51
|
Craddock M, Poliakoff E, El-Deredy W, Klepousniotou E, Lloyd DM. Pre-stimulus alpha oscillations over somatosensory cortex predict tactile misperceptions. Neuropsychologia 2016; 96:9-18. [PMID: 28041948 DOI: 10.1016/j.neuropsychologia.2016.12.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/15/2016] [Accepted: 12/28/2016] [Indexed: 01/08/2023]
Abstract
Fluctuations of pre-stimulus oscillatory activity in the somatosensory alpha band (8-14Hz) observed using human EEG and MEG have been shown to influence the detection of supra- and peri-threshold somatosensory stimuli. However, some reports of touch occur even without a stimulus. We investigated the possibility that pre-stimulus alpha oscillations might also influence these false reports of touch - known as tactile misperceptions. We recorded EEG while participants performed the Somatic Signal Detection Task (SSDT), in which participants must detect brief, peri-threshold somatosensory targets. We found that pre-stimulus oscillatory power in the somatosensory alpha range exhibited a negative linear relationship with reporting of touch at electrode clusters over both contralateral and ipsilateral somatosensory regions. As pre-stimulus alpha power increased, the probability of reporting a touch declined; as it decreased, the probability of reporting a touch increased. This relationship was stronger on trials without a somatosensory stimulus than on trials with a somatosensory stimulus, although was present for both trial types. Spatio-temporal cluster-based permutation analysis also found that pre-stimulus alpha was lower on trials when touch was reported - irrespective of whether it was present - over contralateral and ipsilateral somatosensory cortices, as well as left frontocentral areas. We argue that alpha power may reflect changes in response criterion rather than sensitivity alone. Low alpha power relates to a low barrier to reporting a touch even when one is not present, while high alpha power is linked to less frequent reporting of touch overall.
Collapse
Affiliation(s)
| | | | - Wael El-Deredy
- University of Manchester, Manchester, UK; University of Valparaiso, Valparaiso, Chile
| | | | | |
Collapse
|
52
|
Yin S, Liu Y, Ding M. Amplitude of Sensorimotor Mu Rhythm Is Correlated with BOLD from Multiple Brain Regions: A Simultaneous EEG-fMRI Study. Front Hum Neurosci 2016; 10:364. [PMID: 27499736 PMCID: PMC4957514 DOI: 10.3389/fnhum.2016.00364] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
The mu rhythm is a field oscillation in the ∼10Hz range over the sensorimotor cortex. For decades, the suppression of mu (event-related desynchronization) has been used to index movement planning, execution, and imagery. Recent work reports that non-motor processes, such as spatial attention and movement observation, also desynchronize mu, raising the possibility that the mu rhythm is associated with the activity of multiple brain regions and systems. In this study, we tested this hypothesis by recording simultaneous resting-state EEG-fMRI from healthy subjects. Independent component analysis (ICA) was applied to extract the mu components. The amplitude (power) fluctuations of mu were estimated as a time series using a moving-window approach, which, after convolving with a canonical hemodynamic response function (HRF), was correlated with blood-oxygen-level-dependent (BOLD) signals from the entire brain. Two main results were found. First, mu power was negatively correlated with BOLD from areas of the sensorimotor network, the attention control network, the putative mirror neuron system, and the network thought to support theory of mind. Second, mu power was positively correlated with BOLD from areas of the salience network, including anterior cingulate cortex and anterior insula. These results are consistent with the hypothesis that sensorimotor mu rhythm is associated with multiple brain regions and systems. They also suggest that caution should be exercised when attempting to interpret mu modulation in terms of a single brain network.
Collapse
Affiliation(s)
- Siyang Yin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL, USA
| | - Yuelu Liu
- Center for Mind and Brain, University of California, Davis, Davis CA, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL, USA
| |
Collapse
|
53
|
de Pesters A, Coon WG, Brunner P, Gunduz A, Ritaccio AL, Brunet NM, de Weerd P, Roberts MJ, Oostenveld R, Fries P, Schalk G. Alpha power indexes task-related networks on large and small scales: A multimodal ECoG study in humans and a non-human primate. Neuroimage 2016; 134:122-131. [PMID: 27057960 PMCID: PMC4912924 DOI: 10.1016/j.neuroimage.2016.03.074] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/28/2016] [Indexed: 12/19/2022] Open
Abstract
Performing different tasks, such as generating motor movements or processing sensory input, requires the recruitment of specific networks of neuronal populations. Previous studies suggested that power variations in the alpha band (8-12Hz) may implement such recruitment of task-specific populations by increasing cortical excitability in task-related areas while inhibiting population-level cortical activity in task-unrelated areas (Klimesch et al., 2007; Jensen and Mazaheri, 2010). However, the precise temporal and spatial relationships between the modulatory function implemented by alpha oscillations and population-level cortical activity remained undefined. Furthermore, while several studies suggested that alpha power indexes task-related populations across large and spatially separated cortical areas, it was largely unclear whether alpha power also differentially indexes smaller networks of task-related neuronal populations. Here we addressed these questions by investigating the temporal and spatial relationships of electrocorticographic (ECoG) power modulations in the alpha band and in the broadband gamma range (70-170Hz, indexing population-level activity) during auditory and motor tasks in five human subjects and one macaque monkey. In line with previous research, our results confirm that broadband gamma power accurately tracks task-related behavior and that alpha power decreases in task-related areas. More importantly, they demonstrate that alpha power suppression lags population-level activity in auditory areas during the auditory task, but precedes it in motor areas during the motor task. This suppression of alpha power in task-related areas was accompanied by an increase in areas not related to the task. In addition, we show for the first time that these differential modulations of alpha power could be observed not only across widely distributed systems (e.g., motor vs. auditory system), but also within the auditory system. Specifically, alpha power was suppressed in the locations within the auditory system that most robustly responded to particular sound stimuli. Altogether, our results provide experimental evidence for a mechanism that preferentially recruits task-related neuronal populations by increasing cortical excitability in task-related cortical areas and decreasing cortical excitability in task-unrelated areas. This mechanism is implemented by variations in alpha power and is common to humans and the non-human primate under study. These results contribute to an increasingly refined understanding of the mechanisms underlying the selection of the specific neuronal populations required for task execution.
Collapse
Affiliation(s)
- A de Pesters
- Nat Ctr for Adapt Neurotech, Wadsworth Center, NY State Dept of Health, Albany, NY, USA; Dept of Biomed Sci, State Univ of New York at Albany, Albany, NY, USA.
| | - W G Coon
- Nat Ctr for Adapt Neurotech, Wadsworth Center, NY State Dept of Health, Albany, NY, USA.
| | - P Brunner
- Nat Ctr for Adapt Neurotech, Wadsworth Center, NY State Dept of Health, Albany, NY, USA; Dept of Neurology, Albany Medical College, Albany, NY, USA.
| | - A Gunduz
- Dept of Biomed Eng, Univ of Florida, Gainesville, FL, USA.
| | - A L Ritaccio
- Dept of Neurology, Albany Medical College, Albany, NY, USA.
| | - N M Brunet
- SUNY Downstate Med Ctr, Brooklyn, NY, USA.
| | - P de Weerd
- Dept of Cogn Neurosci, Maastricht Univ, Maastricht, Netherlands; Donders Inst for Brain, Cognition and Behaviour, Nijmegen, Netherlands.
| | - M J Roberts
- Donders Inst for Brain, Cognition and Behaviour, Nijmegen, Netherlands.
| | - R Oostenveld
- Donders Inst for Brain, Cognition and Behaviour, Nijmegen, Netherlands.
| | - P Fries
- Donders Inst for Brain, Cognition and Behaviour, Nijmegen, Netherlands; Ernst Strüngmann Inst for Neurosci, Frankfurt, Germany.
| | - G Schalk
- Nat Ctr for Adapt Neurotech, Wadsworth Center, NY State Dept of Health, Albany, NY, USA; Dept of Biomed Sci, State Univ of New York at Albany, Albany, NY, USA; Dept of Neurology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
54
|
Kustermann T, Rockstroh B, Kienle J, Miller GA, Popov T. Deficient attention modulation of lateralized alpha power in schizophrenia. Psychophysiology 2016; 53:776-85. [DOI: 10.1111/psyp.12626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/15/2016] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Johanna Kienle
- Department of Psychology; University of Konstanz; Konstanz Germany
| | - Gregory A. Miller
- Department of Psychology and Department of Psychiatry and Biobehavioral Sciences; University of California Los Angeles; Los Angeles California USA
| | - Tzvetan Popov
- Department of Psychology; University of Konstanz; Konstanz Germany
- Donders Institute for Brain, Cognition and Behavior, Center for Cognitive Neuroimaging; Radboud University; Nijmegen The Netherlands
| |
Collapse
|
55
|
Abstract
Cortical oscillations, such as 8-12 Hz alpha-band activity, are thought to subserve gating of information processing in the human brain. While most of the supporting evidence is correlational, causal evidence comes from attempts to externally drive ("entrain") these oscillations by transcranial magnetic stimulation (TMS). Indeed, the frequency profile of TMS-evoked potentials (TEPs) closely resembles that of oscillations spontaneously emerging in the same brain region. However, it is unclear whether TMS-locked and spontaneous oscillations are produced by the same neuronal mechanisms. If so, they should react in a similar manner to top-down modulation by endogenous attention. To test this prediction, we assessed the alpha-like EEG response to TMS of the visual cortex during periods of high and low visual attention while participants attended to either the visual or auditory modality in a cross-modal attention task. We observed a TMS-locked local oscillatory alpha response lasting several cycles after TMS (but not after sham stimulation). Importantly, TMS-locked alpha power was suppressed during deployment of visual relative to auditory attention, mirroring spontaneous alpha amplitudes. In addition, the early N40 TEP component, located at the stimulation site, was amplified by visual attention. The extent of attentional modulation for both TMS-locked alpha power and N40 amplitude did depend, with opposite sign, on the individual ability to modulate spontaneous alpha power at the stimulation site. We therefore argue that TMS-locked and spontaneous oscillations are of common neurophysiological origin, whereas the N40 TEP component may serve as an index of current cortical excitability at the time of stimulation.
