51
|
Punicalagin attenuated cerebral ischemia–reperfusion insult via inhibition of proinflammatory cytokines, up-regulation of Bcl-2, down-regulation of Bax, and caspase-3. Mol Cell Biochem 2015; 402:141-8. [DOI: 10.1007/s11010-014-2321-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022]
|
52
|
Davis C, Mudd J, Hawkins M. Neuroprotective effects of leptin in the context of obesity and metabolic disorders. Neurobiol Dis 2014; 72 Pt A:61-71. [DOI: 10.1016/j.nbd.2014.04.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/09/2014] [Accepted: 04/21/2014] [Indexed: 12/16/2022] Open
|
53
|
Xu J, Xu T, Bu X, Peng H, Li H, Zhang M, Zhang Y. The predictive value of waist-to-height ratio for ischemic stroke in a population-based prospective cohort study among Mongolian men in China. PLoS One 2014; 9:e110245. [PMID: 25353632 PMCID: PMC4212917 DOI: 10.1371/journal.pone.0110245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/12/2014] [Indexed: 11/25/2022] Open
Abstract
Objective To explore the associations between waist-to-height ratio (WHtR), body mass index (BMI) and waist circumference (WC) and risk of ischemic stroke among Mongolian men in China. Methods A population-based prospective cohort study was conducted from June 2003 to July 2012 in Inner Mongolia, an autonomous region in north China. A total of 1034 men aged 20 years and older free of cardiovascular disease were included in the cohort and followed up for an average of 9.2 years. The subjects were divided into four groups by WHtR levels (WHtR<0.40, 0.40≤WHtR≤0.50, 0.50<WHtR≤0.60, WHtR>0.60). The cumulative survival rates of ischemic stroke among the four groups were estimated with the Kaplan-Meier curves and compared by log-rank test. Cox proportional hazards models and Receiver Operating Characteristic (ROC) curves were employed to evaluate the associations between obesity indices and ischemic stroke. Results A total of 47 ischemic stroke patients were observed during the follow-up period. The cumulative incidence and incidence density of ischemic stroke were 4.55% and 507.61/100 000 person-years, respectively. After the major risk factors were adjusted, individuals with WHtR>0.60 had a 3.56-fold increased risk of ischemic stroke compared with those with 0.40≤WHtR≤0.50. Hazard ratio (HR) and 95% confidence intervals (CI) of ischemic stroke for a 1-SD increase in WHtR was 1.34(95% CI: 1.00–1.81). After adding BMI or WC to models, higher WHtR remained significantly associated with increased risk of ischemic stroke. The Kaplan-Meier survival curves showed that the cumulative survival rate in the group with WHtR>0.60 was significantly lower than in the group with 0.40≤WHtR≤0.50 (log-rank test, P = 0.025). The areas under the curve for each index were as follows: 0.586 for WHtR, 0.543 for WC; 0.566 for BMI. Conclusions Higher WHtR is associated with risk of ischemic stroke in Mongolian males. WHtR may be useful in predicting ischemic stroke incidence in males.
Collapse
Affiliation(s)
- Juan Xu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tian Xu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hongmei Li
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- * E-mail:
| |
Collapse
|
54
|
Zhang W, Zhang Q, Deng W, Li Y, Xing G, Shi X, Du Y. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus. Neural Regen Res 2014; 9:1446-52. [PMID: 25317156 PMCID: PMC4192946 DOI: 10.4103/1673-5374.139461] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/25/2022] Open
Abstract
Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions.
Collapse
Affiliation(s)
- Wangxin Zhang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China ; Department of Medical Psychology, Taishan Medical University, Taian, Shandong Province, China
| | - Quiling Zhang
- Department of Medical Psychology, Taishan Medical University, Taian, Shandong Province, China
| | - Wen Deng
- Department of Medical Psychology, Taishan Medical University, Taian, Shandong Province, China
| | - Yalu Li
- Department of Medical Psychology, Taishan Medical University, Taian, Shandong Province, China
| | - Guoqing Xing
- Department of Medical Psychology, Taishan Medical University, Taian, Shandong Province, China
| | - Xinjun Shi
- Department of Medical Psychology, Taishan Medical University, Taian, Shandong Province, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
55
|
Tang YH, Vital S, Russell J, Seifert H, Senchenkova E, Granger DN. Transient ischemia elicits a sustained enhancement of thrombus development in the cerebral microvasculature: effects of anti-thrombotic therapy. Exp Neurol 2014; 261:417-23. [PMID: 25058045 DOI: 10.1016/j.expneurol.2014.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/26/2014] [Accepted: 07/10/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE While transient ischemic attack (TIA) is a well-known harbinger of ischemic stroke, the mechanisms that link TIA to subsequent strokes remain poorly understood. The overall aim of this study was to determine whether: 1) brief periods of transient cerebral ischemia render this tissue more vulnerable to thrombus development and 2) antiplatelet agents used in TIA patients alter ischemia-induced thrombogenesis. APPROACH & RESULTS The middle cerebral artery of C57BL/6 mice was occluded for 2.5-10min, followed by reperfusion periods of 1-28days. Intravital microscopy was used to monitor thrombus development in cerebral microvessels induced by light/dye photoactivation. Thrombosis was quantified as the time to platelet aggregation on the vessel wall and the time for complete blood flow cessation. While brief periods of cerebral ischemia were not associated with neurological deficits or brain infarction (evaluated after 1day), it yielded a pronounced and prolonged (up to 28days) acceleration of thrombus formation, compared to control (sham) mice. This prothrombotic phenotype was not altered by pre- and/or post-treatment of mice with either aspirin (A), clopidogrel (C), dipyridamole (D), or atorvastatin (S), or with A+D+S. CONCLUSIONS The increased vulnerability of the cerebral vasculature to thrombus development after a brief period of transient ischemia can be recapitulated in a murine model. Antiplatelet or antithrombotic agents used in patients with TIA show no benefit in this mouse model of brief transient ischemia.
Collapse
Affiliation(s)
- Ya Hui Tang
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Shantel Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Janice Russell
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hilary Seifert
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Elena Senchenkova
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - D Neil Granger
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
56
|
|
57
|
Busija DW, Katakam PV. Mitochondrial mechanisms in cerebral vascular control: shared signaling pathways with preconditioning. J Vasc Res 2014; 51:175-89. [PMID: 24862206 PMCID: PMC4149841 DOI: 10.1159/000360765] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/19/2014] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial-initiated events protect the neurovascular unit against lethal stress via a process called preconditioning, which independently promotes changes in cerebrovascular tone through shared signaling pathways. Activation of adenosine triphosphate (ATP)-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels) is a specific and dependable way to induce protection of neurons, astroglia, and cerebral vascular endothelium. Through the opening of mitoKATP channels, mitochondrial depolarization leads to activation of protein kinases and transient increases in cytosolic calcium (Ca(2+)) levels that activate terminal mechanisms that protect the neurovascular unit against lethal stress. The release of reactive oxygen species from mitochondria has similar protective effects. Signaling elements of the preconditioning pathways also are involved in the regulation of vascular tone. Activation of mitoKATP channels in cerebral arteries causes vasodilation, with cell-specific contributions from the endothelium, vascular smooth muscles, and nerves. Preexisting chronic conditions, such as insulin resistance and/or diabetes, prevent preconditioning and impair relaxation to mitochondrial-centered responses in cerebral arteries. Surprisingly, mitochondrial activation after anoxic or ischemic stress appears to protect cerebral vascular endothelium and promotes the restoration of blood flow; therefore, mitochondria may represent an important, but underutilized target in attenuating vascular dysfunction and brain injury in stroke patients.
