51
|
Zadian SS, Adcock IM, Salimi B, Mortaz E. Circulating Levels of Monocytic Myeloid-Derived Suppressor Cells (M-MDSC) and CXCL-8 in Non-Small Cell Lung Cancer (NSCLC). TANAFFOS 2021; 20:15-21. [PMID: 34394365 PMCID: PMC8355929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/28/2020] [Indexed: 10/26/2022]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSC) are categorized as granulocytic (G-MDSCs) and monocytic (M-MDSCs) and their expansion play a role in cancer progression. Recruitment to the cancer site depends upon the presence of a chemoattractant. We aimed to investigate the presence of MDSC subtypes and of interleukin-8 (CXCL-8) in the peripheral blood in lung cancer subtypes including non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) patients. MATERIALS AND METHODS Peripheral blood samples of 26 NSCLC patients, 18 SCLC patients, and 8 healthy control donors (HDs) were harvested and the surface expression of CD14, CD15, CD11b, and HLA-DR on MDSCs was measured using flow cytometry. The level of serum CXCL8 was measured by the ELISA method. RESULTS The frequency of circulating M-MDSCs was significantly higher in patients with NSCLC than in SCLC and HDs. In contrast, there was no statistical difference concerning the frequency of circulating G-MDSCs between the three groups. The concentration of CXCL-8 was significantly higher in the NSCLC and SCLC patients than in HD control with no significant difference between NSCLC and SCLC groups. There was no correlation between serum CXCL8 and G-MDSC levels. CONCLUSION Our data confirm a higher frequency of circulating M-MDSCs, but not G-MDSCs, in the blood of those suffering from NSCLC but not for SCLC cases. Measuring MDSC subtypes and serum chemotactic factors may have implications for the differential diagnosis of NSCLC.
Collapse
Affiliation(s)
- Seyed Sajjad Zadian
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom,,Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Babak Salimi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to: Mortaz E, Address: Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran Email address:
| |
Collapse
|
52
|
Xing Z, Zuo Z, Hu D, Zheng X, Wang X, Yuan L, Zhou L, Qi F, Yao Z. Influenza vaccine combined with moderate-dose PD1 blockade reduces amyloid-β accumulation and improves cognition in APP/PS1 mice. Brain Behav Immun 2021; 91:128-141. [PMID: 32956831 DOI: 10.1016/j.bbi.2020.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Immune dysfunction is implicated in Alzheimer's disease (AD), whereas systemic immune modulation may be neuroprotective. Our previous results have indicated immune challenge with Bacillus Calmette-Guerin attenuates AD pathology in animal models by boosting the systemic immune system. Similarly, independent studies have shown that boosting systemic immune system, by blocking PD-1 checkpoint pathway, modifies AD. Here we hypothesized that influenza vaccine would potentiate function of moderate dose anti-PD-1 and therefore combining them might allow reducing the dose of PD-1 antibody needed to modify the disease. We found that moderate-dose PD-1 in combination with influenza vaccine effectively attenuated cognitive deficit and prevented amyloid-β pathology build-up in APP/PS1 mice in a mechanism dependent on recruitment of peripheral monocyte-derived macrophages into the brain. Eliminating peripheral macrophages abrogated the beneficial effect. Moreover, by comparing CD11b+ compartments in the mouse parenchyma, we observed an elevated subset of Ly6C+ microglia-like cells, which are reportedly derived from peripheral monocytes. In addition, myeloid-derived suppressor cells are strongly elevated in the transgenic model used and normalized by combination treatment, indicating restoration of brain immune homeostasis. Overall, our results suggest that revitalizing brain immunity by combining IV with moderate-dose PD-1 inhibition may represent a therapeutic immunotherapy for AD.
Collapse
Affiliation(s)
- Zhiwei Xing
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Zejie Zuo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Dandan Hu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, PR China
| | - Xiaona Zheng
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Xiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Lifang Yuan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Lihua Zhou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Department of Anatomy, Sun Yat-sen University, School of Medicine, Guangzhou 510089, PR China.
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China.
| | - Zhibin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China.
| |
Collapse
|
53
|
Strauss L, Mahmoud MAA, Weaver JD, Tijaro-Ovalle NM, Christofides A, Wang Q, Pal R, Yuan M, Asara J, Patsoukis N, Boussiotis VA. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci Immunol 2020; 5:5/43/eaay1863. [PMID: 31901074 DOI: 10.1126/sciimmunol.aay1863] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
PD-1, a T cell checkpoint receptor and target of cancer immunotherapy, is also expressed on myeloid cells. The role of myeloid-specific versus T cell-specific PD-1 ablation on antitumor immunity has remained unclear because most studies have used either PD-1-blocking antibodies or complete PD-1 KO mice. We generated a conditional allele, which allowed myeloid-specific (PD-1f/fLysMcre) or T cell-specific (PD-1f/fCD4cre) targeting of Pdcd1 gene. Compared with T cell-specific PD-1 ablation, myeloid cell-specific PD-1 ablation more effectively decreased tumor growth. We found that granulocyte/macrophage progenitors (GMPs), which accumulate during cancer-driven emergency myelopoiesis and give rise to myeloid-derived suppressor cells (MDSCs), express PD-1. In tumor-bearing PD-1f/fLysMcre but not PD-1f/fCD4cre mice, accumulation of GMP and MDSC was prevented, whereas systemic output of effector myeloid cells was increased. Myeloid cell-specific PD-1 ablation induced an increase of T effector memory cells with improved functionality and mediated antitumor protection despite preserved PD-1 expression in T cells. In PD-1-deficient myeloid progenitors, growth factors driving emergency myelopoiesis induced increased metabolic intermediates of glycolysis, pentose phosphate pathway, and TCA cycle but, most prominently, elevated cholesterol. Because cholesterol is required for differentiation of inflammatory macrophages and DC and promotes antigen-presenting function, our findings indicate that metabolic reprogramming of emergency myelopoiesis and differentiation of effector myeloid cells might be a key mechanism of antitumor immunity mediated by PD-1 blockade.
Collapse
Affiliation(s)
- Laura Strauss
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mohamed A A Mahmoud
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jessica D Weaver
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Natalia M Tijaro-Ovalle
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Anthos Christofides
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Qi Wang
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rinku Pal
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Min Yuan
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John Asara
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. .,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
54
|
Popper H. Primary tumor and metastasis-sectioning the different steps of the metastatic cascade. Transl Lung Cancer Res 2020; 9:2277-2300. [PMID: 33209649 PMCID: PMC7653118 DOI: 10.21037/tlcr-20-175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Patients with lung cancer in the majority die of metastases. Treatment options include surgery, chemo- and radiotherapy, targeted therapy by tyrosine kinase inhibitors (TKIs), and immuno-oncologic treatment. Despite the success with these treatment options, cure of lung cancer is achieved in only a very small proportion of patients. In most patients’ recurrence and metastasis will occur, and finally kill the patient. Metastasis is a multistep procedure. It requires a change in adhesion of tumor cells for detachment from their neighboring cells. The next step is migration either as single cells [epithelial-mesenchymal transition (EMT)], or as cell clusters (hybrid-EMT or bulk migration). A combination of genetic changes is required to facilitate migration. Then tumor cells have to orient themselves along matrix proteins, detect oxygen concentrations, prevent attacks by immune cells, and induce a tumor-friendly switch of stroma cells (macrophages, myofibroblasts, etc.). Having entered the blood stream tumor cells need to adapt to shear stress, avoid being trapped by coagulation, but also use coagulation in small veins for adherence to endothelia, and express homing molecules for extravasation. Within a metastatic site, tumor cells need a well-prepared niche to establish a metastatic focus. Tumor cells again have to establish a vascular net for maintaining nutrition and oxygen supply, communicate with stroma cells, grow out and set further metastases. In this review the different steps will be discussed with a focus on pulmonary carcinomas. The vast amount of research manuscripts published so far are not easy to analyze: in most reports’ single steps of the metastatic cascade are interpreted as evidence for the whole process; for example, migration is interpreted as evidence for metastasis. In lung cancer most often latency periods are shorter, in between 1–5 years. In other cases, despite widespread migration occurs, tumor cells die within the circulation and do not reach a metastatic site. Therefore, migration is a requisite, but does not necessarily predict metastasis. The intention of this review is to point to these different aspects and hopefully provoke research directed into a more functional analysis of the metastatic process.
Collapse
Affiliation(s)
- Helmut Popper
- Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
55
|
Kiss M, Caro AA, Raes G, Laoui D. Systemic Reprogramming of Monocytes in Cancer. Front Oncol 2020; 10:1399. [PMID: 33042791 PMCID: PMC7528630 DOI: 10.3389/fonc.2020.01399] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Monocytes influence multiple aspects of tumor progression, including antitumor immunity, angiogenesis, and metastasis, primarily by infiltrating tumors, and differentiating into tumor-associated macrophages. Emerging evidence suggests that the tumor-induced systemic environment influences the development and phenotype of monocytes before their arrival to the tumor site. As a result, circulating monocytes show functional alterations in cancer, such as the acquisition of immunosuppressive activity and reduced responsiveness to inflammatory stimuli. In this review, we summarize available evidence about cancer-induced changes in monopoiesis and its impact on the abundance and function of monocytes in the periphery. In addition, we describe the phenotypical alterations observed in tumor-educated peripheral blood monocytes and highlight crucial gaps in our knowledge about additional cellular functions that may be affected based on transcriptomic studies. We also highlight emerging therapeutic strategies that aim to reverse cancer-induced changes in monopoiesis and peripheral monocytes to inhibit tumor progression and improve therapy responses. Overall, we suggest that an in-depth understanding of systemic monocyte reprogramming will have implications for cancer immunotherapy and the development of clinical biomarkers.