Collapse
|
56
|
Wang C, Rajagovindan R, Han SM, Ding M. Top-Down Control of Visual Alpha Oscillations: Sources of Control Signals and Their Mechanisms of Action. Front Hum Neurosci 2016; 10:15. [PMID: 26834601 PMCID: PMC4718979 DOI: 10.3389/fnhum.2016.00015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
Alpha oscillations (8-12 Hz) are thought to inversely correlate with cortical excitability. Goal-oriented modulation of alpha has been studied extensively. In visual spatial attention, alpha over the region of visual cortex corresponding to the attended location decreases, signifying increased excitability to facilitate the processing of impending stimuli. In contrast, in retention of verbal working memory, alpha over visual cortex increases, signifying decreased excitability to gate out stimulus input to protect the information held online from sensory interference. According to the prevailing model, this goal-oriented biasing of sensory cortex is effected by top-down control signals from frontal and parietal cortices. The present study tests and substantiates this hypothesis by (a) identifying the signals that mediate the top-down biasing influence, (b) examining whether the cortical areas issuing these signals are task-specific or task-independent, and (c) establishing the possible mechanism of the biasing action. High-density human EEG data were recorded in two experimental paradigms: a trial-by-trial cued visual spatial attention task and a modified Sternberg working memory task. Applying Granger causality to both sensor-level and source-level data we report the following findings. In covert visual spatial attention, the regions exerting top-down control over visual activity are lateralized to the right hemisphere, with the dipoles located at the right frontal eye field (FEF) and the right inferior frontal gyrus (IFG) being the main sources of top-down influences. During retention of verbal working memory, the regions exerting top-down control over visual activity are lateralized to the left hemisphere, with the dipoles located at the left middle frontal gyrus (MFG) being the main source of top-down influences. In both experiments, top-down influences are mediated by alpha oscillations, and the biasing effect is likely achieved via an inhibition-disinhibition mechanism.
Collapse
Affiliation(s)
- Chao Wang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Rajasimhan Rajagovindan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Sahng-Min Han
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| |
Collapse
|
57
|
Facilitation and inhibition in attention: Functional dissociation of pre-stimulus alpha activity, P1, and N1 components. Neuroimage 2016; 125:25-35. [DOI: 10.1016/j.neuroimage.2015.09.058] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/19/2015] [Accepted: 09/26/2015] [Indexed: 11/22/2022] Open
|
58
|
Petro NM, Keil A. Pre-target oscillatory brain activity and the attentional blink. Exp Brain Res 2015; 233:3583-95. [PMID: 26341931 PMCID: PMC4651748 DOI: 10.1007/s00221-015-4418-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
Reporting the second of two targets within a stream of distracting words during rapid serial visual presentation (RSVP) is impaired when the targets are separated by a single distractor word, a deficit in temporal attention that has been referred to as the attentional blink (AB). Recent conceptual and empirical work has pointed to pre-target brain states as potential mediators of the AB effect. The current study examined differences in pre-target electrophysiology between correctly and incorrectly reported trials, considering amplitude and phase measures of alpha oscillations as well as the steady-state visual evoked potential (ssVEP) evoked by the RSVP stream. For incorrectly reported trials, relatively lower alpha-band power and greater ssVEP inter-trial phase locking were observed during extended time periods preceding presentation of the first target. These results suggest that facilitated processing of the pre-target distracter stream indexed by reduced alpha and heightened phase locking characterizes a dynamic brain state that predicts lower accuracy in terms of reporting the second target under strict temporal constraints. Findings align with hypotheses in which the AB effect is attributed to neurocognitive factors such as fluctuations in pre-target attention or to cognitive strategies applied at the trial level.
Collapse
Affiliation(s)
- Nathan M Petro
- Center for the Study of Emotion and Attention, University of Florida, PO Box 112766, Gainesville, FL, 32611, USA.
- Department of Psychology, University of Florida, PO Box 112766, Gainesville, FL, 32611, USA.
| | - Andreas Keil
- Center for the Study of Emotion and Attention, University of Florida, PO Box 112766, Gainesville, FL, 32611, USA
- Department of Psychology, University of Florida, PO Box 112766, Gainesville, FL, 32611, USA
| |
Collapse
|
59
|
McGinley MJ, David SV, McCormick DA. Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection. Neuron 2015; 87:179-92. [PMID: 26074005 DOI: 10.1016/j.neuron.2015.05.038] [Citation(s) in RCA: 488] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 11/29/2022]
Abstract
The neural correlates of optimal states for signal detection task performance are largely unknown. One hypothesis holds that optimal states exhibit tonically depolarized cortical neurons with enhanced spiking activity, such as occur during movement. We recorded membrane potentials of auditory cortical neurons in mice trained on a challenging tone-in-noise detection task while assessing arousal with simultaneous pupillometry and hippocampal recordings. Arousal measures accurately predicted multiple modes of membrane potential activity, including rhythmic slow oscillations at low arousal, stable hyperpolarization at intermediate arousal, and depolarization during phasic or tonic periods of hyper-arousal. Walking always occurred during hyper-arousal. Optimal signal detection behavior and sound-evoked responses, at both sub-threshold and spiking levels, occurred at intermediate arousal when pre-decision membrane potentials were stably hyperpolarized. These results reveal a cortical physiological signature of the classically observed inverted-U relationship between task performance and arousal and that optimal detection exhibits enhanced sensory-evoked responses and reduced background synaptic activity.
Collapse
Affiliation(s)
- Matthew J McGinley
- Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - Stephen V David
- Oregon Health & Science University, MS: L335A, 3181 SW Sam Jackson Park Rd, OHRC, Portland, OR 97239, USA
| | - David A McCormick
- Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
60
|
Bartsch F, Hamuni G, Miskovic V, Lang PJ, Keil A. Oscillatory brain activity in the alpha range is modulated by the content of word-prompted mental imagery. Psychophysiology 2015; 52:727-35. [PMID: 25616004 PMCID: PMC4437868 DOI: 10.1111/psyp.12405] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/17/2014] [Indexed: 11/28/2022]
Abstract
Mental imagery is a fundamental cognitive process of interest to basic scientists and clinical researchers. This study examined large-scale oscillatory brain activity in the alpha band (8-12 Hz) during language-driven mental imagery using dense-array EEG. Three experiments demonstrated relative increases in alpha amplitude: (1) during imagery prompted by words compared to fixation without imagery instruction, (2) during imagery of word content compared to imagery of geometric shapes, and (3) during imagery of emotionally evocative words compared to imagery of less emotionally arousing content. Alpha increases for semantically loaded imagery were observed in parieto-occipital regions, sustained throughout the imagery period. Findings imply that alpha oscillations index active memory and internal cognitive processing, reflecting neural communication in cortical networks representing motor, semantic, and perceptual aspects of the imagined scene.
Collapse
|
61
|
Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR, Sajda P. Prestimulus EEG alpha oscillations modulate task-related fMRI BOLD responses to auditory stimuli. Neuroimage 2015; 113:153-63. [PMID: 25797833 DOI: 10.1016/j.neuroimage.2015.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/17/2015] [Accepted: 03/12/2015] [Indexed: 11/30/2022] Open
Abstract
EEG alpha-band activity is generally thought to represent an inhibitory state related to decreased attention and play a role in suppression of task-irrelevant stimulus processing, but a competing hypothesis suggests an active role in processing task-relevant information - one in which phase dynamics are involved. Here we used simultaneous EEG-fMRI and a whole-brain analysis to investigate the effects of prestimulus alpha activity on the event-related BOLD response during an auditory oddball task. We separately investigated the effects of the posterior alpha rhythm's power and phase on activity related to task-relevant stimulus processing and also investigated higher-level decision-related processing. We found stronger decision-related BOLD activity in areas late in the processing stream when subjects were in the high alpha power state prior to stimulus onset, but did not detect any effect in primary sensory regions. Our phase analysis revealed correlates in the bilateral thalamus, providing support for a thalamo-cortical loop in attentional modulations and suggesting that the cortical alpha rhythm acts as a cyclic modulator of task-related responses very early in the processing stream. Our results help to reconcile the competing inhibition and active-processing hypotheses for ongoing alpha oscillations and begin to tease apart the distinct roles and mechanisms underlying their power and phase.
Collapse
Affiliation(s)
- Jennifer M Walz
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Robin I Goldman
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael Carapezza
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jordan Muraskin
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Truman R Brown
- Medical University of South Carolina, Charleston, SC 29425, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
62
|
Fröhlich F, Sellers KK, Cordle AL. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation. Expert Rev Neurother 2014; 15:145-67. [PMID: 25547149 DOI: 10.1586/14737175.2015.992782] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cognitive impairment represents one of the most debilitating and most difficult symptom to treat of many psychiatric illnesses. Human neurophysiology studies have suggested that specific pathologies of cortical network activity correlate with cognitive impairment. However, we lack demonstration of causal relationships between specific network activity patterns and cognitive capabilities and treatment modalities that directly target impaired network dynamics of cognition. Transcranial alternating current stimulation (tACS), a novel non-invasive brain stimulation approach, may provide a crucial tool to tackle these challenges. Here, we propose that tACS can be used to elucidate the causal role of cortical synchronization in cognition and, eventually, to enhance pathologically weakened synchrony that may underlie cognitive deficits. To accelerate such development of tACS as a treatment for cognitive deficits, we discuss studies on tACS and cognition performed in healthy participants, according to the Research Domain Criteria of the National Institute of Mental Health.