Collapse
Affiliation(s)
- David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, La., USA
| | | |
Collapse
|
58
|
Smith CJ, Lawrence CB, Rodriguez-Grande B, Kovacs KJ, Pradillo JM, Denes A. The immune system in stroke: clinical challenges and their translation to experimental research. J Neuroimmune Pharmacol 2013; 8:867-87. [PMID: 23673977 DOI: 10.1007/s11481-013-9469-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/28/2013] [Indexed: 12/27/2022]
Abstract
Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches.
Collapse
Affiliation(s)
- Craig J Smith
- Stroke and Vascular Research Centre, Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Science Centre, Salford Royal Foundation Trust, Salford M6 8HD, UK.
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
1. Obesity is a major risk factor for cardiovascular disease. An increased body mass index (BMI) is associated with venous thromboembolism, myocardial infarction, stroke and stent thrombosis after percutaneous interventions. Studies in mouse models of obesity and induced arterial or venous thrombosis have provided insights into the mechanisms involved. 2. In addition to elevated circulating levels of fibrinogen, factor VII and plasminogen activator inhibitor (PAI)-1, changes in platelet biology and function may underlie the increased (athero) thrombotic risk in obesity. These include elevated platelet counts, an increase in mean platelet volume, an increased platelet aggregatory response to agonists and a reversible resistance to the anti-aggregatory effects of nitric oxide and prostacyclin I(2) . 3. Specific adipokines mediate the prothrombotic state in obesity. Of these, leptin enhances both arterial and venous thrombosis by promoting platelet adhesion, activation and aggregation. Leptin also induces tissue factor expression by human neutrophils and other cells. C-Reactive protein enhances the formation of monocyte-platelet aggregates and also promotes P-selectin expression and platelet adhesion to endothelial cells. Further, the adipose tissue is a significant source of tissue factor and PAI-1. Conversely, the circulating levels of adiponectin, a hormone that exerts vasculoprotective, anti-atherosclerotic and antithrombotic effects, are reduced in obese individuals. 4. A better understanding of the interactions of the adipose tissue with circulating and vascular cells and the dissection of the mechanisms linking adipokines to arterial and venous thrombosis may identify obese individuals at particularly high cardiovascular risk and indicate promising vasculoprotective and therapeutic targets.
Collapse
Affiliation(s)
- Katrin Schäfer
- Department of Cardiology and Pulmonary Medicine, University Medical Center Goettingen, Goettingen, Germany
| | | |
Collapse
|
60
|
Murray KN, Buggey HF, Denes A, Allan SM. Systemic immune activation shapes stroke outcome. Mol Cell Neurosci 2012; 53:14-25. [PMID: 23026562 DOI: 10.1016/j.mcn.2012.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 02/07/2023] Open
Abstract
Stroke is a major cause of morbidity and mortality, and activation of the immune system can impact on stroke outcome. Although the majority of research has focused on the role of the immune system after stroke there is increasing evidence to suggest that inflammation and immune activation prior to brain injury can influence stroke risk and outcome. With the high prevalence of co-morbidities in the Western world such as obesity, hypertension and diabetes, pre-existing chronic 'low-grade' systemic inflammation has become a customary characteristic of stroke pathophysiology that needs to be considered in the search for new therapies. The importance of the immune system in stroke has been demonstrated in a number of ways, both experimentally and in the clinical setting. This review will focus on the effect of immune activation arising from systemic inflammatory conditions and infection, how it affects the incidence and outcomes of stroke, and the possible underlying mechanisms involved. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'.
Collapse
Affiliation(s)
- Katie N Murray
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
61
|
Denes A, Drake C, Stordy J, Chamberlain J, McColl BW, Gram H, Crossman D, Francis S, Allan SM, Rothwell NJ. Interleukin-1 mediates neuroinflammatory changes associated with diet-induced atherosclerosis. J Am Heart Assoc 2012; 1:e002006. [PMID: 23130147 PMCID: PMC3487321 DOI: 10.1161/jaha.112.002006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/03/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Systemic inflammation contributes to brain pathology in cerebrovascular disease through mechanisms that are poorly understood. METHODS AND RESULTS Here we show that atherosclerosis, a major systemic inflammatory disease, is associated with severe cerebrovascular inflammation in mice and that this effect is mediated by the proinflammatory cytokine interleukin-1 (IL-1). Apolipoprotein E-deficient mice fed Paigen or Western diets develop vascular inflammation, microglial activation, and leukocyte recruitment in the brain, which are absent in apolipoprotein E-deficient mice crossed with IL-1 type 1 receptor-deficient mice. Systemic neutralization of IL-1β with an anti-IL-1β antibody reversed aortic plaque formation (by 34% after a Paigen and 45% after a Western diet) and reduced inflammatory cytokine expression in peripheral organs. Central, lipid accumulation-associated leukocyte infiltration into the choroid plexus was reversed by IL-1β antibody administration. Animals fed a Western diet showed 57% lower vascular inflammation in the brain than that of mice fed a Paigen diet, and this was reduced further by 24% after IL-1β antibody administration. CONCLUSIONS These results indicate that IL-1 is a key driver of systemically mediated cerebrovascular inflammation and that interventions against IL-1β could be therapeutically useful in atherosclerosis, dementia, or stroke. (J Am Heart Assoc. 2012;1:e002006 doi: 10.1161/JAHA.112.002006.).
Collapse
Affiliation(s)
- Adam Denes
- Faculty of Life Sciences, University of Manchester, Manchester, UK (A.D., C.D., S.M.A., N.J.R.)
| | - Caroline Drake
- Faculty of Life Sciences, University of Manchester, Manchester, UK (A.D., C.D., S.M.A., N.J.R.)
| | - Jing Stordy
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, UK (J.S., J.C., D.C., S.F.)
| | - Janet Chamberlain
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, UK (J.S., J.C., D.C., S.F.)
| | - Barry W. McColl
- The Roslin Institute and R(D)SVS, University of Edinburgh, UK (B.W.M.)
| | - Hermann Gram
- Novartis Institutes of BioMedical Research, Basel, Switzerland (H.G.)
| | - David Crossman
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, UK (J.S., J.C., D.C., S.F.),Norwich Medical School, University of East Anglia, Norwich, UK (D.C.)
| | - Sheila Francis
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, UK (J.S., J.C., D.C., S.F.)
| | - Stuart M. Allan
- Faculty of Life Sciences, University of Manchester, Manchester, UK (A.D., C.D., S.M.A., N.J.R.)
| | - Nancy J. Rothwell
- Faculty of Life Sciences, University of Manchester, Manchester, UK (A.D., C.D., S.M.A., N.J.R.)