Collapse
Affiliation(s)
- Máté Kiss
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Aarushi Audhut Caro
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Raes
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
56
|
Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biol 2020; 10:200111. [PMID: 32931721 PMCID: PMC7536076 DOI: 10.1098/rsob.200111] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic immune activation and inflammation are unwanted consequences of many pathological conditions, since they could lead to tissue damage and immune exhaustion, both of which can worsen the pathological condition status. In fact, the immune system is naturally equipped with immunoregulatory cells that can limit immune activation and inflammation. However, chronic activation of downregulatory immune responses is also associated with unwanted consequences that, in turn, could lead to disease progression as seen in the case of cancer and chronic infections. Myeloid-derived suppressor cells (MDSCs) are now considered to play a pivotal role in the pathogenesis of different inflammatory pathological conditions, including different types of cancer and chronic infections. As a potent immunosuppressor cell population, MDSCs can inhibit specific and non-specific immune responses via different mechanisms that, in turn, lead to disease persistence. One such mechanism by which MDSCs can activate their immunosuppressive effects is accomplished by secreting copious amounts of immunosuppressant molecules such as interleukin-10 (IL-10). In this article, we will focus on the pathological role of MDSC expansion in chronic inflammatory conditions including cancer, sepsis/infection, autoimmunity, asthma and ageing, as well as some of the mechanisms by which MDSCs/IL-10 contribute to the disease progression in such conditions.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Homa Darmani
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ammar Daoud
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
57
|
Yang Z, Guo J, Cui K, Du Y, Zhao H, Zhu L, Weng L, Tang W, Guo J, Zhang T, Shi X, Zong H, Jin S, Ma W. Thymosin alpha-1 blocks the accumulation of myeloid suppressor cells in NSCLC by inhibiting VEGF production. Biomed Pharmacother 2020; 131:110740. [PMID: 32942159 DOI: 10.1016/j.biopha.2020.110740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Thymosin alpha-1 (TA) has been reported to inhibit tumor growth as an immunomodulator. However, its mechanism of action in immunosuppressive cells is unclear. The purpose of this study was to investigate whether TA can reshape the immune microenvironment by inhibiting the function of myeloid-derived suppressor cells (MDSCs) in non-small cell lung carcinoma (NSCLC). METHODS The effects of TA on peripheral blood monocytic MDSCs (M-MDSCs) in patients with NSCLC and on the apoptosis and migration of M-MDSCs were studied. A mouse subcutaneous xenograft tumor model was constructed, and the effect of TA on M-MDSC migration was evaluated. Quantitative real-time PCR, Western blotting, flow cytometry and immunohistochemistry were used to examine the mechanism by which TA affects M-MDSCs. RESULTS TA not only promoted the apoptosis of M-MDSCs by reducing the Bcl-2/BAX ratio but also and more importantly inhibited the migration of MDSCs to the tumor microenvironment by suppressing the production of vascular endothelial growth factor (VEGF) through the downregulation of hypoxia-inducible factor (HIF)-1α in tumor cells. CONCLUSIONS TA may have a novel antitumor effect mediated by decreasing M-MDSC accumulation in the tumor microenvironment through reduced VEGF production.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jiacheng Guo
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lili Zhu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lanling Weng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wenxue Tang
- Center for Precision Medicine of Zhengzhou University, Zhengzhou, Henan, 450052, China; Departments of Otolaryngology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Jiancheng Guo
- Center for Precision Medicine of Zhengzhou University, Zhengzhou, Henan, 450052, China; Departments of Otolaryngology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaojing Shi
- Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
58
|
Hyun SY, Na EJ, Jang JE, Chung H, Kim SJ, Kim JS, Kong JH, Shim KY, Lee JI, Min YH, Cheong JW. Immunosuppressive role of CD11b + CD33 + HLA-DR - myeloid-derived suppressor cells-like blast subpopulation in acute myeloid leukemia. Cancer Med 2020; 9:7007-7017. [PMID: 32780544 PMCID: PMC7541151 DOI: 10.1002/cam4.3360] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Myeloid-derived suppressor cells (MDSCs) facilitate tumor growth and development by suppressing T cell function; however, their role in acute myeloid leukemia (AML) remains unclear. Here, we investigated the immunosuppressive role and prognostic value of blasts with an MDSC-like phenotype. METHODS CD11b+ CD33+ HLA-DR- MDSC-like blasts from bone marrow mononuclear cells of patients with AML were analyzed. To investigate their T cell-suppressing function, MDSC-like blasts were isolated using flow cytometry and co-cultured with CD8+ cytotoxic T cells and NB4 leukemic cells. Treatment outcomes were then compared between the MDSC-like blasts low (≤9.76%) and high (>9.76%) groups to identify clinical significance. RESULTS MDSC-like blasts showed higher expression of arginase-1 and inducible nitric oxide synthase. Isolated MDSC-like blasts significantly suppressed CD8+ T cell proliferation induced by phytohemagglutinin A. NB4 cell proliferation was significantly suppressed upon co-culture with CD8+ cytotoxic T cells and partially restored upon co-culture with MDSC-like blasts. Patients with high MDSC-like blasts at diagnosis showed substantially shorter overall survival and leukemia-free survival relative to low MDSC-like blasts patients, with subgroup analysis showing statistically significant differences in patients not receiving allogeneic hematopoietic stem cell transplantation. CONCLUSION We demonstrated that MDSC-like blasts drive AML-specific immune-escape mechanisms by suppressing T cell proliferation and restoring T cell-suppressed NB4 cell proliferation, with clinically higher fractions of MDSC-like blasts at diagnosis resulting in poor prognosis.
Collapse
Affiliation(s)
- Shin Young Hyun
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Kangwon-do, South Korea
| | - Eun Jung Na
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Kangwon-do, South Korea
| | - Ji Eun Jang
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Haerim Chung
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Jeong Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Seok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jee Hyun Kong
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Kangwon-do, South Korea
| | - Kwang Yong Shim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Kangwon-do, South Korea
| | - Jong In Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Kangwon-do, South Korea
| | - Yoo Hong Min
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - June-Won Cheong
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
59
|
Zeng X, Liu G, Pan Y, Li Y. Development and validation of immune inflammation-based index for predicting the clinical outcome in patients with nasopharyngeal carcinoma. J Cell Mol Med 2020; 24:8326-8349. [PMID: 32603520 PMCID: PMC7412424 DOI: 10.1111/jcmm.15097] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/19/2019] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation indicators, such as systemic inflammation response index (SIRI), systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR), are associated with poor prognosis in various solid cancers. In this study, we investigated the predictive value of these inflammation indicators in nasopharyngeal carcinoma (NPC). This retrospective study involved 559 patients with NPC and 500 patients with chronic rhinitis, and 255 NPC patients were followed up successfully. Continuous variables and qualitative variables were measured by t test and chi-square test, respectively. The optimal cut-off values of various inflammation indicators were determined by receiver operating characteristic (ROC) curve. Moreover, the diagnostic value for NPC was decided by the area under the curves (AUCs). The Kaplan-Meier methods and the log-rank test were used to analyse overall survival (OS) and disease-free survival (DFS). The independent prognostic risk factors for survival and influencing factors of side effects after treatment were analysed by Cox and logistic regression analysis, respectively. Most haematological indexes of NPC and rhinitis were significantly different between the two groups, and PLR was optimal predictive indicators of diagnosis. In the multivariable Cox regression analysis, PLR, WBC, RDW, M stage and age were independent prognostic risk factors. Many inflammation indicators that affected various side effects were evaluated by logistic regression analysis. In conclusion, the combined inflammation indicators were superior to single haematological indicator in the diagnosis and prognosis of NPC. These inflammation indicators can be used to supply the current evaluation system of the TNM staging system to help predict the prognosis in NPC patients.
Collapse
Affiliation(s)
- Xiaojiao Zeng
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Guohong Liu
- Department of RadiologyZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Yunbao Pan
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Yirong Li
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| |
Collapse
|
60
|
De Cicco P, Ercolano G, Ianaro A. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. Front Immunol 2020; 11:1680. [PMID: 32849585 PMCID: PMC7406792 DOI: 10.3389/fimmu.2020.01680] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Suppression of antitumor immune responses is one of the main mechanisms by which tumor cells escape from destruction by the immune system. Myeloid-derived suppressor cells (MDSCs) represent the main immunosuppressive cells present in the tumor microenvironment (TME) that sustain cancer progression. MDSCs are a heterogeneous group of immature myeloid cells with a potent activity against T-cell. Studies in mice have demonstrated that MDSCs accumulate in several types of cancer where they promote invasion, angiogenesis, and metastasis formation and inhibit antitumor immunity. In addition, different clinical studies have shown that MDSCs levels in the peripheral blood of cancer patients correlates with tumor burden, stage and with poor prognosis in multiple malignancies. Thus, MDSCs are the major obstacle to many cancer immunotherapies and their targeting may be a beneficial strategy for improvement the efficiency of immunotherapeutic interventions. However, the great heterogeneity of these cells makes their identification in human cancer very challenging. Since both the phenotype and mechanisms of action of MDSCs appear to be tumor-dependent, it is important to accurately characterized the precise MDSC subsets that have clinical relevance in each tumor environment to more efficiently target them. In this review we summarize the phenotype and the suppressive mechanisms of MDSCs populations expanded within different tumor contexts. Further, we discuss about their clinical relevance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
61
|
Rochigneux P, Garcia AJ, Chanez B, Madroszyk A, Olive D, Garon EB. Medical Treatment of Lung Cancer: Can Immune Cells Predict the Response? A Systematic Review. Front Immunol 2020; 11:1036. [PMID: 32670271 PMCID: PMC7327092 DOI: 10.3389/fimmu.2020.01036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/29/2020] [Indexed: 01/23/2023] Open
Abstract
The landscape for medical treatment of lung cancer has irreversibly changed since the development of immuno-oncology (IO). Yet, while immune checkpoint blockade (ICB) revealed that T lymphocytes play a major role in lung cancer, the precise dynamic of innate and adaptive immune cells induced by anticancer treatments including chemotherapy, targeted therapy, and/or ICB is poorly understood. In lung cancer, studies evaluating specific immune cell populations as predictors of response to medical treatment are scarce, and knowledge is fragmented. Here, we review the different techniques allowing the detection of immune cells in the tumor and blood (multiplex immunohistochemistry and immunofluorescence, RNA-seq, DNA methylation pattern, mass cytometry, functional tests). In addition, we present data that consider different baseline immune cell populations as predictors of response to medical treatments of lung cancer. We also review the potential for assessing dynamic changes in cell populations during treatment as a biomarker. As powerful tools for immune cell detection and data analysis are available, clinicians and researchers could increase understanding of mechanisms of efficacy and resistance in addition to identifying new targets for IO by developing translational studies that decipher the role of different immune cell populations during lung cancer treatments.
Collapse
Affiliation(s)
- Philippe Rochigneux
- Department of Medical Oncology, Paoli-Calmettes Institute, Marseille, France.,Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France.,Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Alejandro J Garcia
- Cytometry Core Laboratory, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Brice Chanez
- Department of Medical Oncology, Paoli-Calmettes Institute, Marseille, France
| | - Anne Madroszyk
- Department of Medical Oncology, Paoli-Calmettes Institute, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Edward B Garon
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| |
Collapse
|
62
|
NKG2D-Fc fusion protein promotes antitumor immunity through the depletion of immunosuppressive cells. Cancer Immunol Immunother 2020; 69:2147-2155. [PMID: 32468232 DOI: 10.1007/s00262-020-02615-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/16/2020] [Indexed: 12/15/2022]
Abstract
A major factor impeding the success of numerous therapeutic approaches in cancer is the immunosuppressive nature of the tumor microenvironment (TME). Hence, methods capable of reverting tumor immunosuppression through depletion or reprogramming of myeloid-derived suppressive cells (MDSCs) and regulatory T cells (Tregs) are of great clinical need. Here, we explore NKG2D-Fc as a modality to modulate antitumor immunity through the depletion of immunosuppressive MDSCs and Tregs in the TME. We have generated the NKG2D-Fc fusion protein and characterized its potential to mediate tumor control and overall survival in LL2 and MC38 murine models. Upon treatment of LL2 or MC38 tumor-bearing mice with NKG2D-Fc, we observe significant tumor control and enhanced survival compared to Fc control. When characterizing MDCSs and Tregs from tumor-bearing mice, we observe clear expression of NKG2D-ligand RAE1γ and subsequent binding of NKG2D-Fc fusion protein to both MDSCs and Tregs. Examining the immune profile of mice treated with NKG2D-Fc reveals significant depletion of MDSCs and Tregs in the TME, as well as an increase in NK cells likely due to the reversed suppressive TME. In conclusion, NKG2D-Fc induces antitumor immunity and tumor control through the depletion of MDSCs and Tregs, subsequently providing a niche for the infiltration and expansion of proinflammatory cells, such as NK cells. Strategies capable of modulating the immunosuppressive state in cancer are in high clinical demand. NKG2D-Fc is a simple, single tool capable of depleting both MDSCs and Tregs and should be further investigated as a therapeutic agent for the treatment of cancer.