Collapse
Affiliation(s)
- Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599, USA
| | | | | |
Collapse
|
63
|
Normal aging selectively diminishes alpha lateralization in visual spatial attention. Neuroimage 2014; 106:353-63. [PMID: 25463457 DOI: 10.1016/j.neuroimage.2014.11.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/29/2014] [Accepted: 11/09/2014] [Indexed: 11/24/2022] Open
Abstract
EEG studies of cue-induced visual alpha power (8-13 Hz) lateralization have been conducted on young adults without examining differences that may develop as a consequence of normal aging. Here, we examined age-related differences in spatial attention by comparing healthy older and younger adults. Our key finding is that cue-induced alpha power lateralization was observed in younger, but not older adults, even though both groups exhibited classic event-related potential signatures of spatial orienting. Specifically, both younger and older adults showed significant early directing-attention negativity (EDAN), anterior directing-attention negativity (ADAN), late directing-attention positivity (LDAP) and contingent negative variation (CNV). Furthermore, target-evoked sensory components were enhanced for attended relative to unattended targets in both younger and older groups. This pattern of results suggests that although older adults can successfully allocate spatial attention, they do so without the lateralization of alpha power that is commonly observed in younger adults. Taken together, our findings demonstrate that younger and older adults might engage different neural mechanisms for attentional orienting, and that alpha power lateralization during visual spatial attention is a phenomenon that diminishes during normal aging.
Collapse
|
64
|
Emadi N, Rajimehr R, Esteky H. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization. Front Syst Neurosci 2014; 8:218. [PMID: 25404900 PMCID: PMC4217374 DOI: 10.3389/fnsys.2014.00218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/14/2014] [Indexed: 11/13/2022] Open
Abstract
Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (<8 Hz) oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.
Collapse
Affiliation(s)
- Nazli Emadi
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM) Tehran, Iran ; Research Center for Brain and Cognition, School of Medicine, University of Shahid Beheshti Tehran, Iran ; Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine Stanford, CA, USA
| | - Reza Rajimehr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Hossein Esteky
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM) Tehran, Iran ; Research Center for Brain and Cognition, School of Medicine, University of Shahid Beheshti Tehran, Iran
| |
Collapse
|
65
|
Myers NE, Walther L, Wallis G, Stokes MG, Nobre AC. Temporal dynamics of attention during encoding versus maintenance of working memory: complementary views from event-related potentials and alpha-band oscillations. J Cogn Neurosci 2014; 27:492-508. [PMID: 25244118 DOI: 10.1162/jocn_a_00727] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Working memory (WM) is strongly influenced by attention. In visual WM tasks, recall performance can be improved by an attention-guiding cue presented before encoding (precue) or during maintenance (retrocue). Although precues and retrocues recruit a similar frontoparietal control network, the two are likely to exhibit some processing differences, because precues invite anticipation of upcoming information whereas retrocues may guide prioritization, protection, and selection of information already in mind. Here we explored the behavioral and electrophysiological differences between precueing and retrocueing in a new visual WM task designed to permit a direct comparison between cueing conditions. We found marked differences in ERP profiles between the precue and retrocue conditions. In line with precues primarily generating an anticipatory shift of attention toward the location of an upcoming item, we found a robust lateralization in late cue-evoked potentials associated with target anticipation. Retrocues elicited a different pattern of ERPs that was compatible with an early selection mechanism, but not with stimulus anticipation. In contrast to the distinct ERP patterns, alpha-band (8-14 Hz) lateralization was indistinguishable between cue types (reflecting, in both conditions, the location of the cued item). We speculate that, whereas alpha-band lateralization after a precue is likely to enable anticipatory attention, lateralization after a retrocue may instead enable the controlled spatiotopic access to recently encoded visual information.
Collapse
|
66
|
Liu Y, Bengson J, Huang H, Mangun GR, Ding M. Top-down Modulation of Neural Activity in Anticipatory Visual Attention: Control Mechanisms Revealed by Simultaneous EEG-fMRI. Cereb Cortex 2014; 26:517-29. [PMID: 25205663 DOI: 10.1093/cercor/bhu204] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In covert visual attention, frontoparietal attention control areas are thought to issue signals to selectively bias sensory neurons to facilitate behaviorally relevant information and suppress distraction. We investigated the relationship between activity in attention control areas and attention-related modulation of posterior alpha activity using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging in humans during cued visual-spatial attention. Correlating single-trial EEG alpha power with blood-oxygen-level dependent (BOLD) activity, we found that BOLD in the intraparietal sulcus (IPS) and left middle frontal gyrus was inversely correlated with occipital alpha power. Importantly, in IPS, inverse correlations were stronger for alpha within the hemisphere contralateral to the attended hemifield, implicating the IPS in the enhancement of task-relevant sensory areas. Positive BOLD-alpha correlations were observed in sensorimotor cortices and the default mode network, suggesting a mechanism of active suppression over task-irrelevant areas. The magnitude of cue-induced alpha lateralization was positively correlated with BOLD in dorsal anterior cingulate cortex and dorsolateral prefrontal cortex, implicating a role of executive control in attention. These results show that IPS and frontal executive areas are the main sources of biasing influences on task-relevant visual cortex, whereas task-irrelevant default mode network and sensorimotor cortex are inhibited during visual attention.
Collapse
Affiliation(s)
- Yuelu Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
| | - Jesse Bengson
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
| | - Haiqing Huang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - George R Mangun
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA Departments of Psychology and Neurology, University of California, Davis, Davis, CA 95616, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
67
|
Hsu TY, Tseng P, Liang WK, Cheng SK, Juan CH. Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. Neuroimage 2014; 98:306-13. [DOI: 10.1016/j.neuroimage.2014.04.069] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022] Open
|
68
|
Dumas G, Soussignan R, Hugueville L, Martinerie J, Nadel J. Revisiting mu suppression in autism spectrum disorder. Brain Res 2014; 1585:108-19. [PMID: 25148709 DOI: 10.1016/j.brainres.2014.08.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 11/25/2022]
Abstract
Two aspects of the EEG literature lead us to revisit mu suppression in Autism Spectrum Disorder (ASD). First and despite the fact that the mu rhythm can be functionally segregated in two discrete sub-bands, 8-10 Hz and 10-12/13 Hz, mu-suppression in ASD has been analyzed as a homogeneous phenomenon covering the 8-13 Hz frequency. Second and although alpha-like activity is usually found across the entire scalp, ASD studies of action observation have focused on the central electrodes (C3/C4). The present study was aimed at testing on the whole brain the hypothesis of a functional dissociation of mu and alpha responses to the observation of human actions in ASD according to bandwidths. Electroencephalographic (EEG) mu and alpha responses to execution and observation of hand gestures were recorded on the whole scalp in high functioning subjects with ASD and typical subjects. When two bandwidths of the alpha-mu 8-13 Hz were distinguished, a different mu response to observation appeared for subjects with ASD in the upper sub-band over the sensorimotor cortex, whilst the lower sub-band responded similarly in the two groups. Source reconstructions demonstrated that this effect was related to a joint mu-suppression deficit over the occipito-parietal regions and an increase over the frontal regions. These findings suggest peculiarities in top-down response modulation in ASD and question the claim of a global dysfunction of the MNS in autism. This research also advocates for the use of finer grained analyses at both spatial and spectral levels for future directions in neurophysiological accounts of autism.
Collapse
Affiliation(s)
- Guillaume Dumas
- CNRS, UMR-7225, Paris, France; INSERM, U1227 Paris, France; Institut du Cerveau et de la Moelle Epinière, Paris, France; Univ. Sorbonne UPMC, UMR S1127, Paris, France; INRIA Paris-Rocquencourt, ARAMIS team, Paris, France.
| | - Robert Soussignan
- Centre des Sciences du Goût et de l׳Alimentation, CNRS, UMR 6265, Université de Bourgogne-Inra, Dijon, France
| | - Laurent Hugueville
- CNRS, UMR-7225, Paris, France; INSERM, U1227 Paris, France; Institut du Cerveau et de la Moelle Epinière, Paris, France; Univ. Sorbonne UPMC, UMR S1127, Paris, France; INRIA Paris-Rocquencourt, ARAMIS team, Paris, France
| | - Jacques Martinerie
- CNRS, UMR-7225, Paris, France; INSERM, U1227 Paris, France; Institut du Cerveau et de la Moelle Epinière, Paris, France; Univ. Sorbonne UPMC, UMR S1127, Paris, France
| | - Jacqueline Nadel
- CNRS, UMR-7225, Paris, France; Institut du Cerveau et de la Moelle Epinière, Paris, France; Univ. Sorbonne UPMC, UMR S1127, Paris, France.
| |
Collapse
|
69
|
Janson J, De Vos M, Thorne JD, Kranczioch C. Endogenous and Rapid Serial Visual Presentation-induced Alpha Band Oscillations in the Attentional Blink. J Cogn Neurosci 2014; 26:1454-68. [DOI: 10.1162/jocn_a_00551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The attentional blink (AB) is a deficit in conscious perception of the second of two targets if it follows the first within 200–500 msec. The AB phenomenon has been linked to pre-target oscillatory alpha activity. However, this is based on paradigms that use a rapid serial visual presentation (RSVP) stimulus stream in which the targets are embedded. This distracter stream is usually presented at a frequency of 10 Hz and thus generates a steady-state visual-evoked potential (ssVEP) at the center of the alpha frequency band. This makes the interpretation of alpha findings in the AB difficult. To be able to relate these findings either to the presence of the ssVEP or to an effect of endogenously generated alpha activity, we compared AB paradigms with and without different pre-target distracter streams. The distracter stream was always presented at 12 Hz, and power and intertrial phase coherence were analyzed in the alpha range (8–12 Hz). Without a distracter stream alpha power dropped before target presentation, whereas coherence did not change. Presence of a distracter stream was linked to stronger pre-target power reduction and increased coherence, which were both modulated by distracter stream characteristics. With regard to the AB results indicated that, whereas ssVEP-related power tended to be higher when both targets were detected, endogenous alpha power tended to be lower. We argue that the pattern of results indicates that in the pre-target interval several processes act in parallel. The balance between these processes relates to the occurrence of an AB.