| |
Collapse
|
62
|
Kim CK, Kwon HM, Lee SH, Kim BJ, Ryu WS, Kwon HT, Yoon BW. Association of obesity with cerebral microbleeds in neurologically asymptomatic elderly subjects. J Neurol 2012; 259:2599-604. [DOI: 10.1007/s00415-012-6546-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 01/09/2023]
|
63
|
Stowe AM, Wacker BK, Cravens PD, Perfater JL, Li MK, Hu R, Freie AB, Stüve O, Gidday JM. CCL2 upregulation triggers hypoxic preconditioning-induced protection from stroke. J Neuroinflammation 2012; 9:33. [PMID: 22340958 PMCID: PMC3298779 DOI: 10.1186/1742-2094-9-33] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 02/16/2012] [Indexed: 02/04/2023] Open
Abstract
Background A brief exposure to systemic hypoxia (i.e., hypoxic preconditioning; HPC) prior to transient middle cerebral artery occlusion (tMCAo) reduces infarct volume, blood-brain barrier disruption, and leukocyte migration. CCL2 (MCP-1), typically regarded as a leukocyte-derived pro-inflammatory chemokine, can also be directly upregulated by hypoxia-induced transcription. We hypothesized that such a hypoxia-induced upregulation of CCL2 is required for HPC-induced ischemic tolerance. Methods Adult male SW/ND4, CCL2-null, and wild-type mice were used in these studies. Cortical CCL2/CCR2 message, protein, and cell-type specific immunoreactivity were determined following HPC (4 h, 8% O2) or room air control (21% O2) from 6 h through 2 weeks following HPC. Circulating leukocyte subsets were determined by multi-parameter flow cytometry in naïve mice and 12 h after HPC. CCL2-null and wild-type mice were exposed to HPC 2 days prior to tMCAo, with immunoneutralization of CCL2 during HPC achieved by a monoclonal CCL2 antibody. Results Cortical CCL2 mRNA and protein expression peaked at 12 h after HPC (both p < 0.01), predominantly in cortical neurons, and returned to baseline by 2 days. A delayed cerebral endothelial CCL2 message expression (p < 0.05) occurred 2 days after HPC. The levels of circulating monocytes (p < 0.0001), T lymphocytes (p < 0.0001), and granulocytes were decreased 12 h after HPC, and those of B lymphocytes were increased (p < 0.0001), but the magnitude of these respective changes did not differ between wild-type and CCL2-null mice. HPC did decrease the number of circulating CCR2+ monocytes (p < 0.0001) in a CCL2-dependent manner, but immunohistochemical analyses at this 12 h timepoint indicated that this leukocyte subpopulation did not move into the CNS. While HPC reduced infarct volumes by 27% (p < 0.01) in wild-type mice, CCL2-null mice subjected to tMCAo were not protected by HPC. Moreover, administration of a CCL2 immunoneutralizing antibody prior to HPC completely blocked (p < 0.0001 vs. HPC-treated mice) the development of ischemic tolerance. Conclusions The early expression of CCL2 in neurons, the delayed expression of CCL2 in cerebral endothelial cells, and CCL2-mediated actions on circulating CCR2+ monocytes, appear to be required to establish ischemic tolerance to focal stroke in response to HPC, and thus represent a novel role for this chemokine in endogenous neurovascular protection.
Collapse
Affiliation(s)
- Ann M Stowe
- Department of Neurological Surgery, Washington University School of Medicine, 660 S, Euclid Ave,, Box 8057, St, Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ritter L, Davidson L, Henry M, Davis-Gorman G, Morrison H, Frye JB, Cohen Z, Chandler S, McDonagh P, Funk JL. Exaggerated neutrophil-mediated reperfusion injury after ischemic stroke in a rodent model of type 2 diabetes. Microcirculation 2012; 18:552-61. [PMID: 21699626 DOI: 10.1111/j.1549-8719.2011.00115.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE We tested the hypothesis that both chronic and acute inflammatory processes contribute to worse reperfusion injury and stroke outcome in an experimental model of T2DM. MATERIALS AND METHODS Twelve- to thirteen-week-old male Zucker Diabetic Fatty (ZDF) rats vs. Zucker Lean Controls (ZLC) rats were tested at baseline and after middle cerebral artery occlusion (ischemia) and reperfusion (I-R). Neutrophil adhesion to the cerebral microcirculation, neutrophil expression of CD11b, infarction size, edema, neurologic function, sICAM, and cerebral expression of neutrophil-endothelial inflammatory genes were measured. RESULTS At baseline, CD11b and sICAM were significantly increased in ZDF vs. ZLC animals (p < 0.05). After I-R, significantly more neutrophil adhesion and cell aggregates were observed in ZDF vs. ZLC (p < 0.05); infarction size, edema, and neurologic function were significantly worse in ZDF vs. ZLC (p < 0.05). CD11b and sICAM-1 remained significantly increased in ZDFs (p < 0.05), and cerebral expression of IL-1β, GRO/KC, E-selectin, and sICAM were significantly induced in ZDF, but not ZLC groups (p < 0.05) after 2.5 hours of reperfusion. CONCLUSION Both sides of the neutrophil-endothelial interface appear to be primed prior to I-R, and remain significantly more activated during I-R in an experimental model of T2DM. Consequently, reperfusion injury appears to play a significant role in poor stroke outcome in T2DM.
Collapse
Affiliation(s)
- Leslie Ritter
- College of Nursing, University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Amantea D, Tassorelli C, Russo R, Petrelli F, Morrone LA, Bagetta G, Corasaniti MT. Neuroprotection by leptin in a rat model of permanent cerebral ischemia: effects on STAT3 phosphorylation in discrete cells of the brain. Cell Death Dis 2011; 2:e238. [PMID: 22158477 PMCID: PMC3252737 DOI: 10.1038/cddis.2011.125] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In addition to its effects in the hypothalamus to control body weight, leptin is involved in the regulation of neuronal function, development and survival. Recent findings have highlighted the neuroprotective effects of leptin against ischemic brain injury; however, to date, little is known about the role performed by the signal transducer and activator of transcription (STAT)-3, a major mediator of leptin receptor transduction pathway in the brain, in the beneficial effects of the hormone. Our data demonstrate that systemic acute administration of leptin produces neuroprotection in rats subjected to permanent middle cerebral artery occlusion (MCAo), as revealed by a significant reduction of the brain infarct volume and neurological deficit up to 7 days after the induction of ischemia. By combining a subcellular fractionation approach with immunohistofluorescence, we observe that neuroprotection is associated with a cell type-specific modulation of STAT3 phosphorylation in the ischemic cortex. The early enhancement of nuclear phospho-STAT3 induced by leptin in the astrocytes of the ischemic penumbra may contribute to a beneficial effect of these cells on the evolution of tissue damage. In addition, the elevation of phospho-STAT3 induced by leptin in the neurons after 24 h MCAo is associated with an increased expression of tissue inhibitor of matrix metalloproteinases-1 in the cortex, suggesting its possible involvement to the neuroprotection produced by the adipokine.
Collapse
Affiliation(s)
- D Amantea
- Department of Pharmacobiology and University Consortium for the Study of Adaptive Disorders and Head Pain, Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Rende (CS), Italy.
| | | | | | | | | | | | | |
Collapse
|
66
|
Nagai M, Terao S, Vital SA, Rodrigues SF, Yilmaz G, Granger DN. Role of blood cell-associated angiotensin II type 1 receptors in the cerebral microvascular response to ischemic stroke during angiotensin-induced hypertension. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2011; 3:15. [PMID: 22087550 PMCID: PMC3240825 DOI: 10.1186/2040-7378-3-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/16/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND Angiotensin II type 1 receptor (AT1R) blockers lower the incidence of ischemic stroke in hypertensive patients and attenuate brain inflammation and injury in animal models. Although AT1R on both blood cells (BC) and vascular endothelial cells (EC) can be activated by angiotensin II (Ang II) to elicit inflammation, little is known about the relative contributions of AT1R expressed on BC and EC to the brain injury responses to ischemia and reperfusion (I/R) in the setting of angiotensin-induced hypertension. METHODS The contributions of BC- and EC-associated AT1R to I/R-induced brain inflammation and injury were evaluated using wild type (WT), AT1aR-/-, and bone marrow chimera mice with either a BC+/EC+ (WT→WT) or BC-/EC+ (AT1aR-/-→WT) distribution of AT1aR. The adhesion of leukocytes and platelets in venules, blood brain barrier (BBB) permeability and infarct volume were monitored in postischemic brain of normotensive and Ang II-induced hypertensive mice. RESULTS The inflammatory (blood cell adhesion) and injury (BBB permeability, infarct volume) responses were greatly exaggerated in the presence of Ang II-induced hypertension. The Ang II-enhanced responses were significantly blunted in AT1aR-/- mice. A similar level of protection was noted in AT1aR-/- →WT mice for BBB permeability and infarct volume, while less or no protection was evident for leukocyte and platelet adhesion, respectively. CONCLUSIONS BC- and EC-associated AT1aR are both involved in the brain injury responses to ischemic stroke during Ang II-hypertension, with EC AT1aR contributing more to the blood cell recruitment response and BC AT1aR exerting a significant influence on the BBB disruption and tissue necrosis elicited by I/R.