Collapse
|
63
|
Hua X, Zhang H, Jia J, Chen S, Sun Y, Zhu X. Roles of S100 family members in drug resistance in tumors: Status and prospects. Biomed Pharmacother 2020; 127:110156. [PMID: 32335300 DOI: 10.1016/j.biopha.2020.110156] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy and targeted therapy can significantly improve survival rates in cancer, but multiple drug resistance (MDR) limits the efficacy of these approaches. Understanding the molecular mechanisms underlying MDR is crucial for improving drug efficacy and clinical outcomes of patients with cancer. S100 proteins belong to a family of calcium-binding proteins and have various functions in tumor development. Increasing evidence demonstrates that the dysregulation of various S100 proteins contributes to the development of drug resistance in tumors, providing a basis for the development of predictive and prognostic biomarkers in cancer. Therefore, a combination of biological inhibitors or sensitizers of dysregulated S100 proteins could enhance therapeutic responses. In this review, we provide a detailed overview of the mechanisms by which S100 family members influence resistance of tumors to cancer treatment, with a focus on the development of effective strategies for overcoming MDR.
Collapse
Affiliation(s)
- Xin Hua
- Southeast University Medical College, Nanjing, 210009, China.
| | - Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, Southeast University Medical College, Yancheng, 224000, China.
| | - Jinfang Jia
- Southeast University Medical College, Nanjing, 210009, China.
| | - Shanshan Chen
- Southeast University Medical College, Nanjing, 210009, China.
| | - Yue Sun
- Southeast University Medical College, Nanjing, 210009, China.
| | - Xiaoli Zhu
- Southeast University Medical College, Nanjing, 210009, China; Department of Respiratory Medicine, Zhongda Hospital of Southeast University Medical College, Nanjing, 210009, China.
| |
Collapse
|
64
|
Wang Y, Jia A, Bi Y, Wang Y, Liu G. Metabolic Regulation of Myeloid-Derived Suppressor Cell Function in Cancer. Cells 2020; 9:cells9041011. [PMID: 32325683 PMCID: PMC7226088 DOI: 10.3390/cells9041011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of immunosuppressive cells that play crucial roles in promoting tumor growth and protecting tumors from immune recognition in tumor-bearing mice and cancer patients. Recently, it has been shown that the metabolic activity of MDSCs plays an important role in the regulation of their inhibitory function, especially in the processes of tumor occurrence and development. The MDSC metabolism, such as glycolysis, fatty acid oxidation and amino acid metabolism, is rewired in the tumor microenvironment (TME), which enhances the immunosuppressive activity, resulting in effector T cell apoptosis and suppressive cell proliferation. Herein, we summarized the recent progress in the metabolic reprogramming and immunosuppressive function of MDSCs during tumorigenesis.
Collapse
Affiliation(s)
- Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.W.); (A.J.); (Y.W.)
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.W.); (A.J.); (Y.W.)
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.W.); (A.J.); (Y.W.)
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.W.); (A.J.); (Y.W.)
- Correspondence: ; Tel./Fax: +86-10-58800026
| |
Collapse
|
65
|
Hou Z, Liang X, Wang X, Zhou Z, Shi G. Myeloid-derived suppressor cells infiltration in non-small-cell lung cancer tumor and MAGE-A4 and NY-ESO-1 expression. Oncol Lett 2020; 19:3982-3992. [PMID: 32382343 PMCID: PMC7202317 DOI: 10.3892/ol.2020.11497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer/testis antigens melanoma-associated antigen 4 (MAGE-A4) and New York esophageal squamous cell carcinoma-1 (NY-ESO-1) are of clinical interest as biomarkers and present valuable targets for immunotherapy; however, they are poor prognostic markers in non-small cell lung cancer (NSCLC). In addition, myeloid derived suppressor cells (MDSCs) are recognized as a key element in tumor escape and progression. The aim of the present study was to investigate the diagnostic and prognostic value of MAGE-A4 and NY-ESO-1, and their association with MDSCs in NSCLC samples. The expression levels of MAGE-A4 and NY-ESO-1, and the infiltration of MDSCs (CD33+), were analyzed by immunohistochemistry of 67 tissue samples from patients with NSCLC. Overall, 58.33% of the NSCLC squamous cell carcinoma tissues and 94.7% of adenocarcinoma tissues were positive for MAGE-A4. NY-ESO-1 expression was observed in 52.78% of the squamous cell carcinoma tissues and 80% of the adenocarcinoma tissues. In primary adenocarcinoma tumor tissues, MAGE-A4 and NY-ESO-1 demonstrated a higher intensity of expression compared with the squamous cell carcinoma tissues. A total of 33 (91.7%) squamous cell carcinoma and 19 (95.0%) adenocarcinoma specimens were positive for CD33. The expression of MAGE-A4 and NY-ESO-1 antigens and infiltration of MDSCs was associated with poor prognosis of patients with NSCLC. Further studies investigating the association between these findings and underlying molecular mechanisms are required.
Collapse
Affiliation(s)
- Zhenbo Hou
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Xiao Liang
- Department of Thoracic Surgery, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Xinmei Wang
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Ziqiang Zhou
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Guilan Shi
- Department of Immunology, School of Nursing, Zibo Vocational Institute, Zibo, Shandong 255314, P.R. China.,Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
66
|
Roussel M, Lhomme F, Roe CE, Bartkowiak T, Gravelle P, Laurent C, Fest T, Irish JM. Mass cytometry defines distinct immune profile in germinal center B-cell lymphomas. Cancer Immunol Immunother 2020; 69:407-420. [PMID: 31919622 PMCID: PMC7764565 DOI: 10.1007/s00262-019-02464-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/26/2019] [Indexed: 02/08/2023]
Abstract
Tumor-associated macrophage and T-cell subsets are implicated in the pathogenesis of diffuse large B-cell lymphoma, follicular lymphoma, and classical Hodgkin lymphoma. Macrophages provide essential mechanisms of tumor immune evasion through checkpoint ligand expression and secretion of suppressive cytokines. However, normal and tumor-associated macrophage phenotypes are less well characterized than those of tumor-infiltrating T-cell subsets, and it would be especially valuable to know whether the polarization state of macrophages differs across lymphoma tumor microenvironments. Here, an established mass cytometry panel designed to characterize myeloid-derived suppressor cells and known macrophage maturation and polarization states was applied to characterize B-lymphoma tumors and non-malignant human tissue. High-dimensional single-cell analyses were performed using dimensionality reduction and clustering tools. Phenotypically distinct intra-tumor macrophage subsets were identified based on abnormal marker expression profiles that were associated with lymphoma tumor types. While it had been proposed that measurement of CD163 and CD68 might be sufficient to reveal macrophage subsets in tumors, results here indicated that S100A9, CCR2, CD36, Slan, and CD32 should also be measured to effectively characterize lymphoma-specific tumor macrophages. Additionally, the presence of phenotypically distinct, abnormal macrophage populations was closely linked to the phenotype of intra-tumor T-cell populations, including PD-1 expressing T cells. These results further support the close links between macrophage polarization and T-cell functional state, as well as the rationale for targeting tumor-associated macrophages in cancer immunotherapies.
Collapse
Affiliation(s)
- Mikael Roussel
- Laboratoire Hématologie, CHU Pontchaillou, Centre Hospitalier Universitaire de Rennes, Pôle Biologie, 2 rue Henri Le Guilloux, 35033, Rennes, France.
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France.
| | - Faustine Lhomme
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France
| | - Caroline E Roe
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 740B Preston Building, 2220 Pierce Avenue, Nashville, TN, 37232-6840, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Todd Bartkowiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 740B Preston Building, 2220 Pierce Avenue, Nashville, TN, 37232-6840, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pauline Gravelle
- Service Anatomie et Cytologie Pathologiques and UMR1037, Toulouse, France
| | - Camille Laurent
- Service Anatomie et Cytologie Pathologiques and UMR1037, Toulouse, France
| | - Thierry Fest
- Laboratoire Hématologie, CHU Pontchaillou, Centre Hospitalier Universitaire de Rennes, Pôle Biologie, 2 rue Henri Le Guilloux, 35033, Rennes, France
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 740B Preston Building, 2220 Pierce Avenue, Nashville, TN, 37232-6840, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
67
|
Pang X, Fan HY, Tang YL, Wang SS, Cao MX, Wang HF, Dai LL, Wang K, Yu XH, Wu JB, Tang YJ, Liang XH. Myeloid derived suppressor cells contribute to the malignant progression of oral squamous cell carcinoma. PLoS One 2020; 15:e0229089. [PMID: 32092078 PMCID: PMC7039453 DOI: 10.1371/journal.pone.0229089] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/29/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose The tumor-related myeloid derived suppressor cells (MDSCs), important immunosuppressive cells in tumor microenvironment, play an important role in the cancer progression. This study is aimed to investigate the crosstalk between MDSCs and oral squamous cell carcinoma (OSCC) cells and their role in the malignant progression of OSCC. Methods Immunochemistry (IHC) was used to investigate the expression of CD33 in 200 OSCC, 36 premalignant. CD33+ MDSCs were sorted and enriched via magnetic-activated cell sorting (MACS) from OSCC patients or health donor, and their phenotypes were identified by flow cytometry. With a co-culture system of MDSCs and OSCC, the effects of MDSCs on OSCC proliferation, apoptosis, migration invasion, epithelial-mesenchymal transition (EMT), and vasculogenic mimicry formation (VM) formation were assessed, respectively. Besides, peripheral blood mononuclear cells (PBMCs) from health donor were cultured with OSCC supernatant, the level of MDSCs and expressions of Arginase (Arg-1) and inducible nitric oxide synthase (iNOS) were measured. Results The number of MDSCs was increased in tumor tissues of OSCC patients, and was positively related to the T stage, pathological grade, lymph node metastasis and poor prognosis. Tumor-related MDSCs of the co-culture system promoted OSCC progression by contributing to cell proliferation, migration and invasion as well as inducing EMT and VM. In turn, OSCC cells had potential to induce MDSCs differentiation from PBMCs and increase the expression of Arg-1 and iNOS. Conclusion These indicated that the crosstalk between MDSCs and tumor cells facilitated the malignant progression of OSCC cells and the immune suppressive properties of MDSCs, which may provide new insights into tumor treatment on targeting tumor-associated immunosuppressive cells.