Collapse
Affiliation(s)
| | - Maarten De Vos
- 1Carl von Ossietzky University, Oldenburg, Germany
- 2University of Oldenburg
| | | | | |
Collapse
|
70
|
Myers NE, Stokes MG, Walther L, Nobre AC. Oscillatory brain state predicts variability in working memory. J Neurosci 2014; 34:7735-43. [PMID: 24899697 PMCID: PMC4044240 DOI: 10.1523/jneurosci.4741-13.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 11/21/2022] Open
Abstract
Our capacity to remember and manipulate objects in working memory (WM) is severely limited. However, this capacity limitation is unlikely to be fixed because behavioral models indicate variability from trial to trial. We investigated whether fluctuations in neural excitability at stimulus encoding, as indexed by low-frequency oscillations (in the alpha band, 8-14 Hz), contribute to this variability. Specifically, we hypothesized that the spontaneous state of alpha band activity would correlate with trial-by-trial fluctuations in visual WM. Electroencephalography recorded from human observers during a visual WM task revealed that the prestimulus desynchronization of alpha oscillations predicts the accuracy of memory recall on a trial-by-trial basis. A model-based analysis indicated that this effect arises from a modulation in the precision of memorized items, but not the likelihood of remembering them (the recall rate). The phase of posterior alpha oscillations preceding the memorized item also predicted memory accuracy. Based on correlations between prestimulus alpha levels and stimulus-related visual evoked responses, we speculate that the prestimulus state of the visual system prefigures a cascade of state-dependent processes, ultimately affecting WM-guided behavior. Overall, our results indicate that spontaneous changes in cortical excitability can have profound consequences for higher visual cognition.
Collapse
Affiliation(s)
- Nicholas E Myers
- Department of Experimental Psychology and, Oxford Centre for Human Brain Activity, University of Oxford, Oxford OX1 3UD, United Kingdom
| | - Mark G Stokes
- Department of Experimental Psychology and, Oxford Centre for Human Brain Activity, University of Oxford, Oxford OX1 3UD, United Kingdom
| | - Lena Walther
- Department of Experimental Psychology and, Oxford Centre for Human Brain Activity, University of Oxford, Oxford OX1 3UD, United Kingdom
| | - Anna C Nobre
- Department of Experimental Psychology and, Oxford Centre for Human Brain Activity, University of Oxford, Oxford OX1 3UD, United Kingdom
| |
Collapse
|
71
|
Chaumon M, Busch NA. Prestimulus neural oscillations inhibit visual perception via modulation of response gain. J Cogn Neurosci 2014; 26:2514-29. [PMID: 24742156 DOI: 10.1162/jocn_a_00653] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The ongoing state of the brain radically affects how it processes sensory information. How does this ongoing brain activity interact with the processing of external stimuli? Spontaneous oscillations in the alpha range are thought to inhibit sensory processing, but little is known about the psychophysical mechanisms of this inhibition. We recorded ongoing brain activity with EEG while human observers performed a visual detection task with stimuli of different contrast intensities. To move beyond qualitative description, we formally compared psychometric functions obtained under different levels of ongoing alpha power and evaluated the inhibitory effect of ongoing alpha oscillations in terms of contrast or response gain models. This procedure opens the way to understanding the actual functional mechanisms by which ongoing brain activity affects visual performance. We found that strong prestimulus occipital alpha oscillations-but not more anterior mu oscillations-reduce performance most strongly for stimuli of the highest intensities tested. This inhibitory effect is best explained by a divisive reduction of response gain. Ongoing occipital alpha oscillations thus reflect changes in the visual system's input/output transformation that are independent of the sensory input to the system. They selectively scale the system's response, rather than change its sensitivity to sensory information.
Collapse
|
72
|
Ai L, Ro T. The phase of prestimulus alpha oscillations affects tactile perception. J Neurophysiol 2014; 111:1300-7. [DOI: 10.1152/jn.00125.2013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that neural oscillations in the 8- to 12-Hz range influence sensory perception. In the current study, we examined whether both the power and phase of these mu/alpha oscillations predict successful conscious tactile perception. Near-threshold tactile stimuli were applied to the left hand while electroencephalographic (EEG) activity was recorded over the contralateral right somatosensory cortex. We found a significant inverted U-shaped relationship between prestimulus mu/alpha power and detection rate, suggesting that there is an intermediate level of alpha power that is optimal for tactile perception. We also found a significant difference in phase angle concentration at stimulus onset that predicted whether the upcoming tactile stimulus was perceived or missed. As has been shown in the visual system, these findings suggest that these mu/alpha oscillations measured over somatosensory areas exert a strong inhibitory control on tactile perception and that pulsed inhibition by these oscillations shapes the state of brain activity necessary for conscious perception. They further suggest that these common phasic processing mechanisms across different sensory modalities and brain regions may reflect a common underlying encoding principle in perceptual processing that leads to momentary windows of perceptual awareness.
Collapse
Affiliation(s)
- Lei Ai
- Program in Behavioral and Cognitive Neuroscience, The Graduate Center of the City University of New York, New York, New York; and
- Department of Psychology, The City College of the City University of New York, New York, New York
| | - Tony Ro
- Program in Behavioral and Cognitive Neuroscience, The Graduate Center of the City University of New York, New York, New York; and
- Department of Psychology, The City College of the City University of New York, New York, New York
| |
Collapse
|
73
|
Roberts DM, Fedota JR, Buzzell GA, Parasuraman R, McDonald CG. Prestimulus oscillations in the alpha band of the EEG are modulated by the difficulty of feature discrimination and predict activation of a sensory discrimination process. J Cogn Neurosci 2014; 26:1615-28. [PMID: 24405187 DOI: 10.1162/jocn_a_00569] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recent work has demonstrated that the occipital-temporal N1 component of the ERP is sensitive to the difficulty of visual discrimination, in a manner that cannot be explained by simple differences in low-level visual features, arousal, or time on task. These observations provide evidence that the occipital-temporal N1 component is modulated by the application of top-down control. However, the timing of this control process remains unclear. Previous work has demonstrated proactive, top-down modulation of cortical excitability for cued spatial attention or feature selection tasks. Here, the possibility that a similar top-down process facilitates performance of a difficult stimulus discrimination task is explored. Participants performed an oddball task at two levels of discrimination difficulty, with difficulty manipulated by modulating the similarity between target and nontarget stimuli. Discrimination processes and cortical excitability were assessed via the amplitude of the occipital-temporal N1 component and prestimulus alpha oscillation of the EEG, respectively. For correct discriminations, prestimulus alpha power was reduced, and the occipital-temporal N1 was enhanced in the hard relative to the easy condition. Furthermore, within the hard condition, prestimulus alpha power was reduced, and the occipital-temporal N1 was enhanced for correct relative to incorrect discriminations. The generation of ERPs contingent on relative prestimulus alpha power additionally suggests that diminished alpha power preceding stimulus onset is related to enhancement of the occipital-temporal N1. As in spatial attention, proactive control appears to enhance cortical excitability and facilitate discrimination performance in tasks requiring nonspatial, feature-based attention, even in the absence of competing stimulus features.
Collapse
|
74
|
Kim SC, Lee MH, Jang C, Kwon JW, Park JW. The effect of alpha rhythm sleep on EEG activity and individuals' attention. J Phys Ther Sci 2014; 25:1515-8. [PMID: 24409009 PMCID: PMC3885828 DOI: 10.1589/jpts.25.1515] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/25/2012] [Indexed: 11/24/2022] Open
Abstract
[Purpose] This study examined whether the alpha rhythm sleep alters the EEG activity and
response time in the attention and concentration tasks. [Subjects and Methods] The
participants were 30 healthy university students, who were randomly and equally divided
into two groups, the experimental and control groups. They were treated using the
Happy-sleep device or a sham device, respectively. All participants had a one-week
training period. Before and after training sessions, a behavioral task test was performed
and EEG alpha waves were measured to confirm the effectiveness of training on cognitive
function. [Results] In terms of the behavioral task test, reaction time (RT) variations in
the experimental group were significantly larger than in the control group for the
attention item. Changes in the EEG alpha power in the experimental group were also
significantly larger than those of the control group. [Conclusions] These findings suggest
that sleep induced using the Happy-sleep device modestly enhances the ability to pay
attention and focus during academic learning.
Collapse
Affiliation(s)
- Seon Chill Kim
- Department of Physical Therapy, Daegu Health College, Republic of Korea
| | - Myoung Hee Lee
- Department of Physical Therapy, College of Science, Kyungsung University, Republic of Korea
| | - Chel Jang
- Department of Occupational Therapy, Kyungnam College of Information and Technology, Republic of Korea
| | - Jung Won Kwon
- Department of Rehabilitation Science, Graduate School, Daegu University, Republic of Korea
| | - Joo Wan Park
- Department of Rehabilitation Science, Graduate School, Daegu University, Republic of Korea
| |
Collapse
|
75
|
Average is optimal: an inverted-U relationship between trial-to-trial brain activity and behavioral performance. PLoS Comput Biol 2013; 9:e1003348. [PMID: 24244146 PMCID: PMC3820514 DOI: 10.1371/journal.pcbi.1003348] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/04/2013] [Indexed: 01/26/2023] Open
Abstract
It is well known that even under identical task conditions, there is a tremendous amount of trial-to-trial variability in both brain activity and behavioral output. Thus far the vast majority of event-related potential (ERP) studies investigating the relationship between trial-to-trial fluctuations in brain activity and behavioral performance have only tested a monotonic relationship between them. However, it was recently found that across-trial variability can correlate with behavioral performance independent of trial-averaged activity. This finding predicts a U- or inverted-U- shaped relationship between trial-to-trial brain activity and behavioral output, depending on whether larger brain variability is associated with better or worse behavior, respectively. Using a visual stimulus detection task, we provide evidence from human electrocorticography (ECoG) for an inverted-U brain-behavior relationship: When the raw fluctuation in broadband ECoG activity is closer to the across-trial mean, hit rate is higher and reaction times faster. Importantly, we show that this relationship is present not only in the post-stimulus task-evoked brain activity, but also in the pre-stimulus spontaneous brain activity, suggesting anticipatory brain dynamics. Our findings are consistent with the presence of stochastic noise in the brain. They further support attractor network theories, which postulate that the brain settles into a more confined state space under task performance, and proximity to the targeted trajectory is associated with better performance. The human brain is notoriously “noisy”. Even with identical physical sensory inputs and task demands, brain responses and behavioral output vary tremendously from trial to trial. Such brain and behavioral variability and the relationship between them have been the focus of intense neuroscience research for decades. Traditionally, it is thought that the relationship between trial-to-trial brain activity and behavioral performance is monotonic: the highest or lowest brain activity levels are associated with the best behavioral performance. Using invasive recordings in neurosurgical patients, we demonstrate an inverted-U relationship between brain and behavioral variability. Under such a relationship, moderate brain activity is associated with the best performance, while both very low and very high brain activity levels are predictive of compromised performance. These results have significant implications for our understanding of brain functioning. They further support recent theoretical frameworks that view the brain as an active nonlinear dynamical system instead of a passive signal-processing device.