Collapse
Affiliation(s)
- Mutsumi Nagai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Satoshi Terao
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Shantel A Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Stephen F Rodrigues
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Gokhan Yilmaz
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - D Neil Granger
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
67
|
Drake C, Boutin H, Jones MS, Denes A, McColl BW, Selvarajah JR, Hulme S, Georgiou RF, Hinz R, Gerhard A, Vail A, Prenant C, Julyan P, Maroy R, Brown G, Smigova A, Herholz K, Kassiou M, Crossman D, Francis S, Proctor SD, Russell JC, Hopkins SJ, Tyrrell PJ, Rothwell NJ, Allan SM. Brain inflammation is induced by co-morbidities and risk factors for stroke. Brain Behav Immun 2011; 25:1113-22. [PMID: 21356305 PMCID: PMC3145158 DOI: 10.1016/j.bbi.2011.02.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 01/22/2023] Open
Abstract
Chronic systemic inflammatory conditions, such as atherosclerosis, diabetes and obesity are associated with increased risk of stroke, which suggests that systemic inflammation may contribute to the development of stroke in humans. The hypothesis that systemic inflammation may induce brain pathology can be tested in animals, and this was the key objective of the present study. First, we assessed inflammatory changes in the brain in rodent models of chronic, systemic inflammation. PET imaging revealed increased microglia activation in the brain of JCR-LA (corpulent) rats, which develop atherosclerosis and obesity, compared to the control lean strain. Immunostaining against Iba1 confirmed reactive microgliosis in these animals. An atherogenic diet in apolipoprotein E knock-out (ApoE(-/-)) mice induced microglial activation in the brain parenchyma within 8 weeks and increased expression of vascular adhesion molecules. Focal lipid deposition and neuroinflammation in periventricular and cortical areas and profound recruitment of activated myeloid phagocytes, T cells and granulocytes into the choroid plexus were also observed. In a small, preliminary study, patients at risk of stroke (multiple risk factors for stroke, with chronically elevated C-reactive protein, but negative MRI for brain pathology) exhibited increased inflammation in the brain, as indicated by PET imaging. These findings show that brain inflammation occurs in animals, and tentatively in humans, harbouring risk factors for stroke associated with elevated systemic inflammation. Thus a "primed" inflammatory environment in the brain may exist in individuals at risk of stroke and this can be adequately recapitulated in appropriate co-morbid animal models.
Collapse
Affiliation(s)
- Caroline Drake
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Hervé Boutin
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Matthew S. Jones
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Adam Denes
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Barry W. McColl
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Johann R. Selvarajah
- Clinical Neurosciences Group and Stroke Medicine, Salford Royal Foundation Trust, UK
| | - Sharon Hulme
- Clinical Neurosciences Group and Stroke Medicine, Salford Royal Foundation Trust, UK
| | - Rachel F. Georgiou
- Clinical Neurosciences Group and Stroke Medicine, Salford Royal Foundation Trust, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Alexander Gerhard
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Andy Vail
- Health Methodology Research Group, University of Manchester, UK
| | - Christian Prenant
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Peter Julyan
- North Western Medical Physics, Christie Hospital, Manchester, UK
| | | | - Gavin Brown
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Alison Smigova
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Michael Kassiou
- Brain and Mind Research Institute, University of Sydney, NSW 2050, Australia,Discipline of Medical Radiation Sciences, University of Sydney, NSW 1825, Australia,School of Chemistry, University of Sydney, NSW 2006, Australia
| | - David Crossman
- NIHR Biomedical Research Unit, University of Sheffield, Sheffield, UK
| | - Sheila Francis
- Department of Cardiovascular Science, University of Sheffield, UK
| | - Spencer D. Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - James C. Russell
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen J. Hopkins
- Clinical Neurosciences Group and Stroke Medicine, Salford Royal Foundation Trust, UK
| | - Pippa J. Tyrrell
- Clinical Neurosciences Group and Stroke Medicine, Salford Royal Foundation Trust, UK
| | | | - Stuart M. Allan
- Faculty of Life Sciences, University of Manchester, Manchester, UK,Corresponding author. Address: Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK. Fax: +44 (0) 161 275 3938.
| |
Collapse
|
68
|
Wang YY, Lin SY, Chuang YH, Chen CJ, Tung KC, Sheu WHH. Adipose proinflammatory cytokine expression through sympathetic system is associated with hyperglycemia and insulin resistance in a rat ischemic stroke model. Am J Physiol Endocrinol Metab 2011; 300:E155-E163. [PMID: 20978230 DOI: 10.1152/ajpendo.00301.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Patients who experience acute ischemic stroke may develop hyperglycemia, even in the absence of diabetes, but the exact mechanisms are still unclear. Adipose tissue secretes numerous proinflammatory cytokines and is involved in the regulation of glucose metabolism. This study aimed to determine the effects of acute stroke on adipose inflammatory cytokine expression. In addition, because sympathetic activity is activated after acute stroke and catecholamines can regulate the expression of several adipocytokines, this study also evaluated whether alterations in adipose proinflammatory cytokines following acute stroke, if any, were medicated by sympathetic system. Acute ischemic brain injury was induced by ligating the right middle cerebral artery and bilateral common carotid arteries in male adult Sprague-Dawley rats. Adipose tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) mRNA and protein levels were determined by RT-PCR and enzyme-linked immunoassay, respectively. The stroke rats developed glucose intolerance on days 1 and 2 after cerebral ischemic injury. The fasting blood insulin levels and insulin resistance index measured by homeostasis model assessment were higher in the stroke rats compared with the sham group. Epididymal adipose TNF-α and MCP-1 mRNA and protein levels were elevated one- to twofold, in association with increased macrophage infiltration into the adipose tissue. When the rats were treated with a nonselective β-adrenergic receptor blocker, propranolol, before induction of cerebral ischemic injury, the acute stroke-induced increase in TNF-α and MCP-1 was blocked, and fasting blood insulin concentration and homeostasis model assessment-insulin resistance were decreased. These results suggest a potential role of adipose proinflammatory cytokines induced by the sympathetic nervous system in the pathogenesis of glucose metabolic disorder in rats with acute ischemic stroke.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Division of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
69
|
Rivera CA, Gaskin L, Singer G, Houghton J, Allman M. Western diet enhances hepatic inflammation in mice exposed to cecal ligation and puncture. BMC PHYSIOLOGY 2010; 10:20. [PMID: 20958969 PMCID: PMC2984476 DOI: 10.1186/1472-6793-10-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 10/19/2010] [Indexed: 01/22/2023]
Abstract
Background Obese patients display an exaggerated morbidity during sepsis. Since consumption of a western-style diet (WD) is a major factor for obesity in the United States, the purpose of the present study was to examine the influence of chronic WD consumption on hepatic inflammation in mice made septic via cecal ligation and puncture (CLP). Feeding mice diets high in fat has been shown to enhance evidence of TLR signaling and this pathway also mediates the hepatic response to invading bacteria. Therefore, we hypothesized that the combined effects of sepsis and feeding WD on TRL-4 signaling would exacerbate hepatic inflammation. Male C57BL/6 mice were fed purified control diet (CD) or WD that was enriched in butter fat (34.4% of calories) for 3 weeks prior to CLP. Intravital microscopy was used to evaluate leukocyte adhesion in the hepatic microcirculation. To demonstrate the direct effect of saturated fatty acid on hepatocytes, C3A human hepatocytes were cultured in medium containing 100 μM palmitic acid (PA). Quantitative real-time PCR was used to assess mRNA expression of tumor necrosis factor-alpha (TNF-α, monocyte chemotactic protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), toll-like receptor-4 (TLR-4) and interleukin-8 (IL-8). Results Feeding WD increased firm adhesion of leukocytes in the sinusoids and terminal hepatic venules by 8-fold six hours after CLP; the increase in platelet adhesion was similar to the response observed with leukocytes. Adhesion was accompanied by enhanced expression of TNF-α, MCP-1 and ICAM-1. Messenger RNA expression of TLR-4 was also exacerbated in the WD+CLP group. Exposure of C3A cells to PA up-regulated IL-8 and TLR-4 expression. In addition, PA stimulated the static adhesion of U937 monocytes to C3A cells, a phenomenon blocked by inclusion of an anti-TLR-4/MD2 antibody in the culture medium. Conclusions These findings indicate a link between obesity-enhanced susceptibility to sepsis and consumption of a western-style diet.