Collapse
Affiliation(s)
- Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hua-yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sha-sha Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ming-xin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hao-fan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lu-ling Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiang-hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing-biao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- * E-mail: (YJT); (XHL)
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (YJT); (XHL)
| |
Collapse
|
68
|
Bergenfelz C, Leandersson K. The Generation and Identity of Human Myeloid-Derived Suppressor Cells. Front Oncol 2020; 10:109. [PMID: 32117758 PMCID: PMC7025543 DOI: 10.3389/fonc.2020.00109] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 12/29/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are cells of myeloid lineage with a potent immunosuppressive capacity. They are present in cancer patients as well as in patients with severe inflammatory conditions and infections. MDSCs exist as two main subtypes, the granulocytic (G-MDSCs) and the monocytic (Mo-MDSCs) type, as defined by their surface phenotype and functions. While the functions of MDSCs have been investigated in depth, the origin of human MDSCs is less characterized and even controversial. In this review, we recapitulate theories on how MDSCs are generated in mice, and whether this knowledge is translatable into human MDSC biology, as well as on problems of defining MDSCs by their immature cell surface phenotype in relation to the plasticity of myeloid cells. Finally, the challenge of pharmacological targeting of MDSCs in the future is envisioned.
Collapse
Affiliation(s)
- Caroline Bergenfelz
- Department of Translational Medicine, Division of Experimental Infection Medicine, Lund University, Malmö, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Cancer Immunology, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
69
|
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide due to its late diagnosis and poor outcomes. As has been found for other types of tumors, there is increasing evidence that myeloid-derived suppressor cells (MDSCs) play important roles in the promotion and progression of LC. Here, we briefly introduce the definition of MDSCs and their immunosuppressive functions. We next specifically discuss the multiple roles of MDSCs in the lung tumor microenvironment, including those in tumor growth and progression mediated by inhibiting antitumor immunity, and the associations of MDSCs with a poor prognosis and increased resistance to chemotherapy and immunotherapy. Finally, we also discuss preclinical and clinical treatment strategies targeting MDSCs, which may have the potential to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jiacheng Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, 450052, Henan, China
| | - Lanling Weng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wenxue Tang
- Departments of Otolaryngology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Center for Precision Medicine of Zhengzhou University, NO.40 North Daxue Road, Zhengzhou, 450052, Henan, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
70
|
Myeloid-derived suppressor cells-new and exciting players in lung cancer. J Hematol Oncol 2020; 13:10. [PMID: 32005273 PMCID: PMC6995114 DOI: 10.1186/s13045-020-0843-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide due to its late diagnosis and poor outcomes. As has been found for other types of tumors, there is increasing evidence that myeloid-derived suppressor cells (MDSCs) play important roles in the promotion and progression of LC. Here, we briefly introduce the definition of MDSCs and their immunosuppressive functions. We next specifically discuss the multiple roles of MDSCs in the lung tumor microenvironment, including those in tumor growth and progression mediated by inhibiting antitumor immunity, and the associations of MDSCs with a poor prognosis and increased resistance to chemotherapy and immunotherapy. Finally, we also discuss preclinical and clinical treatment strategies targeting MDSCs, which may have the potential to enhance the efficacy of immunotherapy.
Collapse
|
71
|
Song XD, Wang YN, Zhang AL, Liu B. Advances in research on the interaction between inflammation and cancer. J Int Med Res 2019; 48:300060519895347. [PMID: 31885347 PMCID: PMC7686609 DOI: 10.1177/0300060519895347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inflammation is the body's response to cell damage. Cancer is a general
term that describes all malignant tumours. There are no confirmed data
on cancer-related inflammation, but some research suggests that up to
50% of cancers may be linked to inflammation, which has led to the
concept of ‘cancer-associated inflammation’. Although some cancer
patients do not appear to have a chronic inflammatory background,
there might be inflammatory cell infiltration in their cancer tissues.
The continuation of the inflammatory response plays an important role
in the initiation, promotion, malignant transformation, invasion and
metastasis of cancer. Anti-inflammatory therapy has been shown to have
some effects on the prevention and treatment of cancer, which supports
a pathogenic relationship between inflammation and cancer. This review
describes the interaction between inflammation and tumour development
and the main mechanism of regulation of the inflammatory response
during tumour development.
Collapse
Affiliation(s)
- Xin-Da Song
- Department of Urinary Surgery, Graduate School of Peking Union Medical College, Beijing Hospital, National Centre of Gerontology, Beijing, China
| | - Ya-Ni Wang
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ai-Li Zhang
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Bin Liu
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
72
|
Lauret Marie Joseph E, Laheurte C, Jary M, Boullerot L, Asgarov K, Gravelin E, Bouard A, Rangan L, Dosset M, Borg C, Adotévi O. Immunoregulation and Clinical Implications of ANGPT2/TIE2 + M-MDSC Signature in Non-Small Cell Lung Cancer. Cancer Immunol Res 2019; 8:268-279. [PMID: 31871121 DOI: 10.1158/2326-6066.cir-19-0326] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) promote immunosuppression and are a target in the field of immuno-oncology. Accumulation of MDSCs is associated with poor prognosis and resistance to immunotherapy for several cancers. Here, we describe an accumulation of a subset of circulating monocytic MDSCs (M-MDSC) overexpressing TIE2, the receptor for angiopoietin-2 (ANGPT2), in patients with non-small cell lung cancer (NSCLC). Greater numbers of circulating TIE2+ M-MDSCs were detected in patients with NSCLC compared with healthy subjects, and this accumulation correlated with ANGPT2 concentration in blood. The presence of an ANGPT2-rich environment was associated with impairment of preexisting T-cell responses against tumor-associated antigens (TAA) in patients with NSCLC. We demonstrated that ANGPT2 sensitizes TIE2+ M-MDSCs such that these cells suppress TAA-specific T cells. In patients with NSCLC, upregulation of the ANGPT2/TIE2+ M-MDSC signature in blood was associated with a poor prognosis. Our results identify the ANGPT2/TIE2+ M-MDSC axis as a participant in tumor immune evasion that should be taken into account in future cancer immunotherapy.
Collapse
Affiliation(s)
| | - Caroline Laheurte
- Université Bourgogne Franche-Comté, INSERM, EFS, BFC, UMR1098, RIGHT, Besançon, France.,Etablissement Français du Sang Bourgogne Franche-Comté, Plateforme de Biomonitoring, Besançon, France.,INSERM CIC-1431, CHU Besançon, Besançon, France
| | - Marine Jary
- Université Bourgogne Franche-Comté, INSERM, EFS, BFC, UMR1098, RIGHT, Besançon, France.,Service d'Oncologie médicale, CHU Besançon, Besançon, France
| | - Laura Boullerot
- Université Bourgogne Franche-Comté, INSERM, EFS, BFC, UMR1098, RIGHT, Besançon, France.,INSERM CIC-1431, CHU Besançon, Besançon, France
| | - Kamal Asgarov
- Université Bourgogne Franche-Comté, INSERM, EFS, BFC, UMR1098, RIGHT, Besançon, France
| | - Eléonore Gravelin
- Université Bourgogne Franche-Comté, INSERM, EFS, BFC, UMR1098, RIGHT, Besançon, France.,INSERM CIC-1431, CHU Besançon, Besançon, France
| | - Adeline Bouard
- Université Bourgogne Franche-Comté, INSERM, EFS, BFC, UMR1098, RIGHT, Besançon, France
| | - Laurie Rangan
- Université Bourgogne Franche-Comté, INSERM, EFS, BFC, UMR1098, RIGHT, Besançon, France
| | - Magalie Dosset
- Université Bourgogne Franche-Comté, INSERM, EFS, BFC, UMR1098, RIGHT, Besançon, France
| | - Christophe Borg
- Université Bourgogne Franche-Comté, INSERM, EFS, BFC, UMR1098, RIGHT, Besançon, France.,INSERM CIC-1431, CHU Besançon, Besançon, France.,Service d'Oncologie médicale, CHU Besançon, Besançon, France
| | - Olivier Adotévi
- Université Bourgogne Franche-Comté, INSERM, EFS, BFC, UMR1098, RIGHT, Besançon, France. .,Etablissement Français du Sang Bourgogne Franche-Comté, Plateforme de Biomonitoring, Besançon, France.,INSERM CIC-1431, CHU Besançon, Besançon, France.,Service d'Oncologie médicale, CHU Besançon, Besançon, France
| |
Collapse
|
73
|
Tao J, Han D, Gao S, Zhang W, Yu H, Liu P, Fu R, Li L, Shao Z. CD8 + T cells exhaustion induced by myeloid-derived suppressor cells in myelodysplastic syndromes patients might be through TIM3/Gal-9 pathway. J Cell Mol Med 2019; 24:1046-1058. [PMID: 31756785 PMCID: PMC6933355 DOI: 10.1111/jcmm.14825] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cells play a central role in antitumour immunity, which often exhibit ‘exhaustion’ in the setting of malignancy and chronic viral infection due to T cell immunoglobulin and mucin domain 3 (TIM3) and myeloid‐derived suppressor cells (MDSCs). Our team previously found that overactive MDSCs and exhausted TIM3+CD8+ T cells were observed in myelodysplastic syndromes (MDS) patients. However, it is not obvious whether MDSCs suppress CD8+ T cells through TIM3/Gal‐9 pathway. Here, Gal‐9, as the ligand of TIM3, was overexpressed in MDSCs. The levels of Gal‐9 in bone marrow supernatants, serum and culture supernatants of MDSCs from MDS patients were elevated. CD8+ T cells from MDS or normal controls produced less perforin and granzyme B and exhibited increased early apoptosis after co‐culture with MDSCs from MDS. Meanwhile, the cytokines produced by CD8+ T cells could be partially restored by TIM3/Gal‐9 pathway inhibitors. Furthermore, CD8+ T cells produced less perforin and granzyme B after co‐culture with excess exogenous Gal‐9, and the function of CD8+ T cells was similarly restored by TIM3/Gal‐9 pathway inhibitors. Expression of Notch1, EOMES (associated with perforin and granzyme B secretion), p‐mTOR and p‐AKT (associated with cell proliferation) was decreased in CD8+ T cells from MDS after co‐culture with excess exogenous Gal‐9. These suggested that MDSCs might be the donor of Gal‐9, and TIM3/Gal‐9 pathway might be involved in CD8+ T cells exhaustion in MDS, and that TIM3/Gal‐9 pathway inhibitor might be the promising candidate for target therapy of MDS in the future.
