potential and challenges of developing epigenetic biomarkers for environmental fields, and discuss useful organisms and appropriate sequencing techniques to foster their development in this context. Finally, we discuss the practical incorporation of epigenetic biomarkers in the environmental risk assessment of chemicals, highlighting critical data gaps and making key recommendations for future research within a regulatory context.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit - GhEnToxLab, Ghent University, 9000, Gent, Belgium
| |
Collapse
|
99
|
Abstract
Epigenetic regulatory mechanisms, encompassing diverse molecular processes including DNA methylation, histone post-translational modifications, and noncoding RNAs, are essential to numerous processes such as cell differentiation, growth and development, environmental adaptation, aging, and disease states. In many cases, epigenetic changes occur in response to environmental cues and lifestyle factors, resulting in persistent changes in gene expression that affect vascular disease risk during the lifetime of the individual. Biological aging-a powerful cardiovascular risk factor-is partly genetically determined yet strongly influenced by traditional risk factors, reflecting epigenetic modulation. Quantification of specific DNA methylation patterns may serve as an accurate predictor of biological age-a concept known as the epigenetic clock, which could help to refine cardiovascular risk assessment. Epigenetic reprogramming of monocytes rewires cellular immune signaling and induces a metabolic shift toward aerobic glycolysis, thereby increasing innate immune responses. This form of trained epigenetic memory can be maladaptive, thus augmenting vascular inflammation. Somatic mutations in epigenetic regulatory enzymes lead to clonal hematopoiesis of indeterminate potential, a precursor of hematologic malignancies and a recently recognized cardiovascular risk factor; moreover, epigenetic regulators are increasingly being targeted in cancer therapeutics. Thus, understanding epigenetic regulatory mechanisms lies at the intersection between cancer and cardiovascular disease and is of paramount importance to the burgeoning field of cardio-oncology (Graphic Abstract).
Collapse
Affiliation(s)
- Abdalrahman Zarzour
- From the Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| | - Ha Won Kim
- From the Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| | - Neal L Weintraub
- From the Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| |
Collapse
|
100
|
Theoretical analyses and experimental validation of the effects caused by the fluorinated substituent modification of DNA. Sci Rep 2020; 10:1138. [PMID: 31980685 PMCID: PMC6981298 DOI: 10.1038/s41598-020-57899-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 01/03/2020] [Indexed: 11/20/2022] Open
Abstract
Halogen-modified nucleic acid molecules, such as trifluorothymidine (FTD) and 5-fluorouracil, are widely used in medical science and clinical site. These compounds have a very similar nucleobase structure. It is reported that both of these compounds could be incorporated into DNA. The incorporation of FTD produces highly anti-tumor effect. However, it is not known whether to occur a significant effect by the incorporation of 5-fluorouracil. Nobody knows why such a difference will occur. To understand the reason why there is large differences between trifluorothymidine and 5-fluorouracil, we have performed the molecular dynamics simulations and molecular orbital calculations. Although the active interaction energy between Halogen-modified nucleic acids or and complementary adenine was increased, in only FTD incorporated DNA, more strongly dispersion force interactions with an adjacent base were detected in many thermodynamic DNA conformations. As the results, the conformational changes occur even if it is in internal body temperature. Then the break of hydrogen bonding between FTD and complementary adenine base occur more frequently. The double helix structural destabilization of DNA with FTD is resulted from autoagglutination caused by the bonding via halogen orbitals such as halogen bonding and the general van der Waals interactions such as CH–\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm{\pi }}$$\end{document}π, lone pair (LP)–\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm{\pi }}$$\end{document}π, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm{\pi }}$$\end{document}π–\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm{\pi }}$$\end{document}π interactions. Therefore, it is strongly speculated that such structural changes caused by trifluoromethyl group is important for the anti-tumor effect of FTD alone.
Collapse
|