Collapse
Affiliation(s)
- Chantal A Rivera
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| | | | | | | | | |
Collapse
|
70
|
Denes A, Thornton P, Rothwell NJ, Allan SM. Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun 2010; 24:708-23. [PMID: 19770034 DOI: 10.1016/j.bbi.2009.09.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a classical host defence response to infection and injury that has many beneficial effects. However, inappropriate (in time, place and magnitude) inflammation is increasingly implicated in diverse disease states, now including cancer, diabetes, obesity, atherosclerosis, heart disease and, most relevant here, CNS disease. A growing literature shows strong correlations between inflammatory status and the risk of cerebral ischaemia (CI, most commonly stroke), as well as with outcome from an ischaemic event. Intervention studies to demonstrate a causal link between inflammation and CI (or its consequences) are limited but are beginning to emerge, while experimental studies of CI have provided direct evidence that key inflammatory mediators (cytokines, chemokines and inflammatory cells) contribute directly to ischaemic brain injury. However, it remains to be determined what the relative importance of systemic (largely peripheral) versus CNS inflammation is in CI. Animal models in which CI is driven by a CNS intervention may not accurately reflect the clinical condition; stroke being typically induced by atherosclerosis or cardiac dysfunction, and hence current experimental paradigms may underestimate the contribution of peripheral inflammation. Experimental studies have already identified a number of potential anti-inflammatory therapeutic interventions that may limit ischaemic brain damage, some of which have been tested in early clinical trials with potentially promising results. However, a greater understanding of the contribution of inflammation to CI is still required, and this review highlights some of the key mechanism that may offer future therapeutic targets.
Collapse
Affiliation(s)
- A Denes
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
71
|
Uranga RM, Bruce-Keller AJ, Morrison CD, Fernandez-Kim SO, Ebenezer PJ, Zhang L, Dasuri K, Keller JN. Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J Neurochem 2010; 114:344-61. [PMID: 20477933 PMCID: PMC2910139 DOI: 10.1111/j.1471-4159.2010.06803.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high-fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high-fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age-related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.
Collapse
Affiliation(s)
- Romina M. Uranga
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | - Christopher D. Morrison
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Sun Ok Fernandez-Kim
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Philip J. Ebenezer
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Le Zhang
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Kalavathi Dasuri
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
72
|
Granger DN, Rodrigues SF, Yildirim A, Senchenkova EY. Microvascular responses to cardiovascular risk factors. Microcirculation 2010; 17:192-205. [PMID: 20374483 DOI: 10.1111/j.1549-8719.2009.00015.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypertension, hypercholesterolemia, diabetes, and obesity are among a growing list of conditions that have been designated as major risk factors for cardiovascular disease (CVD). While CVD risk factors are well known to enhance the development of atherosclerotic lesions in large arteries, there is also evidence that the structure and function of microscopic blood vessels can be profoundly altered by these conditions. The diverse responses of the microvasculature to CVD risk factors include oxidative stress, enhanced leukocyte- and platelet-endothelial cell adhesion, impaired endothelial barrier function, altered capillary proliferation, enhanced thrombosis, and vasomotor dysfunction. Emerging evidence indicates that a low-grade systemic inflammatory response that results from risk factor-induced cell activation and cell-cell interactions may underlie the phenotypic changes induced by risk factor exposure. A consequence of the altered microvascular phenotype and systemic inflammatory response is an enhanced vulnerability of tissues to the deleterious effects of secondary oxidative and inflammatory stresses, such as ischemia and reperfusion. Future efforts to develop therapies that prevent the harmful effects of risk factor-induced inflammation should focus on the microcirculation.
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | | | | | | |
Collapse
|
73
|
Rummel C, Inoue W, Poole S, Luheshi GN. Leptin regulates leukocyte recruitment into the brain following systemic LPS-induced inflammation. Mol Psychiatry 2010; 15:523-34. [PMID: 19773811 DOI: 10.1038/mp.2009.98] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The appetite suppressing hormone leptin has emerged as an important modulator of immune function and is now considered to be a critical link between energy balance and host defense responses to pathogens. These 'adaptive' responses can, in situations of severe and sustained systemic inflammation, lead to adverse effects including brain damage that is partly mediated by neutrophil recruitment into the brain. We examined the contribution of leptin to this process in leptin-deficient (ob/ob), -resistant (db/db) and wild-type (WT) mice injected intraperitoneally with a septic dose of lipopolysaccharide (LPS). This treatment induced a dramatic increase in the number of neutrophils entering the brain of WT mice, an effect that was almost totally abolished in the mutant mice and correlated with a significant reduction in the mRNA levels of interleukin-1beta, intracellular adhesion molecule-1 and neutrophil-specific chemokines. These effects were reversed with leptin replenishment in ob/ob mice leading to recovery of neutrophil recruitment into the brain. Moreover, 48 h food deprivation in WT mice, which decreased circulating leptin levels, attenuated the LPS-induced neutrophil recruitment as did a single injection of an anti-leptin antiserum 4 h before LPS treatment in WT mice. These results provide the first demonstration that leptin has a critical role in leukocyte recruitment to the brain following severe systemic inflammation with possible implications for individuals with altered leptin levels such as during obesity or starvation.
Collapse
Affiliation(s)
- C Rummel
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
74
|
Osmond JM, Mintz JD, Stepp DW. Preventing increased blood pressure in the obese Zucker rat improves severity of stroke. Am J Physiol Heart Circ Physiol 2010; 299:H55-61. [PMID: 20418477 DOI: 10.1152/ajpheart.01111.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Obesity is a risk factor for stroke, but the determinants of increased stroke risk in obesity are unknown. We have previously reported that obese Zucker rats (OZRs) have a worse stroke outcome and display evidence of remodeling of the middle cerebral artery (MCA), in parallel with hypertension, compared with lean controls. This study tested the hypothesis that hypertension is an essential determinant of cerebral vascular remodeling and increased stroke damage in OZRs. Blood pressure was measured by telemetry in lean and obese rats with and without hydrochlorthiazide (HCT; 2 mg.kg(-1).day(-1)) from 8 to 15 wk of age. A separate group of rats was also chronically fed a low-sodium (LS) diet. Vessel structure was assessed in isolated, pressurized MCAs. Cerebral ischemia was induced for 60 min using an intralumenal suture technique, followed by 24 h of reperfusion. HCT treatment effectively prevented the increase in blood pressure in obese rats; however, the LS diet did not lower pressure. Importantly, infarct size was normalized by HCT after ischemia-reperfusion injury. Additionally, HCT improved the changes in MCA structure observed in untreated OZRs. There were no benefits of the LS diet on stroke injury or vessel structure. These results indicate that increased pressure is essential for driving the changes in infarct size in OZRs.