Collapse
Affiliation(s)
- Jinglian Tao
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Dong Han
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Shan Gao
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Zhang
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Yu
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Pei Liu
- Emergency Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Lijuan Li
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
74
|
Yamauchi Y, Safi S, Blattner C, Rathinasamy A, Umansky L, Juenger S, Warth A, Eichhorn M, Muley T, Herth FJF, Dienemann H, Platten M, Beckhove P, Utikal J, Hoffmann H, Umansky V. Circulating and Tumor Myeloid-derived Suppressor Cells in Resectable Non-Small Cell Lung Cancer. Am J Respir Crit Care Med 2019; 198:777-787. [PMID: 29617574 DOI: 10.1164/rccm.201708-1707oc] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Myeloid-derived suppressor cell (MDSC) expansion has been found to play a role in disease progression in patients with cancer. However, the characteristics of MDSCs in lung cancer are poorly understood. OBJECTIVES We prospectively investigated MDSCs and inflammatory factors in tumor and peripheral blood samples from patients with resectable non-small cell lung cancer and studied their correlations with the disease prognosis. METHODS A complex analysis of MDSC subsets and inflammatory mediators was performed using flow cytometry and a Bio-Plex assay. MEASUREMENTS AND MAIN RESULTS A significant increase in the frequency of circulating monocytic (M)-MDSCs was observed in the patients with non-small cell lung cancer compared with the healthy donors (HDs). Moreover, the frequencies of M- and polymorphonuclear (PMN)-MDSCs were higher in tumors than in the peripheral blood of the same patients. This accumulation was associated with elevated concentrations of inflammatory mediators involved in MDSC migration to and activation in the tumor microenvironment. An analysis of the MDSC immunosuppressive pattern showed increased programmed death-ligand 1 expression on circulating cells from patients compared with HDs. Tumor PMN-MDSCs displayed higher programmed death-ligand 1 expression levels than the same cells in the peripheral blood. The frequency of CCR5 (C-C chemokine receptor 5) expression on circulating M-MDSCs was significantly higher in the patients than in the HDs. Clinical data analysis revealed negative correlations between recurrence-free survival and the frequencies of PMN-MDSCs and CCR5+ M-MDSCs in the circulation but not in tumors. CONCLUSIONS Our findings suggest that the level of MDSCs in the peripheral blood but not in tumor tissues predicts recurrence after surgery.
Collapse
Affiliation(s)
| | | | - Carolin Blattner
- 2 Skin Cancer Unit.,3 Department of Dermatology, Venereology, and Allergology and
| | - Anchana Rathinasamy
- 5 Division of Translational Immunology and.,4 Regensburg Center for Interventional Immunology and University Hospital Regensburg, Regensburg, Germany; and
| | - Ludmila Umansky
- 6 Immune Monitoring Unit, National Center for Tumor Diseases, and
| | - Simone Juenger
- 6 Immune Monitoring Unit, National Center for Tumor Diseases, and
| | - Arne Warth
- 7 Institute of Pathology, Heidelberg University, Heidelberg, Germany.,8 Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany
| | | | - Thomas Muley
- 9 Translational Research Unit, and.,8 Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany
| | - Felix J F Herth
- 10 Pneumology and Critical Care Medicine, Thoraxklinik, and.,8 Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany
| | - Hendrik Dienemann
- 1 Department of Thoracic Surgery.,8 Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany
| | - Michael Platten
- 6 Immune Monitoring Unit, National Center for Tumor Diseases, and.,11 DKTK Clinical Cooperation Unit, Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany.,12 Department of Neurology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Philipp Beckhove
- 5 Division of Translational Immunology and.,4 Regensburg Center for Interventional Immunology and University Hospital Regensburg, Regensburg, Germany; and
| | - Jochen Utikal
- 2 Skin Cancer Unit.,3 Department of Dermatology, Venereology, and Allergology and
| | | | - Viktor Umansky
- 2 Skin Cancer Unit.,3 Department of Dermatology, Venereology, and Allergology and
| |
Collapse
|
75
|
Núñez-Naveira L, Mariñas-Pardo LA, Montero-Martínez C. Mass Spectrometry Analysis of the Exhaled Breath Condensate and Proposal of Dermcidin and S100A9 as Possible Markers for Lung Cancer Prognosis. Lung 2019; 197:523-531. [PMID: 31115649 DOI: 10.1007/s00408-019-00238-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/11/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION New sampling techniques to analyse lung diseases, such as exhaled breath condensate (EBC), are a breakthrough in research field since they are less invasive and less traumatic for the patients compared to lung biopsies. Nevertheless, there is an increasing need to optimize not only the sampling protocols but the storage and processing of specimens to get accurate results. METHODS Exhaled breath condensate was sampled employing the ECoScreen device. Concentrated protein was obtained after ultracentrifugation, lyophilization and reversed-phase chromatography. MALDI-time of flight (TOF)/TOF mass spectrometry (MS) was applied to determine the protein profile in EBC. Commercially available ELISA kits were used to detect the selected biomarker in the EBC after MALDI-MS proteins identification. RESULTS The obtained EBC volume after two periods of 10 min doubled the amount obtained after 20 min. One hundred peptides were detected by MALDI-MS, and 18 proteins were identified after reversed-phase chromatography concentration. Dermcidin (P81605), S100A9 (P06702) and Cathepsin G (P08311) were selected to be analysed by ELISA. Dermcidin and S100A9 expression were statistically higher in lung cancer versus healthy volunteers. VEGF concentrations decreased, respectively, by 5.94 and 11.42-fold after 1 and 2 years of frozen EBC preservation in parallel with the declined number of proteins identified by MALDI-MS. CONCLUSION Exhaled breath condensate analysis combined with MS technique may become a valuable method for lung cancer screening and Dermcidin and S100A9 may serve as biomarkers for lung cancer diagnosis or prognosis.
Collapse
Affiliation(s)
- Laura Núñez-Naveira
- University Hospital Complex of A Coruña (CHUAC), As Xubias de Arriba, 84, 15006, A Coruña, Spain.,Biomedical Research Institute of A Coruña (INIBIC), As Xubias de Arriba, 84, 15006, A Coruña, Spain
| | - Luis Antonio Mariñas-Pardo
- University Hospital Complex of A Coruña (CHUAC), As Xubias de Arriba, 84, 15006, A Coruña, Spain. .,Biomedical Research Institute of A Coruña (INIBIC), As Xubias de Arriba, 84, 15006, A Coruña, Spain.
| | - Carmen Montero-Martínez
- University Hospital Complex of A Coruña (CHUAC), As Xubias de Arriba, 84, 15006, A Coruña, Spain
| |
Collapse
|
76
|
Tavakkoli M, Wilkins CR, Mones JV, Mauro MJ. A Novel Paradigm Between Leukocytosis, G-CSF Secretion, Neutrophil-to-Lymphocyte Ratio, Myeloid-Derived Suppressor Cells, and Prognosis in Non-small Cell Lung Cancer. Front Oncol 2019; 9:295. [PMID: 31080780 PMCID: PMC6497733 DOI: 10.3389/fonc.2019.00295] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/29/2019] [Indexed: 12/23/2022] Open
Abstract
Leukocytosis is a common feature of malignancies. While controversial, there appears to be an association between the degree of tumor-related leukocytosis and prognosis. In this paper, we provide evidence supporting an untapped clinical paradigm linking G-CSF secretion to the induction of leukocytosis and expansion of myeloid-derived suppressor cells, providing an explanation for the association between leukocytosis, elevated neutrophil-to-lymphocyte ratios and prognosis in non-small cell lung cancer. Clinically validating this mechanism may identify MDSCs and G-CSF as dynamic markers of early disease progression and therapeutic response, and shed light onto novel therapeutic avenues for the treatment of patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Montreh Tavakkoli
- Department of Internal Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, United States
| | - Cy R Wilkins
- Department of Hematology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jodi V Mones
- Department of Hematology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Michael J Mauro
- Department of Hematology Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
77
|
Zhao H, Feng R, Peng A, Li G, Zhou L. The expanding family of noncanonical regulatory cell subsets. J Leukoc Biol 2019; 106:369-383. [DOI: 10.1002/jlb.6ru0918-353rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hai Zhao
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Ridong Feng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Aijun Peng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Gaowei Li
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Liangxue Zhou
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| |
Collapse
|
78
|
Okła K, Czerwonka A, Wawruszak A, Bobiński M, Bilska M, Tarkowski R, Bednarek W, Wertel I, Kotarski J. Clinical Relevance and Immunosuppressive Pattern of Circulating and Infiltrating Subsets of Myeloid-Derived Suppressor Cells (MDSCs) in Epithelial Ovarian Cancer. Front Immunol 2019; 10:691. [PMID: 31001284 PMCID: PMC6456713 DOI: 10.3389/fimmu.2019.00691] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/13/2019] [Indexed: 01/02/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expansion is a hallmark of cancer. Three major MDSC subsets defined as monocytic (M)-MDSCs, polymorphonuclear (PMN)-MDSCs and early stage (e)MDSCs can be revealed in human diseases. However, the clinical relevance and immunosupressive pattern of these cells in epithelial ovarian cancer (EOC) are unknown. Therefore, we performed a comprehensive analysis of each MDSC subset and immunosupressive factors in the peripheral blood (PB), peritoneal fluid (PF), and the tumor tissue (TT) samples from EOC and integrated this data with the patients' clinicopathological characteristic. MDSCs were analyzed using multicolor flow cytometry. Immunosuppressive factors analysis was performed with ELISA and qRT-PCR. The level of M-MDSCs in the PB/PF/TT of EOC was significantly higher than in healthy donors (HD); frequency of PMN-MDSCs was significantly greater in the TT than in the PB/PF and HD; while the level of eMDSCs was greater in the PB compared with the PF and HD. Elevated abundance of tumor-infiltrating M-MDSCs was associated with advanced stage and high grade of EOC. An analysis of immunosuppressive pattern showed significantly increased blood-circulating ARG/IDO/IL-10-expressing M- and PMN-MDSCs in the EOC patients compared with HD and differences in the accumulation of these subsets in the three tumor immune microenvironments (TIME). This accumulation was positively correlated with levels of TGF-β and ARG1 in the plasma and PF. Low level of blood-circulating and tumor-infiltrating M-MDSCs, but neither PMN-MDSCs nor eMDSCs was strongly associated with prolonged survival in ovarian cancer patients. Our results highlight M-MDSCs as the subset with potential the highest clinical significance.