Collapse
|
76
|
Lou B, Li Y, Philiastides MG, Sajda P. Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making. Neuroimage 2013; 87:242-51. [PMID: 24185020 DOI: 10.1016/j.neuroimage.2013.10.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/08/2013] [Accepted: 10/18/2013] [Indexed: 11/26/2022] Open
Abstract
Pre-stimulus α power has been shown to correlate with the behavioral accuracy of perceptual decisions. In most cases, these correlations have been observed by comparing α power for different behavioral outcomes (e.g. correct vs incorrect trials). In this paper we investigate such covariation within the context of behaviorally-latent fluctuations in task-relevant post-stimulus neural activity. Specially we consider variations of pre-stimulus α power with post-stimulus EEG components in a two alternative forced choice visual discrimination task. EEG components, discriminative of stimulus class, are identified using a linear multivariate classifier and only the variability of the components for correct trials (regardless of stimulus class, and for nominally identical stimuli) are correlated with the corresponding pre-stimulus α power. We find a significant relationship between the mean and variance of the pre-stimulus α power and the variation of the trial-to-trial magnitude of an early post-stimulus EEG component. This relationship is not seen for a later EEG component that is also discriminative of stimulus class and which has been previously linked to the quality of evidence driving the decision process. Our results suggest that early perceptual representations, rather than temporally later neural correlates of the perceptual decision, are modulated by pre-stimulus state.
Collapse
Affiliation(s)
- Bin Lou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yun Li
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | | | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
77
|
Payne L, Guillory S, Sekuler R. Attention-modulated alpha-band oscillations protect against intrusion of irrelevant information. J Cogn Neurosci 2013; 25:1463-76. [PMID: 23530921 PMCID: PMC3987899 DOI: 10.1162/jocn_a_00395] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Combining high-density scalp EEG recordings with a sensitive analog measure of STM's fidelity, we characterized the temporal dynamics of intentional ignoring and related those dynamics to the intrusion of task-irrelevant information. On each trial of the task, two study Gabors were briefly presented in succession. A green or red disc preceding each Gabor signified whether that Gabor should be remembered or ignored, respectively. With cue-stimulus intervals of 300, 600, or 900 msec presented in separate sessions, we found that the onset of posterior, prestimulus alpha oscillations varied with the length of the interval. Although stimulus onset time was entirely predictable, the longer the cue-stimulus interval, the earlier the increase in prestimulus alpha power. However, the alpha-band modulation was not simply locked to the cue offset. The temporal envelopes of posterior alpha-band modulation were strikingly similar for both cued attending and cued ignoring and differed only in magnitude. This similarity suggests that cued attending includes suppression of task-irrelevant, spatial processing. Supporting the view that alpha-band oscillations represent inhibition, our graded measure of recall revealed that, when the stimulus to be ignored appears second in the sequence, peristimulus alpha power predicted the degree to which that irrelevant stimulus distorted subsequent recall of the stimulus that was to be remembered. These results demonstrate that timely deployment of attention-related alpha-band oscillations can aid STM by filtering out task-irrelevant information.
Collapse
Affiliation(s)
- Lisa Payne
- Department of Psychology, Brandeis University, Room MS013, 415 South St., Waltham, MA 02453, USA.
| | | | | |
Collapse
|
78
|
Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci 2013; 33:10544-51. [PMID: 23785166 DOI: 10.1523/jneurosci.3007-12.2013] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.
Collapse
|
79
|
Crespo-Garcia M, Pinal D, Cantero JL, Díaz F, Zurrón M, Atienza M. Working Memory Processes Are Mediated by Local and Long-range Synchronization of Alpha Oscillations. J Cogn Neurosci 2013; 25:1343-57. [DOI: 10.1162/jocn_a_00379] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Different cortical dynamics of alpha oscillations (8–13 Hz) have been associated with increased working memory load, which have been mostly interpreted as a neural correlate of functional inhibition. This study aims at determining whether different manifestations of load-dependent amplitude and phase dynamics in the alpha band can coexist over different cortical regions. To address this question, we increased information load by manipulating the number and spatial configuration of domino spots. Time–frequency analysis of EEG source activity revealed (i) load-independent increases of both alpha power and interregional alpha-phase synchrony within task-irrelevant, posterior cortical regions and (ii) load-dependent decreases of alpha power over areas of the left pFC and bilateral posterior parietal cortex (PPC) preceded in time by load-dependent decreases of alpha-phase synchrony between the left pFC and the left PPC. The former results support the role of alpha oscillations in inhibiting irrelevant sensorimotor processing, whereas the latter likely reflect release of parietal task-relevant areas from top–down inhibition with load increase. This interpretation found further support in a significant latency shift of 15 msec from pFC to the PPC. Together, these results suggest that amplitude and phase alpha dynamics in both local and long-range cortical networks reflect different neural mechanisms of top–down control that might be crucial in mediating the different working memory processes.
Collapse
Affiliation(s)
| | - Diego Pinal
- 1University Pablo de Olavide, Seville, Spain
- 2University of Santiago de Compostela, Galicia, Spain
| | | | - Fernando Díaz
- 2University of Santiago de Compostela, Galicia, Spain
| | | | | |
Collapse
|
80
|
Lundqvist M, Herman P, Lansner A. Effect of prestimulus alpha power, phase, and synchronization on stimulus detection rates in a biophysical attractor network model. J Neurosci 2013; 33:11817-24. [PMID: 23864671 PMCID: PMC3722510 DOI: 10.1523/jneurosci.5155-12.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/22/2013] [Accepted: 05/19/2013] [Indexed: 11/21/2022] Open
Abstract
Spontaneous oscillations measured by local field potentials, electroencephalograms and magnetoencephalograms exhibit a pronounced peak in the alpha band (8-12 Hz) in humans and primates. Both instantaneous power and phase of these ongoing oscillations have commonly been observed to correlate with psychophysical performance in stimulus detection tasks. We use a novel model-based approach to study the effect of prestimulus oscillations on detection rate. A previously developed biophysically detailed attractor network exhibits spontaneous oscillations in the alpha range before a stimulus is presented and transiently switches to gamma-like oscillations on successful detection. We demonstrate that both phase and power of the ongoing alpha oscillations modulate the probability of such state transitions. The power can either positively or negatively correlate with the detection rate, in agreement with experimental findings, depending on the underlying neural mechanism modulating the oscillatory power. Furthermore, the spatially distributed alpha oscillators of the network can be synchronized by global nonspecific weak excitatory signals. These synchronization events lead to transient increases in alpha-band power and render the network sensitive to the exact timing of target stimuli, making the alpha cycle function as a temporal mask in line with recent experimental observations. Our results are relevant to several studies that attribute a modulatory role to prestimulus alpha dynamics.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Department of Computational Biology, Royal Institute of Technology-KTH and Stockholm University, 11421 Stockholm, Sweden.
| | | | | |
Collapse
|
81
|
Stimulus detection rate and latency, firing rates and 1-40Hz oscillatory power are modulated by infra-slow fluctuations in a bistable attractor network model. Neuroimage 2013; 83:458-71. [PMID: 23851323 DOI: 10.1016/j.neuroimage.2013.06.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/23/2013] [Accepted: 06/30/2013] [Indexed: 11/22/2022] Open
Abstract
Recordings of membrane and field potentials, firing rates, and oscillation amplitude dynamics show that neuronal activity levels in cortical and subcortical structures exhibit infra-slow fluctuations (ISFs) on time scales from seconds to hundreds of seconds. Similar ISFs are salient also in blood-oxygenation-level dependent (BOLD) signals as well as in psychophysical time series. Functional consequences of ISFs are not fully understood. Here, they were investigated along with dynamical implications of ISFs in large-scale simulations of cortical network activity. For this purpose, a biophysically detailed hierarchical attractor network model displaying bistability and operating in an oscillatory regime was used. ISFs were imposed as slow fluctuations in either the amplitude or frequency of fast synaptic noise. We found that both mechanisms produced an ISF component in the synthetic local field potentials (LFPs) and modulated the power of 1-40Hz oscillations. Crucially, in a simulated threshold-stimulus detection task (TSDT), these ISFs were strongly correlated with stimulus detection probabilities and latencies. The results thus show that several phenomena observed in many empirical studies emerge concurrently in the model dynamics, which yields mechanistic insight into how infra-slow excitability fluctuations in large-scale neuronal networks may modulate fast oscillations and perceptual processing. The model also makes several novel predictions that can be experimentally tested in future studies.