Collapse
Affiliation(s)
- Jessica M Osmond
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd., Augusta, GA 30912, USA
| | | | | |
Collapse
|
75
|
Rodrigues SF, Granger DN. Role of blood cells in ischaemia-reperfusion induced endothelial barrier failure. Cardiovasc Res 2010; 87:291-9. [PMID: 20299333 DOI: 10.1093/cvr/cvq090] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ischaemia and reperfusion (I/R) elicits an acute inflammatory response that is characterized by the recruitment of inflammatory cells, oxidative stress, and endothelial barrier failure. Over the past three decades, much progress has been made in our understanding of the mechanisms that underlie the inflammatory response and microvascular dysfunction associated with I/R. This review is focused on the role of leucocytes (neutrophils and T-lymphocytes) and platelets, and their activation products, as mediators of I/R-induced endothelial barrier failure. The contributions of cytokines, chemokines, and oxidative stress to I/R-induced barrier dysfunction are also discussed. It concludes with an analysis of how risk factors for cardiovascular disease, i.e. hypertension, diabetes, hypercholesterolaemia, and obesity, influence the vascular permeability response to I/R. Areas of uncertainty and controversy in this field of investigation are also identified.
Collapse
Affiliation(s)
- Stephen F Rodrigues
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | |
Collapse
|
76
|
Increased brain microvascular MMP-9 and incidence of haemorrhagic transformation in obese mice after experimental stroke. J Cereb Blood Flow Metab 2010; 30:267-72. [PMID: 19826431 PMCID: PMC2949124 DOI: 10.1038/jcbfm.2009.217] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity is an independent risk factor for stroke and is associated with poorer outcome after stroke. We investigated whether this poorer outcome is related to brain microvascular disruption. Focal cerebral ischaemia was induced in lean or obese (ob/ob) mice by transient middle cerebral artery occlusion. The incidence of haemorrhagic transformation and the volume of ischaemic brain damage were significantly greater in obese mice. Blood-brain barrier permeability and brain microvascular MMP-9 expression were also markedly increased in obese mice. These effects were independent of leptin or glycaemic status, suggesting that obesity potentiates brain microvascular disruption after experimental stroke.
Collapse
|
77
|
Varoglu AO, Kuyucu M, Demir R, Acemoglu H, Can I, Akcay F. Prognostic values of lesion volume and biochemical markers in ischemic and hemorrhagic stroke: a stereological and clinical study. Int J Neurosci 2010; 119:2206-18. [PMID: 19916849 DOI: 10.3109/00207450903222733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Our aim was to evaluate the relationship between lesion volume, serum level of biochemical markers, and clinical situation in ischemic and hemorrhagic stroke. METHODS MRI was obtained on 33 ischemic and 28 hemorrhagic strokes. The Cavalieri method was used to measure the volume. To evaluate neurological situation of the patients, we used the National Institutes of Health Stroke Scale (NIHSS) and Rankin Disability Scores at the first, third, seventh, and thirtieth days. We measured the level of leptin, high sensitivity C-reactive protein (hs-CRP), insulin, cortisol, fibrinogen, protein C, protein S, von Willebrand factor, D-dimer, Antitrombin III, and Factor VIII (F VIII) at the same time intervals. RESULTS In ischemic events, cortisol level at third and seventh days, and fibrinogen level at the first day were correlated with lesion volumes (r = 0.5, p = .02; r = 0.4, p = .02; r = 0.5, p = .005, respectively). In hemorrhagic events, only fibrinogen level was correlated with lesion volumes at third day (r = 0.6, p = .04). No significant differences were found among all these biochemical parameters, neurological situation (p > .05), and lesion volumes at all times. CONCLUSION In the prediction of stroke prognosis, lesion volume and all of the evaluated biochemical parameters are not deterministic factors.
Collapse
|
78
|
Leptin induces an inflammatory phenotype in lean Wistar rats. Mediators Inflamm 2010; 2009:738620. [PMID: 20150963 PMCID: PMC2817554 DOI: 10.1155/2009/738620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/29/2009] [Accepted: 10/15/2009] [Indexed: 01/05/2023] Open
Abstract
The present study addressed the hypothesis that leptin promotes leukocyte trafficking into adipose tissue. Accordingly, male Wistar rats were treated with saline or recombinant rat leptin (1 mg/kg) via the tail vein. Leukocyte trafficking in mesenteric venules was quantified by intravital microscopy. Treatment with leptin resulted in a 3- and 5-fold increases in rolling and firm adhesion, respectively. Compared to vehicle controls, leptin enhanced mRNA levels of IL-6 (8-fold) and MCP-1 (5-fold) in mesenteric adipose tissue (MAT). Similar increases in these markers were observed in mesenteric venules and in liver. Finally, the direct effect of leptin was assessed in C3A hepatocytes treated with leptin for 24 hours (7.8 ng/mL–125 ng/mL). Consistent with observations in vivo, production of ICAM-1, MCP-1, and IL-6 by hepatocytes was increased significantly. These findings support the hypothesis that leptin directly initiates inflammation in the local environment of mesenteric adipose tissue as well as systemically.
Collapse
|
79
|
|
80
|
Vachharajani V, Granger DN. Adipose tissue: a motor for the inflammation associated with obesity. IUBMB Life 2009; 61:424-30. [PMID: 19319966 DOI: 10.1002/iub.169] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Obesity is a worldwide epidemic that continues to grow at an alarming rate. This condition increases the morbidity and mortality associated with both acute and chronic diseases. Some of the deleterious consequences of obesity have been attributed to its induction of a low-grade chronic inflammatory state that arises from the production and secretion of inflammatory mediators from the expanded pool of activated adipocytes. This review focuses on the mechanisms that underlie the proposed link between obesity and inflammation, and it addresses how obesity-induced inflammation may account for increased morbidity and mortality that is associated with a diverse group of diseases.
Collapse
Affiliation(s)
- Vidula Vachharajani
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
81
|
Yilmaz G, Granger DN. Leukocyte recruitment and ischemic brain injury. Neuromolecular Med 2009; 12:193-204. [PMID: 19579016 DOI: 10.1007/s12017-009-8074-1] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 06/16/2009] [Indexed: 01/23/2023]
Abstract
Leukocytes are recruited into the cerebral microcirculation following an ischemic insult. The leukocyte-endothelial cell adhesion manifested within a few hours after ischemia (followed by reperfusion, I/R) largely reflects an infiltration of neutrophils, while other leukocyte populations appear to dominate the adhesive interactions with the vessel wall at 24 h of reperfusion. The influx of rolling and adherent leukocytes is accompanied by the recruitment of adherent platelets, which likely enhances the cytotoxic potential of the leukocytes to which they are attached. The recruitment of leukocytes and platelets in the postischemic brain is mediated by specific adhesion glycoproteins expressed by the activated blood cells and on cerebral microvascular endothelial cells. This process is also modulated by different signaling pathways (e.g., CD40/CD40L, Notch) and cytokines (e.g., RANTES) that are activated/released following I/R. Some of the known risk factors for cardiovascular disease, including hypercholesterolemia and obesity appear to exacerbate the leukocyte and platelet recruitment elicited by brain I/R. Although lymphocyte-endothelial cell and -platelet interactions in the postischemic cerebral microcirculation have not been evaluated to date, recent evidence in experimental animals implicate both CD4+ and CD8+ T-lymphocytes in the cerebral microvascular dysfunction, inflammation, and tissue injury associated with brain I/R. Evidence implicating regulatory T-cells as cerebroprotective modulators of the inflammatory and tissue injury responses to brain I/R support a continued focus on leukocytes as a target for therapeutic intervention in ischemic stroke.