Collapse
Affiliation(s)
- Karolina Okła
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland.,Tumor Immunology Laboratory, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Marcin Bobiński
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Monika Bilska
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Rafał Tarkowski
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Wiesława Bednarek
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Iwona Wertel
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland.,Tumor Immunology Laboratory, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
79
|
Hernandez-Martinez JM, Vergara E, Montes-Servín E, Arrieta O. Interplay between immune cells in lung cancer: beyond T lymphocytes. Transl Lung Cancer Res 2019; 7:S336-S340. [PMID: 30705849 DOI: 10.21037/tlcr.2018.11.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan), Mexico City, Mexico.,CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Edgar Vergara
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan), Mexico City, Mexico
| | - Edgar Montes-Servín
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan), Mexico City, Mexico
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan), Mexico City, Mexico
| |
Collapse
|
80
|
Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T, Mittal V. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer 2019; 19:9-31. [PMID: 30532012 PMCID: PMC6749995 DOI: 10.1038/s41568-018-0081-9] [Citation(s) in RCA: 758] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is a major global health problem, as it is the leading cause of cancer-related deaths worldwide. Major advances in the identification of key mutational alterations have led to the development of molecularly targeted therapies, whose efficacy has been limited by emergence of resistance mechanisms. US Food and Drug Administration (FDA)-approved therapies targeting angiogenesis and more recently immune checkpoints have reinvigorated enthusiasm in elucidating the prognostic and pathophysiological roles of the tumour microenvironment in lung cancer. In this Review, we highlight recent advances and emerging concepts for how the tumour-reprogrammed lung microenvironment promotes both primary lung tumours and lung metastasis from extrapulmonary neoplasms by contributing to inflammation, angiogenesis, immune modulation and response to therapies. We also discuss the potential of understanding tumour microenvironmental processes to identify biomarkers of clinical utility and to develop novel targeted therapies against lung cancer.
Collapse
Affiliation(s)
- Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Geoffrey J Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey L Port
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ashish Saxena
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Brendon Stiles
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Timothy McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
81
|
Prelaj A, Tay R, Ferrara R, Chaput N, Besse B, Califano R. Predictive biomarkers of response for immune checkpoint inhibitors in non-small-cell lung cancer. Eur J Cancer 2018; 106:144-159. [PMID: 30528799 DOI: 10.1016/j.ejca.2018.11.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/10/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
Immune checkpoint blockade has been a pivotal development in the management of advanced non-small-cell lung cancer (NSCLC). Although durable antitumour activity and improved survival have been observed in a subset of patients, there is a need for additional predictive biomarkers to improve patient selection and avoid toxicity in potential non-responders. This review will address the use and limitations of tumour programmed death-ligand 1 expression as a predictive biomarker and review emerging biomarker strategies specifically related to NSCLC including genetic alterations (tumour mutation burden, loss and gain activated mutations), tumour-related factors (tumour microenvironment) and factors related to the host immune system. Novel approaches in biomarker detection such as peripheral blood monitoring will also be reviewed.
Collapse
Affiliation(s)
- Arsela Prelaj
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Department of Radiological, Pathological and Oncological Science, Sapienza University of Rome, Italy.
| | - Rebecca Tay
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
| | - Roberto Ferrara
- Laboratory of Immunomonitoring in Oncology, UMS 3655 CNRS/US 23 INSERM, Gustave Roussy, Villejuif, France.
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, UMS 3655 CNRS/US 23 INSERM, Gustave Roussy, Villejuif, France; Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France.
| | - Benjamin Besse
- Cancer Medicine Department, Gustave Roussy, Villejuif, France; Paris-Sud University, Orsay, France.
| | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Department of Medical Oncology, Manchester University NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
82
|
Liu P, Wang H, Liang Y, Hu A, Xing R, Jiang L, Yi L, Dong J. LINC00852 Promotes Lung Adenocarcinoma Spinal Metastasis by Targeting S100A9. J Cancer 2018; 9:4139-4149. [PMID: 30519313 PMCID: PMC6277606 DOI: 10.7150/jca.26897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/31/2018] [Indexed: 01/29/2023] Open
Abstract
Background: Lung adenocarcinoma has a strong tendency to develop into bone metastases, especially spinal metastases (SM). Long noncoding RNAs (lncRNAs) play critical roles in regulating several biological processes in cancer cells. However, the mechanisms underlying the roles of lncRNAs in the development of SM have not been elucidated to date. Methods: Clinical specimens were collected for analysis of differentially expressed lncRNAs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to examine the effects of these genes on pathways. RNA pull-down was utilized to identify the targeting protein of lncRNAs. The effects of lncRNA on its target were detected in A549 and SPCA-1 cells via perturbation of the lncRNA expression. Oncological behavioral changes in transfected cells and phosphorylation of kinases in the relevant pathways, with or without inhibitors, were observed. Further, tumorigenicity was found to occur in experimental nude mice. Results: LINC00852 and the mitogen-activated protein kinase (MAPK) pathway were found to be associated with SM. Moreover, the LINC00852 target S100A9 had a positive regulatory role in the progression, migration, invasion, and metastasis of lung adenocarcinoma cells, both in vitro and in vivo. Furthermore, S100A9 strongly activated the P38 and REK1/2 kinases, and slightly activated the phosphorylation of the JNK kinase in the MAPK pathway in A549 and SPCA-1 cells. Conclusion: LINC00852 targets S100A9 to promote progression and oncogenic ability in lung adenocarcinoma SM through activation of the MAPK pathway. These findings suggest a potential novel target for early intervention against SM in lung cancer.
Collapse
Affiliation(s)
- Peng Liu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Houlei Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rong Xing
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Yi
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
83
|
Dajon M, Iribarren K, Petitprez F, Marmier S, Lupo A, Gillard M, Ouakrim H, Victor N, Vincenzo DB, Joubert PE, Kepp O, Kroemer G, Alifano M, Damotte D, Cremer I. Toll like receptor 7 expressed by malignant cells promotes tumor progression and metastasis through the recruitment of myeloid derived suppressor cells. Oncoimmunology 2018; 8:e1505174. [PMID: 30546943 PMCID: PMC6287801 DOI: 10.1080/2162402x.2018.1505174] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
In non-small cell lung carcinoma (NSCLC), stimulation of toll-like receptor 7 (TLR7), a receptor for single stranded RNA, is linked to tumor progression and resistance to anticancer chemotherapy. However, the mechanism of this effect has been elusive. Here, using a murine model of lung adenocarcinoma, we demonstrate a key role for TLR7 expressed by malignant (rather than by stromal and immune) cells, in the recruitment of myeloid derived suppressor cells (MDSCs), induced after TLR7 stimulation, resulting in accelerated tumor growth and metastasis. In adenocarcinoma patients, high TLR7 expression on malignant cells was associated with poor clinical outcome, as well as with a gene expression signature linked to aggressiveness and metastastic dissemination with high abundance of mRNA encoding intercellular adhesion molecule 1 (ICAM-1), cytokeratins 7 and 19 (KRT-7 and 19), syndecan 4 (SDC4), and p53. In addition, lung tumors expressing high levels of TLR7 have a phenotype of epithelial mesenchymal transition with high expression of vimentin and low abundance of E-cadherin. These data reveal a crucial role for cancer cell-intrinsic TLR7 expression in lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Marion Dajon
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kristina Iribarren
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Florent Petitprez
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Solenne Marmier
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Audrey Lupo
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Departments of Pathology and Thoracic Surgery, Hospital Cochin AP-HP, Paris, France
| | - Mélanie Gillard
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hanane Ouakrim
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Navas Victor
- Unité de de Biologie Cellulaire des Lymphocytes INSERM U1221, Institut Pasteur, Paris, France
| | - Di Bartolo Vincenzo
- Unité de de Biologie Cellulaire des Lymphocytes INSERM U1221, Institut Pasteur, Paris, France
| | - Pierre Emmanuel Joubert
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Oliver Kepp
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Cell Biology and Metabolomics Platforms, Villejuif, France.,Equipe 11 labellisee Ligue Nationale Contre le Cancer, Paris, France
| | - Guido Kroemer
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Cell Biology and Metabolomics Platforms, Villejuif, France.,Equipe 11 labellisee Ligue Nationale Contre le Cancer, Paris, France.,Pôle de Biologie, Hopital Europeen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Alifano
- Departments of Pathology and Thoracic Surgery, Hospital Cochin AP-HP, Paris, France
| | - Diane Damotte
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Departments of Pathology and Thoracic Surgery, Hospital Cochin AP-HP, Paris, France
| | - Isabelle Cremer
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
84
|
Barrera L, Montes-Servín E, Hernandez-Martinez JM, Orozco-Morales M, Montes-Servín E, Michel-Tello D, Morales-Flores RA, Flores-Estrada D, Arrieta O. Levels of peripheral blood polymorphonuclear myeloid-derived suppressor cells and selected cytokines are potentially prognostic of disease progression for patients with non-small cell lung cancer. Cancer Immunol Immunother 2018; 67:1393-1406. [PMID: 29974189 PMCID: PMC11028126 DOI: 10.1007/s00262-018-2196-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/29/2018] [Indexed: 02/08/2023]
Abstract
Polymorphonuclear-MDSC (PMN-MDSC) have emerged as an independent prognostic factor for survival in NSCLC. Similarly, cytokine profiles have been used to identify subgroups of NSCLC patients with different clinical outcomes. This prospective study investigated whether the percentage of circulating PMN-MDSC, in conjunction with the levels of plasma cytokines, was more informative of disease progression than the analysis of either factor alone. We analyzed the phenotypic and functional profile of peripheral blood T-cell subsets (CD3+, CD3+CD4+ and CD3+CD8+), neutrophils (CD66b+) and polymorphonuclear-MDSC (PMN-MDSC; CD66b+CD11b+CD15+CD14-) as well as the concentration of 14 plasma cytokines (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12 p70, IL-17A, IL-27, IL-29, IL-31, and IL-33, TNF-α, IFN-γ) in 90 treatment-naïve NSCLC patients and 25 healthy donors (HD). In contrast to HD, NSCLC patients had a higher percentage of PMN-MDSC and neutrophils (P < 0.0001) but a lower percentage of CD3+, CD3+CD4+ and CD3+CD8+ cells. PMN-MDSC% negatively correlated with the levels of IL1-β, IL-2, IL-27 and IL-29. Two groups of patients were identified according to the percentage of circulating PMN-MDSC. Patients with low PMN-MDSC (≤ 8%) had a better OS (22.1 months [95% CI 4.3-739.7]) than patients with high PMN-MDSC (9.3 months [95% CI 0-18.8]). OS was significantly different among groups of patients stratified by both PMN-MDSC% and cytokine levels. In sum, our findings provide evidence suggesting that PMN-MDSC% in conjunction with the levels IL-1β, IL-27, and IL-29 could be a useful strategy to identify groups of patients with potentially unfavorable prognoses.