Collapse
|
82
|
Reduced occipital alpha power indexes enhanced excitability rather than improved visual perception. J Neurosci 2013; 33:3212-20. [PMID: 23407974 DOI: 10.1523/jneurosci.3755-12.2013] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several studies have demonstrated that prestimulus occipital alpha-band activity substantially influences subjective perception and discrimination of near-threshold or masked visual stimuli. Here, we studied the role of prestimulus power fluctuations in two visual phenomena called double-flash illusion (DFI) and fusion effect (FE), both consisting of suprathreshold stimuli. In both phenomena, human subjects' perception varies on a trial-by-trial basis between perceiving one or two visual stimuli, despite constant stimulation. In the FE, two stimuli correspond to veridical perception. In the DFI, two stimuli correspond to an illusory perception. This provides for a critical test of whether reduced alpha power indeed promotes veridical perception in general. We find that in both, DFI and FE, reduced prestimulus occipital alpha predicts the perception of two stimuli, regardless of whether this is veridical (FE) or illusory (DFI). Our results suggest that reduced alpha-band power does not always predict improved visual processing, but rather enhanced excitability. In addition, for the DFI, enhanced prestimulus occipital gamma-band power predicted the perception of two visual stimuli. These findings provide new insights into the role of prestimulus rhythmic activity for visual processing.
Collapse
|
83
|
α-band phase synchrony is related to activity in the fronto-parietal adaptive control network. J Neurosci 2013; 32:14305-10. [PMID: 23055501 DOI: 10.1523/jneurosci.1358-12.2012] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural oscillations in the alpha band (8-12 Hz) are increasingly viewed as an active inhibitory mechanism that gates and controls sensory information processing as a function of cognitive relevance. Extending this view, phase synchronization of alpha oscillations across distant cortical regions could regulate integration of information. Here, we investigated whether such long-range cross-region coupling in the alpha band is intrinsically and selectively linked to activity in a distinct functionally specialized brain network. If so, this would provide new insight into the functional role of alpha band phase synchrony. We adapted the phase-locking value to assess fluctuations in synchrony that occur over time in ongoing activity. Concurrent EEG and functional magnetic resonance imaging (fMRI) were recorded during resting wakefulness in 26 human subjects. Fluctuations in global synchrony in the upper alpha band correlated positively with activity in several prefrontal and parietal regions (as measured by fMRI). fMRI intrinsic connectivity analysis confirmed that these regions correspond to the well known fronto-parietal (FP) network. Spectral correlations with this network's activity confirmed that no other frequency band showed equivalent results. This selective association supports an intrinsic relation between large-scale alpha phase synchrony and cognitive functions associated with the FP network. This network has been suggested to implement phasic aspects of top-down modulation such as initiation and change in moment-to-moment control. Mechanistically, long-range upper alpha band synchrony is well suited to support these functions. Complementing our previous findings that related alpha oscillation power to neural structures serving tonic control, the current findings link alpha phase synchrony to neural structures underpinning phasic control of alertness and task requirements.
Collapse
|
84
|
Mo J, Liu Y, Huang H, Ding M. Coupling between visual alpha oscillations and default mode activity. Neuroimage 2012; 68:112-8. [PMID: 23228510 DOI: 10.1016/j.neuroimage.2012.11.058] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/23/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022] Open
Abstract
Although, on average, the magnitude of alpha oscillations (8 to 12 Hz) is decreased in task-relevant cortices during externally oriented attention, its fluctuations have significant consequences, with increased level of alpha associated with decreased level of visual processing and poorer behavioral performance. Functional MRI signals exhibit similar fluctuations. The default mode network (DMN) is on average deactivated in cognitive tasks requiring externally oriented attention. Momentarily insufficient deactivation of DMN, however, is often accompanied by decreased efficiency in stimulus processing, leading to attentional lapses. These observations appear to suggest that visual alpha power and DMN activity may be positively correlated. To what extent such correlation is preserved in the resting state is unclear. We addressed this problem by recording simultaneous EEG-fMRI from healthy human participants under two resting-state conditions: eyes-closed and eyes-open. Short-time visual alpha power was extracted as time series, which was then convolved with a canonical hemodynamic response function (HRF), and correlated with blood-oxygen-level-dependent (BOLD) signals. It was found that visual alpha power was positively correlated with DMN BOLD activity only when the eyes were open; no such correlation existed when the eyes were closed. Functionally, this could be interpreted as indicating that (1) under the eyes-open condition, strong DMN activity is associated with reduced visual cortical excitability, which serves to block external visual input from interfering with introspective mental processing mediated by DMN, while weak DMN activity is associated with increased visual cortical excitability, which helps to facilitate stimulus processing, and (2) under the eyes-closed condition, the lack of external visual input renders such a gating mechanism unnecessary.
Collapse
Affiliation(s)
- Jue Mo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
85
|
Thalamic model of awake alpha oscillations and implications for stimulus processing. Proc Natl Acad Sci U S A 2012; 109:18553-8. [PMID: 23054840 DOI: 10.1073/pnas.1215385109] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a unique conductance-based model of awake thalamic alpha and some of its implications for function. The full model includes a model for a specialized class of high-threshold thalamocortical cells (HTC cells), which burst at the alpha frequency at depolarized membrane potentials (~-56 mV). Our model generates alpha activity when the actions of either muscarinic acetylcholine receptor (mAChR) or metabotropic glutamate receptor 1 (mGluR1) agonists on thalamic reticular (RE), thalamocortical (TC), and HTC cells are mimicked. In our model of mGluR1-induced alpha, TC cells are equally likely to fire during any phase of alpha, consistent with in vitro experiments. By contrast, in our model of mAChR-induced alpha, TC cells tend to fire either at the peak or the trough of alpha, depending on conditions. Our modeling suggests that low levels of mGluR1 activation on a background of mAChR agonists may be able to initiate alpha activity that biases TC cells to fire at certain phases of alpha, offering a pathway for cortical control. If we introduce a strong stimulus by increasing the frequency of excitatory postsynaptic potentials (EPSPs) to TC cells, an increase in alpha power is needed to mimic the level of phasing of TC cells observed in vivo. This increased alpha power reduces the probability that TC cells spike near the trough of alpha. We suggest that mAChR-induced alpha may contribute to grouping TC activity into discrete perceptual units for processing, whereas mGluR1-induced alpha may serve the purpose of blocking unwanted stimuli from reaching the cortex.
Collapse
|
86
|
Vaden RJ, Hutcheson NL, McCollum LA, Kentros J, Visscher KM. Older adults, unlike younger adults, do not modulate alpha power to suppress irrelevant information. Neuroimage 2012; 63:1127-33. [PMID: 22885248 DOI: 10.1016/j.neuroimage.2012.07.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/17/2012] [Accepted: 07/23/2012] [Indexed: 11/15/2022] Open
Abstract
This study examines the neural mechanisms through which younger and older adults ignore irrelevant information, a process that is necessary to effectively encode new memories. Some age-related memory deficits have been linked to a diminished ability to dynamically gate sensory input, resulting in problems inhibiting the processing of distracting stimuli. Whereas oscillatory power in the alpha band (8-12 Hz) over visual cortical areas is thought to dynamically gate sensory input in younger adults, it is not known whether older adults use the same mechanism to gate out sensory input. Here we identified a task in which both older and younger adults could suppress the processing of irrelevant sensory stimuli, allowing us to use electroencephalography (EEG) to explore the neural activity associated with suppression of visual processing. As expected, we found that the younger adults' suppression of visual processing was correlated with robust modulation of alpha oscillatory power. However, older adults did not modulate alpha power to suppress processing of visual information. These results demonstrate that suppression of alpha power is not necessary to inhibit the processing of distracting stimuli in older adults, suggesting the existence of alternative strategies for suppressing irrelevant, potentially distracting information.
Collapse
Affiliation(s)
- Ryan J Vaden
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | | | |
Collapse
|
87
|
Miskovic V, Keil A. Acquired fears reflected in cortical sensory processing: a review of electrophysiological studies of human classical conditioning. Psychophysiology 2012; 49:1230-41. [PMID: 22891639 DOI: 10.1111/j.1469-8986.2012.01398.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/02/2012] [Indexed: 11/30/2022]
Abstract
The capacity to associate neutral stimuli with affective value is an important survival strategy that can be accomplished by cell assemblies obeying Hebbian learning principles. In the neuroscience laboratory, classical fear conditioning has been extensively used as a model to study learning-related changes in neural structure and function. Here, we review the effects of classical fear conditioning on electromagnetic brain activity in humans, focusing on how sensory systems adapt to changing fear-related contingencies. By considering spatiotemporal patterns of mass neuronal activity, we illustrate a range of cortical changes related to a retuning of neuronal sensitivity to amplify signals consistent with fear-associated stimuli at the cost of other sensory information. Putative mechanisms that may underlie fear-associated plasticity at the level of the sensory cortices are briefly considered, and several avenues for future work are outlined.
Collapse
Affiliation(s)
- Vladimir Miskovic
- Center for the Study of Emotion & Attention, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
88
|
Bickel S, Dias EC, Epstein ML, Javitt DC. Expectancy-related modulations of neural oscillations in continuous performance tasks. Neuroimage 2012; 62:1867-76. [PMID: 22691613 DOI: 10.1016/j.neuroimage.2012.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 05/25/2012] [Accepted: 06/02/2012] [Indexed: 11/15/2022] Open
Abstract
Analysis of neural oscillations in the electroencephalogram (EEG) during cognitive tasks provides valuable information about underlying neuronal processing not accessible by other methods such as event-related potentials (ERPs) and the BOLD signal in fMRI. We investigated neural substrates of motor preparation and expectancy by analyzing neural oscillations of healthy subjects performing the AX continuous performance task (AX-CPT), a task widely used to evaluate processes such as cognitive control, motor preparation and anticipatory and sustained attention. The task consists of letters presented sequentially on a monitor, and subjects are required to respond only when they see the letter A (cue) followed by the letter X (target). In this study, to emphasize expectation and motor preparation, three versions of AX-CPT were used in which the overall propensity to respond was differentially modulated, by changing the probability of the letter sequences. Neural activity was investigated in three time windows following presentation of the cue: sensory, evaluation and preparation. Alpha power was reduced following cue onset similarly in all versions of the task in both the sensory and evaluation periods, but in the later preparation period there were task dependent modulations. Alpha was decreased when an infrequent cue increased the chance of a response, and increased when a propensity to respond had to be overcome, possibly reflecting an anticipatory attentional mechanism to gate visuo-motor processing. Beta power was modulated by task and cue in both evaluation and preparation periods. In the latter, beta power reflected the propensity to respond and correlated both with amplitude of the contingent negative variation (CNV), an ERP that reflects response preparation, and with reaction time. Some clinical populations such as patients with schizophrenia or attention-deficit disorder show specific deficits when performing the AX-CPT. These results provide a basis for investigating the differential neural underpinnings of oscillatory cognitive control deficits observed in various patient populations.