Collapse
Affiliation(s)
- Gokhan Yilmaz
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | |
Collapse
|
82
|
Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol 2009; 22:294-301. [DOI: 10.1097/wco.0b013e32832b4db3] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
83
|
Chen B, Liao WQ, Xu N, Xu H, Wen JY, Yu CA, Liu XY, Li CL, Zhao SM, Campbell W. Adiponectin protects against cerebral ischemia-reperfusion injury through anti-inflammatory action. Brain Res 2009; 1273:129-37. [PMID: 19362080 DOI: 10.1016/j.brainres.2009.04.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 02/07/2023]
Abstract
Adiponectin (APN), a circulating adipose-derived hormone regulating inflammation and energy metabolism, has beneficial actions on cardio- and cerebrovascular disorders. Hypoadiponectinemia is associated with ischemic cerebrovascular disease, however, little is known about the cerebroprotective action of APN as well as its molecular mechanisms. In the present study, the role of APN in the pathogenesis of acute cerebral injury was investigated. Rats were divided into three groups: (i) a sham operation group; (ii) an ischemia/reperfusion (I/R) group, rats were subjected to 1 h middle cerebral artery occlusion followed by 23 h reperfusion (I/R); (iii) a APN-treated group, two bolus of 5 microg APN was administered through jugular vein before and after operation. I/R resulted in obvious cerebral infarct size, neurological deficits, and increased expression of endogenous immunoglobin G and matrix metalloproteinase 9, which can be significantly diminished by administration of APN. We also found that APN can significantly inhibited cerebral expression of myeloperoxidase, a distinct indicator of inflammatory cell infiltration, and inflammatory cytokines, interleukin (IL)-1beta, tumor necrosis factor-alpha and IL-8 in response to I/R, suggesting that APN exerts potent anti-inflammatory actions. Furthermore, nuclear factor (NF)-kappaB (p65), a critical transcription factor involved in inflammatory reactions, was observed predominantly located in the nucleus after I/R, whereas APN can obviously inhibit its translocation from cytoplasm into the nucleus. Results of this study demonstrate that APN exerts a potent cerebroprotective function through its anti-inflammatory action, and NF-kappaB (p65) is a key component in this process. APN might be potential molecular targets for ischemic stroke therapy.
Collapse
Affiliation(s)
- Bi Chen
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Osmond JM, Mintz JD, Dalton B, Stepp DW. Obesity increases blood pressure, cerebral vascular remodeling, and severity of stroke in the Zucker rat. Hypertension 2008; 53:381-6. [PMID: 19104000 DOI: 10.1161/hypertensionaha.108.124149] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obesity is a risk factor for stroke, but the mechanisms by which obesity increases stroke risk are unknown. Because microvascular architecture contributes to the outcome of stroke, we hypothesized that middle cerebral arteries (MCAs) from obese Zucker rats (OZRs) undergo inward remodeling and develop increased myogenic tone compared with those in lean Zucker rats (LZRs). We further hypothesized that OZRs have an increased infarct after cerebral ischemia and that changes in vascular structure and function correlate with the development of hypertension in OZRs. Blood pressure was measured by telemetry in LZRs and OZRs from 6 to 17 weeks of age. Vessel structure and function were assessed in isolated MCAs. Stroke damage was assessed after ischemia was induced for 60 minutes followed by 24 hours of reperfusion. Although mean arterial pressure was similar between young rats (6 to 8 weeks old), mean arterial pressure was higher in adult (14 to 17 weeks old) OZRs than in LZRs. MCAs from OZRs had a smaller lumen diameter and increased myogenic vasoconstriction compared with those from LZRs. After ischemia, infarction was 58% larger in OZRs than in LZRs. Before the development of hypertension, MCA myogenic reactivity and lumen diameter, as well as infarct size, were similar between young LZRs and OZRs. Our results indicate that the MCAs of OZRs undergo structural remodeling and that these rats have greater cerebral injury after cerebral ischemia. These cerebrovascular changes correlate with the development of hypertension and suggest that the increased blood pressure may be the major determinant for stroke risk in obese individuals.
Collapse
Affiliation(s)
- Jessica M Osmond
- Department of Physiology, Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd, CB3212A, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
85
|
Valerio A, Dossena M, Bertolotti P, Boroni F, Sarnico I, Faraco G, Chiarugi A, Frontini A, Giordano A, Liou HC, De Simoni MG, Spano P, Carruba MO, Pizzi M, Nisoli E. Leptin is induced in the ischemic cerebral cortex and exerts neuroprotection through NF-kappaB/c-Rel-dependent transcription. Stroke 2008; 40:610-7. [PMID: 19023096 DOI: 10.1161/strokeaha.108.528588] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Leptin is an adipose hormone endowed with angiopoietic, neurotrophic, and neuroprotective properties. We tested the hypothesis that leptin might act as an endogenous mediator of recovery after ischemic stroke and investigated whether nuclear transcription factors kappaB activation is involved in leptin-mediated neuroprotection. METHODS The antiapoptotic effects of leptin were evaluated in cultured mouse cortical neurons from wild-type or NF-kappaB/c-Rel(-/-) mice exposed to oxygen-glucose deprivation. Wild-type, c-Rel(-/-) and leptin-deficient ob/ob mice were subjected to permanent middle cerebral artery occlusion. Leptin production was measured in brains from wild-type mice with quantitative reverse transcriptase-polymerase chain reaction and immunostaining. Mice received a leptin bolus (20 microg/g) intraperitoneally at the onset of ischemia. RESULTS Leptin treatment activated the nuclear translocation of nuclear transcription factors kappaB dimers containing the c-Rel subunit, induced the expression of the antiapoptotic c-Rel target gene Bcl-xL in both control and oxygen-glucose deprivation conditions, and counteracted the oxygen-glucose deprivation-mediated apoptotic death of cultured cortical neurons. Leptin-mediated Bcl-xL induction and neuroprotection against oxygen-glucose deprivation were hampered in cortical neurons from c-Rel(-/-) mice. Leptin mRNA was induced and the protein was detectable in microglia/macrophage cells from the ischemic penumbra of wild-type mice subjected to permanent middle cerebral artery occlusion. Ob/ob mice were more susceptible than wild-type mice to the permanent middle cerebral artery occlusion injury. Leptin injection significantly reduced the permanent middle cerebral artery occlusion-mediated cortical damage in wild-type and ob/ob mice, but not in c-Rel(-/-) mice. CONCLUSIONS Leptin acts as an endogenous mediator of neuroprotection during cerebral ischemia. Exogenous leptin administration protects against ischemic neuronal injury in vitro and in vivo in a c-Rel-dependent manner.