Collapse
Affiliation(s)
- Lourdes Barrera
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
- Global Medical Affairs Oncology, AstraZeneca, Gaithersburg, USA
| | - Edgar Montes-Servín
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Juan-Manuel Hernandez-Martinez
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
- CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Mario Orozco-Morales
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Elizabeth Montes-Servín
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - David Michel-Tello
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Renato Augusto Morales-Flores
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
- Postgraduate Unit, Faculty of Medicine, Head of Thoracic Oncology Unit, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Flores-Estrada
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Oscar Arrieta
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico.
- Postgraduate Unit, Faculty of Medicine, Head of Thoracic Oncology Unit, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Head of Thoracic Oncology Unit, Instituto Nacional de Cancerología, Mexico City, Mexico, San Fernando 22 Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
| |
Collapse
|
85
|
Wang PF, Song SY, Wang TJ, Ji WJ, Li SW, Liu N, Yan CX. Prognostic role of pretreatment circulating MDSCs in patients with solid malignancies: A meta-analysis of 40 studies. Oncoimmunology 2018; 7:e1494113. [PMID: 30288362 PMCID: PMC6169582 DOI: 10.1080/2162402x.2018.1494113] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have been shown to contribute to tumor progression, mainly through immune suppression. Inverse correlations have been observed between MDSC levels and patient survival for various malignancies. The purpose of this meta-analysis was to evaluate the prognostic value of pretreatment circulating MDSCs. We searched MEDLINE and EMBASE from their inceptions to September 2017 to identify relevant articles. Using a fixed or random effects model, pooled hazard ratios (HRs) were estimated for overall survival (OS) and combined disease-free survival, progression-free survival, and recurrence-free survival (DFS/PFS/RFS). A total of 40 studies comprising 2721 were included. For solid tumors, high levels of pretreatment circulating MDSCs were significantly associated with worse OS (HR = 1.796, 95% CI = 1.587-2.032) and DFS/PFS/RFS (HR = 2.459, 95% CI = 2.018-2.997). Breast cancer showed the largest association between high MDSC levels and worse OS (pooled HR = 3.053). Elevated MDSCs were also associated with worse OS for mixed-stage tumors (pooled HR = 1.659) and advanced-stage tumors (pooled HR = 2.337). Furthermore, both monocytic-MDSCs (M-MDSCs) and granulocytic or polymorphonuclear (PMN-MDSCs) showed negative associations with survival outcomes. Overall, high levels of pretreatment circulating MDSCs negatively influenced survival in most cancers. Pretreatment circulating MDSCs should be taken into account to further improve prognostic evaluation and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Si-Ying Song
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting-Jian Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Wen-Jun Ji
- Department of Neurosurgery, Key Laboratory, The Second Hospital of Yulin, Xi’an Jiao tong University, Xi’an, China
| | - Shou-Wei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ning Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chang-Xiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
86
|
Okla K, Wertel I, Wawruszak A, Bobiński M, Kotarski J. Blood-based analyses of cancer: Circulating myeloid-derived suppressor cells - is a new era coming? Crit Rev Clin Lab Sci 2018; 55:376-407. [PMID: 29927668 DOI: 10.1080/10408363.2018.1477729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Progress in cancer treatment made by the beginning of the 21st century has shifted the paradigm from one-size-fits-all to tailor-made treatment. The popular vision, to study solid tumors through the relatively noninvasive sampling of blood, is one of the most thrilling and rapidly advancing fields in global cancer diagnostics. From this perspective, immune-cell analysis in cancer could play a pivotal role in oncology practice. This approach is driven both by rapid technological developments, including the analysis of circulating myeloid-derived suppressor cells (cMDSCs), and by the increasing application of (immune) therapies, the success or failure of which may depend on effective and timely measurements of relevant biomarkers. Although the implementation of these powerful noninvasive diagnostic capabilities in guiding precision cancer treatment is poised to change the ways in which we select and monitor cancer therapy, challenges remain. Here, we discuss the challenges associated with the analysis and clinical aspects of cMDSCs and assess whether the problems in implementing tumor-evolution monitoring as a global tool in personalized oncology can be overcome.
Collapse
Affiliation(s)
- Karolina Okla
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| | - Iwona Wertel
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| | - Anna Wawruszak
- b Department of Biochemistry and Molecular Biology , Medical University of Lublin , Lublin , Poland
| | - Marcin Bobiński
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| | - Jan Kotarski
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
87
|
Feng PH, Chen KY, Huang YC, Luo CS, Wu SM, Chen TT, Lee CN, Yeh CT, Chuang HC, Han CL, Lin CF, Lee WH, Kuo CH, Lee KY. Bevacizumab Reduces S100A9-Positive MDSCs Linked to Intracranial Control in Patients with EGFR-Mutant Lung Adenocarcinoma. J Thorac Oncol 2018; 13:958-967. [PMID: 29684573 DOI: 10.1016/j.jtho.2018.03.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION In vitro models have demonstrated immune-modulating effects of bevacizumab (BEV). Combinations of an EGFR tyrosine kinase inhibitor (TKI) with BEV improve progression-free survival (PFS) in patients with EGFR-mutated lung adenocarcinoma. How BEV confers this clinical effect and the underlying mechanisms of its effect are not clear. METHODS A total of 55 patients with stage 4 EGFR-mutated lung adenocarcinoma were enrolled. Myeloid-derived suppressor cells (MDSCs), type 1 and type 2 helper T cells, and cytotoxic T lymphocytes were analyzed by flow cytometry. Clinical data were collected for analysis. RESULT In all, 25 patients received EGFR TKI and BEV combination therapy (the BEV/TKI group) and 30 patients received EGFR TKI monotherapy (the TKI-only group). The BEV/TKI group had longer PFS (23.0 versus 8.6 months [p = 0.001]) and, in particular, better intracranial control rates (80.0% versus 43.0% [p = 0.03]), a longer time to intracranial progression (49.1 versus 12.9 months [p = 0.002]), and fewer new brain metastases (38.0% versus 71.0% [p = 0.03]) than the TKI-only group did. The BEV/TKI group had a lower percentage of circulating MDSCs (20.4% ± 6.5% before treatment versus 12.8% ± 6.6% after treatment, respectively [p = 0.02]), and higher percentages of type 1 helper T cells (22.9% ± 15.3% versus 33.2% ± 15.6% [p < 0.01]) and cytotoxic T lymphocytes (15.5% ± 7.2% versus 21.2% ± 5.6% [p < 0.01]) after treatment, changes that were not seen in the TKI-only group. Pretreatment percentage of MDSCs was correlated with PFS, with this correlation attenuated after BEV/TKI treatment. Percentage of MDSCs was also associated with shorter time to intracranial progression. CONCLUSION Combining a EGFR TKI with BEV extended PFS and protected against brain metastasis. Those effects were probably due to the reduction of circulating S100A9-positive MDSCs by BEV, which leads to restoration of effective antitumor immunity. Our data also support the rationale for a BEV-immune checkpoint inhibitor combination.
Collapse
Affiliation(s)
- Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Republic of China; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Republic of China; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Republic of China; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Republic of China
| | - Yu-Chen Huang
- Division of Pulmonary Medicine, Department of Internal Medicine, Chang Gung Medical Foundation, Linko Branch, Taoyuan, Republic of China
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Republic of China
| | - Shen Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Republic of China
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Republic of China
| | - Chun-Nin Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Republic of China
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, Taipei, Republic of China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Republic of China
| | - Chia-Li Han
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Republic of China
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Republic of China
| | - Wei-Hwa Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei, Republic of China
| | - Chih-Hsi Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, Chang Gung Medical Foundation, Linko Branch, Taoyuan, Republic of China
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Republic of China; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Republic of China.
| |
Collapse
|
88
|
Wu L, Liu H, Guo H, Wu Q, Yu S, Qin Y, Wang G, Wu Q, Zhang R, Wang L, Zhang L, Liu C, Jiao S, Liu T. Circulating and tumor-infiltrating myeloid-derived suppressor cells in cervical carcinoma patients. Oncol Lett 2018; 15:9507-9515. [PMID: 29844835 DOI: 10.3892/ol.2018.8532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/20/2018] [Indexed: 12/18/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) serve an immunosuppressive role in human tumors. Human Lin-/low human leukocyte antigen-antigen D related (HLA-DR-) cluster of differentiation (CD)-11b+CD33+ MDSCs are closely linked with tumor staging, progression, clinical therapeutic efficacy and prognosis for various types of tumors. The present study employed multiparametric flow cytometry to measure the proportion of Lin-/lowHLA-DR-CD11b+CD33+ MDSCs in the peripheral blood of 105 cervical cancer patients and 50 healthy subjects. The level of MDSC was higher in tumor patients than in the normal control group and this was closely associated with clinical staging. Further analysis of tumor-infiltrating MDSCs was performed in 22 patients. The MDSC proportions in tumor tissue were significantly higher than those in the corresponding adjacent tissue. The phenotypic characteristics of Lin-/lowHLA-DR-CD11b+CD33+ MDSCs were then evaluated and the results revealed that they express high CD13 and CD39, and low CD115, CD117, CD124 and programmed cell death ligand 1; they were also devoid of CD14, CD15 and CD66b. MDSCs and T-cells from peripheral blood were sorted by flow cytometry for co-culture experiments. Lin-/lowHLA-DR-CD11b+CD33+ MDSCs from patients significantly inhibited the proliferation of CD4 and CD8 T-cells. Furthermore, functional analysis verified that MDSCs from cervical cancer patients could inhibit interleukin-2 and interferon-γ production from T-cells. In addition, the associations between peripheral circulating MDSCs and tumor infiltrating MDSCs, and tumor relapse and metastasis were analyzed. The number of peripheral MDSCs and MDSCs in tumor tissue were observed to be associated with relapse-free survival. Thus, MDSCs in the peripheral blood and tumors of cervical cancer patients have a significant immunosuppressive effect, and are associated with cervical cancer staging and metastasis. These results suggest that targeting MDSCs may increase antitumor immunity and increase the efficacy of cervical cancer therapies.