Collapse
Affiliation(s)
- S Bickel
- Center for Schizophrenia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | | | | | |
Collapse
|
89
|
Abstract
Lesion and functional brain imaging studies have suggested that there are two anatomically nonoverlapping attention networks. The dorsal frontoparietal network controls goal-oriented top-down deployment of attention; the ventral frontoparietal network mediates stimulus-driven bottom-up attentional reorienting. The interaction between the two networks and its functional significance has been considered in the past but no direct test has been carried out. We addressed this problem by recording fMRI data from human subjects performing a trial-by-trial cued visual spatial attention task in which the subject had to respond to target stimuli in the attended hemifield and ignore all stimuli in the unattended hemifield. Correlating Granger causal influences between regions of interest with behavioral performance, we report two main results. First, stronger Granger causal influences from the dorsal attention network (DAN) to the ventral attention network (VAN), i.e., DAN→VAN, are generally associated with enhanced performance, with right intraparietal sulcus (IPS), left IPS, and right frontal eye field being the main sources of behavior-enhancing influences. Second, stronger Granger causal influences from VAN to DAN, i.e., VAN→DAN, are generally associated with degraded performance, with right temporal-parietal junction being the main sources of behavior-degrading influences. These results support the hypothesis that signals from DAN to VAN suppress and filter out unimportant distracter information, whereas signals from VAN to DAN break the attentional set maintained by the dorsal attention network to enable attentional reorienting.
Collapse
|
90
|
Wen X, Mo J, Ding M. Exploring resting-state functional connectivity with total interdependence. Neuroimage 2012; 60:1587-95. [PMID: 22289806 DOI: 10.1016/j.neuroimage.2012.01.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/15/2011] [Accepted: 01/13/2012] [Indexed: 10/14/2022] Open
Abstract
Resting-state fMRI has become a powerful tool for studying network mechanisms of normal brain functioning and its impairments by neurological and psychiatric disorders. Analytically, independent component analysis and seed-based cross correlation are the main methods for assessing the connectivity of resting-state fMRI time series. A feature common to both methods is that they exploit the covariation structures of contemporaneously (zero-lag) measured data but ignore temporal relations that extend beyond the zero-lag. To examine whether data covariations across different lags can contribute to our understanding of functional brain networks, a measure that can uncover the overall temporal relationship between two resting-state BOLD signals is needed. In this paper we propose such a measure referred as total interdependence (TI). Comparing TI with zero-lag cross correlation (CC) we report three results. First, when combined with a random permutation procedure, TI can reveal the amount of temporal relationship between two resting-state BOLD time series that is not captured by CC. Second, comparing resting-state data with task-state data recorded in the same scanning session, we demonstrate that the resting-state functional networks constructed with TI match more precisely the networks activated by the task. Third, TI is shown to be more statistically sensitive than CC and provides better feature vectors for network clustering analysis.
Collapse
Affiliation(s)
- Xiaotong Wen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
91
|
Uban KA, Rummel J, Floresco SB, Galea LAM. Estradiol modulates effort-based decision making in female rats. Neuropsychopharmacology 2012; 37:390-401. [PMID: 21881567 PMCID: PMC3242300 DOI: 10.1038/npp.2011.176] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disorders of the dopamine system, such as schizophrenia or stimulant addiction, are associated with impairments in different forms of cost/benefit decision making. The neural circuitry (ie amygdala, prefrontal cortex, nucleus accumbens) underlying these functions receives dopamine input, which is thought to have a central role in mediating cost/benefit decisions. Estradiol modulates dopamine activity, and estrogen receptors (ERs) are found within this neurocircuitry, suggesting that decision making may be influenced by estradiol. The present study examined the contribution of estradiol and selective ERα and β agonists on cost/benefit decision making in adult female Long-Evans rats. An effort-discounting task was utilized, where rats could either emit a single response on a low-reward lever to receive two pellets, or make 2, 5, 10, or 20 responses on a high-reward lever to obtain four pellets. Ovariectomy increased the choice on the high-reward lever, whereas replacement with high (10 μg), but not low (0.3 μg), levels of estradiol benzoate reduced the choice on the high-reward lever. Interestingly, both an ERα agonist (propyl-pyrazole triol (PPT)) and an ERβ agonist (diarylpropionitrile (DPN)) increased choice on the high-reward lever when administered independently, but when these two agonists were combined, a decrease in choice for the high-reward lever was observed. The effects of estradiol, PPT, and DPN were more pronounced 24 h post-administration, suggesting that these effects may be genomic in nature. Together, these results demonstrate that estradiol modulates cost/benefit decision making in females, whereby concomitant activation of ERα and β receptors shifts the decision criteria and reduces preference for larger, yet more costly rewards.
Collapse
Affiliation(s)
- Kristina A Uban
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Julia Rummel
- International Graduate Program Medical Neurosciences, Charité Universitätsmedizin Berlin, Berlin, Germany,Department of Psychiatry and Psychotherapy, Technical University Dresden, Dresden, Germany
| | - Stan B Floresco
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada,Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, 2136 West Mall, Vancouver, Canada, BC V6T 1Z4, Tel: +1 604 822 6536, Fax: +1 604 822 6923, E-mail:
| |
Collapse
|
92
|
Abstract
Temporal expectations have been shown to enhance visual analysis of task-relevant events, especially when these are coupled with spatial expectations. Oscillatory brain activity, particularly in the alpha band, has been implicated in regulating excitability in visual areas as a function of anticipatory spatial attention. Here we asked whether temporal expectations derived from regular, rhythmic events can modulate ongoing oscillatory alpha-band activity, so that the changes in cortical excitability are focused over the time intervals at which target events are expected. The task we used involved making a perceptual discrimination about a small target stimulus that reappeared from "behind" a peripheral occluding band. Temporal expectations were manipulated by the regular, rhythmic versus irregular, arrhythmic approach of the stimulus toward the occluding band. Alpha-band activity was measured during the occlusion period, in which no stimulus was presented, but target reappearance was anticipated in conditions of high versus low temporal expectation. Time-frequency analysis showed that the amplitude of alpha-desynchronization followed the time course of temporal expectations. Alpha desynchronization increased rhythmically, peaking just before the expected reappearance of target times. Analysis of the event-related potentials evoked by the subsequent target stimuli showed enhancement of processing at both visual and motor stages. Our findings support a role for oscillations in regulating cortical excitability and suggest a plausible mechanism for biasing perception and action by temporal expectations.
Collapse
|
93
|
Evoked traveling alpha waves predict visual-semantic categorization-speed. Neuroimage 2011; 59:3379-88. [PMID: 22100769 PMCID: PMC3314919 DOI: 10.1016/j.neuroimage.2011.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/28/2011] [Accepted: 11/03/2011] [Indexed: 11/23/2022] Open
Abstract
In the present study we have tested the hypothesis that evoked traveling alpha waves are behaviorally significant. The results of a visual-semantic categorization task show that three early ERP components including the P1-N1 complex had a dominant frequency characteristic in the alpha range and behaved like traveling waves do. They exhibited a traveling direction from midline occipital to right lateral parietal sites. Phase analyses revealed that this traveling behavior of ERP components could be explained by phase-delays in the alpha but not theta and beta frequency range. Most importantly, we found that the speed of the traveling alpha wave was significantly and negatively correlated with reaction time indicating that slow traveling speed was associated with fast picture-categorization. We conclude that evoked alpha oscillations are functionally associated with early access to visual-semantic information and generate--or at least modulate--the early waveforms of the visual ERP.
Collapse
|
94
|
Abstract
Variability of evoked single-trial responses despite constant input or task is a feature of large-scale brain signals recorded by fMRI. Initial evidence signified relevance of fMRI signal variability for perception and behavior. Yet the underlying intrinsic neuronal sources have not been previously substantiated. Here, we address this issue using simultaneous EEG-fMRI and real-time classification of ongoing alpha-rhythm states triggering visual stimulation in human subjects. We investigated whether spontaneous neuronal oscillations-as reflected in the posterior alpha rhythm-account for variability of evoked fMRI responses. Based on previous work, we specifically hypothesized linear superposition of fMRI activity related to fluctuations of ongoing alpha rhythm and a visually evoked fMRI response. We observed that spontaneous alpha-rhythm power fluctuations largely explain evoked fMRI response variance in extrastriate, thalamic, and cerebellar areas. For extrastriate areas, we confirmed the linear superposition hypothesis. We hence linked evoked fMRI response variability to an intrinsic rhythm's power fluctuations. These findings contribute to our conceptual understanding of how brain rhythms can account for trial-by-trial variability in stimulus processing.