Collapse
Affiliation(s)
- Alessandra Valerio
- Department of Biomedical Sciences and Biotechnologies, Division of Pharmacology, University of Brescia, Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Bruce-Keller AJ, Keller JN, Morrison CD. Obesity and vulnerability of the CNS. Biochim Biophys Acta Mol Basis Dis 2008; 1792:395-400. [PMID: 18992327 DOI: 10.1016/j.bbadis.2008.10.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 01/20/2023]
Abstract
The incidence of obesity is increasing worldwide, and is especially pronounced in developed western countries. While the consequences of obesity on metabolic and cardiovascular physiology are well established, epidemiological and experimental data are beginning to establish that the central nervous system (CNS) may also be detrimentally affected by obesity and obesity-induced metabolic dysfunction. In particular, data show that obesity in human populations is associated with cognitive decline and enhanced vulnerability to brain injury, while experimental studies in animal models confirm a profile of heightened vulnerability and decreased cognitive function. This review will describe findings from human and animal studies to summarize current understanding of how obesity affects the brain. Furthermore, studies aimed at identifying key elements of body-brain dialog will be discussed to assess how various metabolic and adipose-related signals could adversely affect the CNS. Overall, data suggest that obesity-induced alterations in metabolism may significantly synergize with age to impair brain function and accelerate age-related diseases of the nervous system. Thus, enhanced understanding of the effects of obesity and obesity-related metabolic dysfunction on the brain are especially critical as increasing numbers of obese individuals approach advanced age.
Collapse
Affiliation(s)
- Annadora J Bruce-Keller
- Inflammation and Neurodegeneration Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA.
| | | | | |
Collapse
|
87
|
Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F. Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev 2008; 60:1471-7. [PMID: 18652858 PMCID: PMC2612561 DOI: 10.1016/j.addr.2008.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 03/31/2008] [Indexed: 12/27/2022]
Abstract
Preconditioning represents the condition where transient exposure of cells to an initiating event leads to protection against subsequent, potentially lethal stimuli. Recent studies have established that mitochondrial-centered mechanisms are important mediators in promoting development of the preconditioning response. However, many details concerning these mechanisms are unclear. The purpose of this review is to describe the initiating and subsequent intracellular events involving mitochondria which can lead to neuronal preconditioning. These mitochondrial specific targets include: 1) potassium channels located on the inner mitochondrial membrane; 2) respiratory chain enzymes; and 3) oxidative phosphorylation. Following activation of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels and/or increased production of reactive oxygen species (ROS) resulting from the disruption of the respiratory chain or during energy substrate deprivation, morphological changes or signaling events involving protein kinases confer immediate or delayed preconditioning on neurons that will allow them to survive otherwise lethal insults. While the mechanisms involved are not known with certainty, the results of preconditioning are the enhanced neuronal viability, the attenuated influx of intracellular calcium, the reduced availability of ROS, the suppression of apoptosis, and the maintenance of ATP levels during and following stress.
Collapse
Affiliation(s)
- David W Busija
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC NC 27157-1010, USA.
| | | | | | | | | |
Collapse
|
88
|
McColl BW, Allan SM, Rothwell NJ. Systemic infection, inflammation and acute ischemic stroke. Neuroscience 2008; 158:1049-61. [PMID: 18789376 DOI: 10.1016/j.neuroscience.2008.08.019] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 12/16/2022]
Abstract
Extensive evidence implicates inflammation in multiple phases of stroke etiology and pathology. In particular, there is growing awareness that inflammatory events outside the brain have an important impact on stroke susceptibility and outcome. Numerous conditions, including infection and chronic non-infectious diseases, that are established risk factors for stroke are associated with an elevated systemic inflammatory profile. Recent clinical and pre-clinical studies support the concept that the systemic inflammatory status prior to and at the time of stroke is a key determinant of acute outcome and long-term prognosis. Here, we provide an overview of the impact of systemic inflammation on stroke susceptibility and outcome. We discuss potential mechanisms underlying the impact on ischemic brain injury and highlight the implications for stroke prevention, therapy and modeling.
Collapse
Affiliation(s)
- B W McColl
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK.
| | | | | |
Collapse
|
89
|
Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B. Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol 2008; 295:H1580-6. [PMID: 18689499 DOI: 10.1152/ajpheart.00379.2008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic postconditioning (IPCD) significantly reduces infarct size in healthy animals and protects the human heart. Because obesity is a major risk factor of cardiovascular diseases, the effects of IPCD were investigated in 8- to 10-wk-old leptin-deficient obese (ob/ob) mice and compared with wild-type C57BL/6J (WT) mice. All animals underwent 30 min of coronary artery occlusion followed by 24 h of reperfusion associated or not with IPCD (6 cycles of 10-s occlusion, 10-s reperfusion). Additional mice were killed at 10 min of reperfusion for Western blotting. IPCD reduced infarct size by 58% in WT mice (33+/-1% vs. 14+/-3% for control and IPCD, respectively, P<0.05) but failed to induce cardioprotection in ob/ob mice (53+/-4% vs. 56+/-5% for control and IPCD, respectively). In WT mice, IPCD significantly increased the phosphorylation of Akt (+77%), ERK1/2 (+41%), and their common target p70S6K1 (+153% at Thr389 and +57% at Thr421/Ser424). In addition, the phosphorylated AMP-activated protein kinase (AMPK)-to-total AMPK ratio was also increased by IPCD in WT mice (+64%, P<0.05). This was accompanied by decreases in phosphatase and tensin homolog deleted on chromosome 10 (PTEN), MAP kinase phosphatase (MKP)-3, and protein phosphatase (PP)2C levels. In contrast, IPCD failed to increase the phosphorylation state of all these kinases in ob/ob mice, and the level of the three phosphatases was significantly increased. Thus, although IPCD reduces myocardial infarct size in healthy animals, its cardioprotective effect vanishes with obesity. The lack of enhanced phosphorylation by IPCD of Akt, ERK1/2, p70S6K1, and AMPK might partly explain the loss of cardioprotection in this experimental model of obese mice.
Collapse
Affiliation(s)
- Omar Bouhidel
- Institut National de la Santé et de la Recherche Médicale U841, Equipe 3, Université Paris 12, Créteil, France
| | | | | | | | | | | |
Collapse
|
90
|
Elevation of monocyte chemoattractant protein-1 in patients experiencing neurocognitive decline following carotid endarterectomy. Acta Neurochir (Wien) 2008; 150:779-84; discussion 784. [PMID: 18574546 DOI: 10.1007/s00701-008-1618-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Previous studies have demonstrated that elevated pre-operative monocyte count is an independent predictor of acute neurocognitive decline following carotid endarterectomy (CEA). Monocyte chemoattractant protein-1 (MCP-1), secreted by human endothelial and monocyte-like cells, is a potent mediator of inflammation and mononuclear cell trafficking. This study examines the relationship between peri-operative serum MCP-1 elevation and post-operative neurocognitive injury following CEA. METHODS Fifty-two patients undergoing CEA and 67 lumbar laminectomy (LL) controls were administered a battery of five neuropsychological tests pre-operatively and on post-operative day 1 (POD 1). Change in individual test scores from baseline to POD 1 were converted into Z-score and used to develop a point system quantifying the degree of neurocognitive dysfunction relative to change within the LL group. Neurocognitive injury following CEA was defined as a score greater than 2 standard deviations above mean total deficit scores of LL controls. Serum MCP-1 levels were measured pre-operatively and on POD 1 by enzyme-linked immunosorbent assay. FINDINGS Mean percent MCP-1 elevation was higher for the 13 injured CEA patients (147.7 +/- 32.4%) in our cohort compared to 39 age- and sex-matched uninjured CEA patients (76.0 +/- 16.5%). In unconditional multivariate logistic regression analysis, percent elevation in serum MCP-1 level was associated with neurocognitive injury one day after CEA (OR = 2.19, 95% CI = 1.13-4.26, P = 0.021, for a 100% elevation from pre-operative levels). CONCLUSIONS Peri-operative elevations in serum MCP-1 levels correlate with acute neurocognitive dysfunction following CEA. These data implicate an inflammatory mechanism in the pathogenesis of Ischaemic neurocognitive decline.
Collapse
|