Collapse
|
95
|
Klimesch W. Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis. Brain Res 2011; 1408:52-71. [PMID: 21774917 PMCID: PMC3158852 DOI: 10.1016/j.brainres.2011.06.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 05/26/2011] [Accepted: 06/02/2011] [Indexed: 12/02/2022]
Abstract
In this article, a theory is presented which assumes that the visual P1 reflects the same cognitive and physiological functionality as alpha (with a frequency of about 10 Hz).Whereas alpha is an ongoing process, the P1 is the manifestation of an event-related process. It is suggested that alpha and the P1 reflect inhibition that is effective during early access to a complex knowledge system (KS). Most importantly, inhibition operates in two different ways. In potentially competing and task irrelevant networks, inhibition is used to block information processing. In task relevant neural networks, however, inhibition is used to increase the signal to noise ratio (SNR) by enabling precisely timed activity in neurons with a high level of excitation but silencing neurons with a comparatively low level of excitation. Inhibition is increased to modulate the SNR when processing complexity and network excitation increases and when certain types of attentional demands - such as top-down control, expectancy or reflexive attention - increase. A variety of findings are reviewed to demonstrate that they can well be interpreted on the basis of the suggested theory. One interesting aspect thereby is that attentional benefits (reflected e.g., by a larger P1 for attended as compared to unattended items at contralateral sites) and costs (reflected e.g., by a larger P1 at ipsilateral sites) can both be interpreted in terms of inhibition. In the former case an increased P1 is associated with a more effective processing of the presented item (due to an inhibition modulated increase in SNR), in the latter case, however, with a suppression of item processing (due to inhibition that blocks information processing).
Collapse
Affiliation(s)
- Wolfgang Klimesch
- University of Salzburg, Department of Physiological Psychology, Institute of Psychology, Hellbrunnerstr. 34, A-5020 Salzburg, Austria.
| |
Collapse
|
96
|
Abstract
Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation for the past 80 years. Whereas early work focused on the thalamus as the pacemaker of alpha rhythm, subsequent slice studies revealed that pyramidal neurons in the deep layers of sensory cortices are capable of oscillating in the alpha frequency range independently. How thalamic and cortical generating mechanisms in the intact brain might interact to shape the organization and function of alpha oscillations remains unclear. We addressed this problem by analyzing laminar profiles of local field potential and multiunit activity (MUA) recorded with linear array multielectrodes from the striate cortex of two macaque monkeys performing an intermodal selective attention task. Current source density (CSD) analysis was combined with CSD-MUA coherence to identify intracortical alpha current generators and assess their potential for pacemaking. Coherence and Granger causality analysis was applied to delineate the patterns of interaction among different alpha current generators. We found that (1) separable alpha current generators are located in superficial, granular, and deep layers, with both layer 4C and deep layers containing primary local pacemaking generators, suggesting the involvement of the thalamocortical network, and (2) visual attention reduces the magnitude of alpha oscillations as well as the level of alpha interactions, consistent with numerous reports of occipital alpha reduction with visual attention in human EEG. There is also indication that alpha oscillations in the lateral geniculate cohere with those in V1.
Collapse
|
97
|
Mathewson KE, Lleras A, Beck DM, Fabiani M, Ro T, Gratton G. Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Front Psychol 2011; 2:99. [PMID: 21779257 PMCID: PMC3132674 DOI: 10.3389/fpsyg.2011.00099] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/03/2011] [Indexed: 11/27/2022] Open
Abstract
Alpha oscillations are ubiquitous in the brain, but their role in cortical processing remains a matter of debate. Recently, evidence has begun to accumulate in support of a role for alpha oscillations in attention selection and control. Here we first review evidence that 8-12 Hz oscillations in the brain have a general inhibitory role in cognitive processing, with an emphasis on their role in visual processing. Then, we summarize the evidence in support of our recent proposal that alpha represents a pulsed-inhibition of ongoing neural activity. The phase of the ongoing electroencephalography can influence evoked activity and subsequent processing, and we propose that alpha exerts its inhibitory role through alternating microstates of inhibition and excitation. Finally, we discuss evidence that this pulsed-inhibition can be entrained to rhythmic stimuli in the environment, such that preferential processing occurs for stimuli at predictable moments. The entrainment of preferential phase may provide a mechanism for temporal attention in the brain. This pulsed inhibitory account of alpha has important implications for many common cognitive phenomena, such as the attentional blink, and seems to indicate that our visual experience may at least some times be coming through in waves.
Collapse
Affiliation(s)
- Kyle E. Mathewson
- Department of Psychology, Beckman Institute, University of Illinois at Urbana–ChampaignChampaign, IL, USA
| | - Alejandro Lleras
- Department of Psychology, Beckman Institute, University of Illinois at Urbana–ChampaignChampaign, IL, USA
| | - Diane M. Beck
- Department of Psychology, Beckman Institute, University of Illinois at Urbana–ChampaignChampaign, IL, USA
| | - Monica Fabiani
- Department of Psychology, Beckman Institute, University of Illinois at Urbana–ChampaignChampaign, IL, USA
| | - Tony Ro
- Department of Psychology, The City College of the City University of New YorkNew York, NY, USA
| | - Gabriele Gratton
- Department of Psychology, Beckman Institute, University of Illinois at Urbana–ChampaignChampaign, IL, USA
| |
Collapse
|
98
|
Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW. Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 2011; 5:19. [PMID: 21541305 PMCID: PMC3082765 DOI: 10.3389/fncom.2011.00019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 04/01/2011] [Indexed: 01/23/2023] Open
Abstract
Coordination of neocortical oscillations has been hypothesized to underlie the "binding" essential to cognitive function. However, the mechanisms that generate neocortical oscillations in physiological frequency bands remain unknown. We hypothesized that interlaminar relations in neocortex would provide multiple intermediate loops that would play particular roles in generating oscillations, adding different dynamics to the network. We simulated networks from sensory neocortex using nine columns of event-driven rule-based neurons wired according to anatomical data and driven with random white-noise synaptic inputs. We tuned the network to achieve realistic cell firing rates and to avoid population spikes. A physiological frequency spectrum appeared as an emergent property, displaying dominant frequencies that were not present in the inputs or in the intrinsic or activated frequencies of any of the cell groups. We monitored spectral changes while using minimal dynamical perturbation as a methodology through gradual introduction of hubs into individual layers. We found that hubs in layer 2/3 excitatory cells had the greatest influence on overall network activity, suggesting that this subpopulation was a primary generator of theta/beta strength in the network. Similarly, layer 2/3 interneurons appeared largely responsible for gamma activation through preferential attenuation of the rest of the spectrum. The network showed evidence of frequency homeostasis: increased activation of supragranular layers increased firing rates in the network without altering the spectral profile, and alteration in synaptic delays did not significantly shift spectral peaks. Direct comparison of the power spectra with experimentally recorded local field potentials from prefrontal cortex of awake rat showed substantial similarities, including comparable patterns of cross-frequency coupling.
Collapse
Affiliation(s)
- Samuel A. Neymotin
- SUNY Downstate/NYU-Poly Joint Biomedical Engineering ProgramBrooklyn, NY, USA
| | - Heekyung Lee
- Neural and Behavioral Science Program, SUNY DownstateBrooklyn, NY, USA
| | - Eunhye Park
- Center for Neural Science, New York UniversityNew York, NY, USA
| | - André A. Fenton
- SUNY Downstate/NYU-Poly Joint Biomedical Engineering ProgramBrooklyn, NY, USA
- Neural and Behavioral Science Program, SUNY DownstateBrooklyn, NY, USA
- Center for Neural Science, New York UniversityNew York, NY, USA
- Department of Physiology and Pharmacology, SUNY DownstateBrooklyn, NY, USA
| | - William W. Lytton
- SUNY Downstate/NYU-Poly Joint Biomedical Engineering ProgramBrooklyn, NY, USA
- Neural and Behavioral Science Program, SUNY DownstateBrooklyn, NY, USA
- Department of Physiology and Pharmacology, SUNY DownstateBrooklyn, NY, USA
- Department of Neurology, SUNY DownstateBrooklyn, NY, USA
- Kings County HospitalBrooklyn, NY, USA
| |
Collapse
|
99
|
Pre-stimulus alpha phase-alignment predicts P1-amplitude. Brain Res Bull 2011; 85:417-23. [PMID: 21473900 PMCID: PMC3144391 DOI: 10.1016/j.brainresbull.2011.03.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/21/2011] [Accepted: 03/29/2011] [Indexed: 11/24/2022]
Abstract
Since years there is a hotly discussed dispute whether event-related potentials are either generated by an evoked component or by resetting of ongoing phase. We argue that phase-reset must not be proven in order to accept the general involvement of phase in ERP-generation as it is only one of several possible mechanisms influencing or generating certain ERP-components. Supporting data are presented showing that positive peaks of ongoing pre-stimulus alpha activity are not randomly distributed in time across trials. Most importantly, we found that a certain kind of pre-stimulus phase concentration that represents a continuous development of an alpha wave up to the time window where the P1 is generated is associated with an enlarged event-related component. We conclude that ongoing oscillations cannot be considered random background noise (even before stimulus onset) and that there are probably more phase-mechanisms that can contribute to the ERP-generation.
Collapse
|
100
|
Abstract
Recent work reported the observation of alpha frequency oscillations (8-12 Hz) in several regions of macaque visual cortex, including V2, V4, and inferotemporal cortex (IT). While alpha-related physiology in V2 and V4 appears consistent with a role in attention-related suppression, in IT, alpha reactivity appears conflicted with such a role. We addressed this issue directly by analyzing laminar profiles of local field potentials and multiunit activities from the IT of macaque monkeys during performance of an intermodal selective attention task (visual versus auditory). We found that (1) before visual stimulus onset (-200 to 0 ms), attention to visual input increased ongoing alpha power in IT relative to attention to auditory input, and (2) in contrast to the prevailing view of alpha inhibition, the increased ongoing alpha activity is accompanied by increased concurrent multiunit firing and facilitates visual stimulus processing. These results suggest that ongoing alpha oscillations in IT play a different functional role than that in the occipital cortex and may be part of the neuronal mechanism representing task-relevant information.
Collapse
|