Collapse
Affiliation(s)
- Liangliang Wu
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hongyu Liu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hongchuan Guo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Qiong Wu
- Department of Gynaecology and Obstetrics, Dongzhimen Hospital, Beijing 100700, P.R. China
| | - Songyan Yu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuanyuan Qin
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Gang Wang
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Qiyan Wu
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Rong Zhang
- Department of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Lingxiong Wang
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lijun Zhang
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Chunxi Liu
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shunchang Jiao
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Tianyi Liu
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
89
|
Li L, Wang L, Li J, Fan Z, Yang L, Zhang Z, Zhang C, Yue D, Qin G, Zhang T, Li F, Chen X, Ping Y, Wang D, Gao Q, He Q, Huang L, Li H, Huang J, Zhao X, Xue W, Sun Z, Lu J, Yu JJ, Zhao J, Zhang B, Zhang Y. Metformin-Induced Reduction of CD39 and CD73 Blocks Myeloid-Derived Suppressor Cell Activity in Patients with Ovarian Cancer. Cancer Res 2018; 78:1779-1791. [PMID: 29374065 PMCID: PMC5882589 DOI: 10.1158/0008-5472.can-17-2460] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 12/21/2022]
Abstract
Metformin is a broadly prescribed drug for type 2 diabetes that exerts antitumor activity, yet the mechanisms underlying this activity remain unclear. We show here that metformin treatment blocks the suppressive function of myeloid-derived suppressor cells (MDSC) in patients with ovarian cancer by downregulating the expression and ectoenzymatic activity of CD39 and CD73 on monocytic and polymononuclear MDSC subsets. Metformin triggered activation of AMP-activated protein kinase α and subsequently suppressed hypoxia-inducible factor α, which was critical for induction of CD39/CD73 expression in MDSC. Furthermore, metformin treatment correlated with longer overall survival in diabetic patients with ovarian cancer, which was accompanied by a metformin-induced reduction in the frequency of circulating CD39+CD73+ MDSC and a concomitant increase in the antitumor activities of circulating CD8+ T cells. Our results highlight a direct effect of metformin on MDSC and suggest that metformin may yield clinical benefit through improvement of antitumor T-cell immunity by dampening CD39/CD73-dependent MDSC immunosuppression in ovarian cancer patients.Significance: The antitumor activity of an antidiabetes drug is attributable to reduced immunosuppressive activity of myeloid-derived tumor suppressor cells. Cancer Res; 78(7); 1779-91. ©2018 AACR.
Collapse
Affiliation(s)
- Lifeng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Liping Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jieyao Li
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhirui Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Dongli Yue
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Tengfei Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Qun Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Qianyi He
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hong Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jianmin Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xuan Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jane J Yu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Bin Zhang
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
90
|
Immunosuppressive Role of Myeloid-Derived Suppressor Cells and Therapeutic Targeting in Lung Cancer. J Immunol Res 2018; 2018:6319649. [PMID: 29765990 PMCID: PMC5889862 DOI: 10.1155/2018/6319649] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide due to its late diagnosis and poor outcome. Immunotherapy is becoming more and more encouraging and promising in lung cancer therapy. Myeloid-derived suppressor cells (MDSCs) are the main tumor suppressor factors, and the treatment strategy of targeting MDSCs is gradually emerging. In this review, we summarize what is currently known about the role of MDSCs in lung cancer. In view of the emerging importance of MDSCs in lung cancer, the treatment of targeting MDSCs will be useful to the control of the development and progression of lung cancer. However, the occurrence, metastasis, and survival of cancer is the result of multiple factors and multiple mechanisms, so combined treatments using different strategies will become the major therapy method for lung cancer in the future.
Collapse
|
91
|
Abstract
Myeloid-derived suppressor cells (MDSCs) have a strong immunosuppressive character that allows them to regulate immune responses and hinder overt inflammatory responses. In cancer, this leads to tumor immune evasion and disease progression. MDSCs come in at least two forms: monocytic (Mo-MDSCs) and granulocytic (G-MDSCs). The classical definition of MDSCs as immature myeloid cells blocked from differentiating has been challenged by recent studies suggesting that Mo-MDSCs and G-MDSCs may represent monocytes and granulocytes that have acquired immunosuppressive properties. The molecular mechanism behind their generation and their true origins are now widely debated. In this review we discuss the different proposed mechanisms of the generation of both types of MDSCs, with a special focus on human MDSCs in cancer.
Collapse
|
92
|
Kiss M, Van Gassen S, Movahedi K, Saeys Y, Laoui D. Myeloid cell heterogeneity in cancer: not a single cell alike. Cell Immunol 2018; 330:188-201. [PMID: 29482836 DOI: 10.1016/j.cellimm.2018.02.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/10/2018] [Accepted: 02/11/2018] [Indexed: 12/14/2022]
Abstract
Tumors of various histological origins show abundant infiltration of myeloid cells from early stages of disease progression. These cells have a profound impact on antitumor immunity and influence fundamental processes that underlie malignancy, including neoangiogenesis, sustained cancer cell proliferation, metastasis and therapy resistance. For these reasons, development of therapeutic approaches to deplete or reprogram myeloid cells in cancer is an emerging field of interest. However, knowledge about the heterogeneity of myeloid cells in tumors and their variability between patients and disease stages is still limited. In this review, we summarize the most recent advances in our understanding about how the phenotype of tumor-associated macrophages, monocytes, neutrophils, myeloid-derived suppressor cells and dendritic cells is dictated by their ontogeny, activation status and localization. We also outline major open questions that will only be resolved by applying high-dimensional single-cell technologies and systems biology approaches in the analysis of the tumor microenvironment.
Collapse
Affiliation(s)
- Mate Kiss
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium.
| | - Sofie Van Gassen
- IDLab, Department of Information Technology, Ghent University - IMEC, Ghent, Belgium; Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | - Kiavash Movahedi
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Damya Laoui
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium.
| |
Collapse
|
93
|
Feng PH, Yu CT, Chen KY, Luo CS, Wu SM, Liu CY, Kuo LW, Chan YF, Chen TT, Chang CC, Lee CN, Chuang HC, Lin CF, Han CL, Lee WH, Lee KY. S100A9 + MDSC and TAM-mediated EGFR-TKI resistance in lung adenocarcinoma: the role of RELB. Oncotarget 2018; 9:7631-7643. [PMID: 29484139 PMCID: PMC5800931 DOI: 10.18632/oncotarget.24146] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022] Open
Abstract
Background Monocytic myeloid-derived suppressor cells (MDSCs), particularly the S100A9+ subset, has been shown initial clinical relevance. However, its role in EGFR-mutated lung adenocarcinoma, especially to EGFR-tyrosine kinase inhibitor (EGFR-TKI) is not clear. In a clinical setting of EGFR mutated lung adenocarcinoma, a role of the MDSC apart from T cell suppression was also investigated. Results Blood monocytic S100A9+ MDSC counts were higher in lung cancer patients than healthy donors, and were associated with poor treatment response and shorter progression-free survival (PFS). S100A9+ MDSCs in PBMC were well correlated to tumor infiltrating CD68+ and S100A9+ cells, suggesting an origin of TAMs. Patient’s MDMs, mostly from S100A9+ MDSC, similar to primary alveolar macrophages from patients, both expressed S100A9 and CD206, attenuated EGFR-TKI cytotoxicity. Microarray analysis identified up-regulation of the RELB signaling genes, confirmed by Western blotting and functionally by RELB knockdown. Conclusions In conclusion, blood S100A9+ MDSC is a predictor of poor treatment response to EGFR-TKI, possibly via its derived TAMs through activation of the non-canonical NF-κB RELB pathway. Methods Patients with activating EGFR mutation lung adenocarcinoma receiving first line EGFR TKIs were prospectively enrolled. Peripheral blood mononuclear cells (PBMCs) were collected for MDSCs analysis and for monocyte-derived macrophages (MDMs) and stored tissue for TAM analysis by IHC. A transwell co-culture system of MDMs/macrophages and H827 cells was used to detect the effect of macrophages on H827 and microarray analysis to explore the underlying molecular mechanisms, functionally confirmed by RNA interference.
Collapse
Affiliation(s)
- Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Teng Yu
- Division of Pulmonary Medicine, Department of Internal Medicine, Chang Gung Medical Foundation Linko Branch, Taoyuan, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shen Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Ying Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Chang Gung Medical Foundation Linko Branch, Taoyuan, Taiwan
| | - Lu Wei Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Fei Chan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chang Gung Medical Foundation Linko Branch, Taoyuan, Taiwan
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Nin Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Li Han
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
94
|
Abstract
Myeloid cells developed evolutionarily as a major mechanism to protect the host. They evolved as a critical barrier against infections and are important contributors to tissue remodeling. However, in cancer, myeloid cells are largely converted to serve a new master-tumor cells. This process is epitomized by myeloid-derived suppressor cells (MDSC). These cells are closely related to neutrophils and monocytes. MDSCs are not present in the steady state of healthy individuals and appear in cancer and in pathologic conditions associated with chronic inflammation or stress. These cells have emerged as an important contributor to tumor progression. Ample evidence supports a key role for MDSCs in immune suppression in cancer, as well as their prominent role in tumor angiogenesis, drug resistance, and promotion of tumor metastases. MDSCs have a fascinating biology and are implicated in limiting the effects of cancer immunotherapy. Therefore, targeting these cells may represent an attractive therapeutic opportunity. Cancer Immunol Res; 5(1); 3-8. ©2016 AACR.
Collapse
|
95
|
Santibanez JF, Bjelica S. Transforming Growth Factor-Beta1 and Myeloid-Derived Suppressor Cells Interplay in Cancer. ACTA ACUST UNITED AC 2017. [DOI: 10.2174/1876401001706010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
Transforming growth factor-beta1 (TGF-β1) is a pleiotropic cytokine with a double role in cancer through its capacity to inhibit early stages of tumors while enhancing tumor progression at late stages of tumor progression. Moreover, TGF-β1 is a potent immunosuppressive cytokine within the tumor microenvironment that allows cancer cells to escape from immune surveillance, which largely contributes to the tumor progression.
Method:
It has been established that the cancer progression is commonly associated with increased number of Myeloid-derived suppressor cells (MDSC) that are a hallmark of cancer and a key mechanism of immune evasion.
Result:
MDSC represent a population of heterogeneous myeloid cells comprised of macrophages, granulocytes and dendritic cells at immature stages of development. MDSC promote tumor progression by regulating immune responses as well as tumor angiogenesis and cancer metastasis.
Conclusion:
In this review, we present an overview of the main key functions of both TGF-β1 and MDSC in cancer and in the immune system. Furthermore, the mutual contribution between TGF-β1 and MDSC in the regulation of immune system and cancer development will be analyzed.
Collapse
|
96
|
Ascites-derived IL-6 and IL-10 synergistically expand CD14 +HLA-DR -/low myeloid-derived suppressor cells in ovarian cancer patients. Oncotarget 2017; 8:76843-76856. [PMID: 29100353 PMCID: PMC5652747 DOI: 10.18632/oncotarget.20164] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/27/2017] [Indexed: 11/25/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) play a key immunosuppressive role in various types of cancer, including ovarian cancer (OC). In this study, we characterized CD14+HLA-DR–/lo MDSC with a typical monocytic phenotype (M-MDSC) in the peripheral blood (PB) and ascites from OC patients. Compared to healthy donors, OC patients had a significantly increased abundance of M-MDSC in both PB and ascites; importantly, their abundance in both compartments was inversely associated with the prognosis where OC patients with higher level of M-MDSC having a shorter relapse-free survival. Intriguingly, we demonstrated that M-MDSC could be readily induced by ascitic fluids (AF) from OC patients, which was predominantly dependent on IL-6, IL-10 and STAT3 activation as neutralization of IL-6 and/or IL-10 or inhibition of STAT3 abrogated MDSC's expansion while recombinant IL-6 and IL-10 recapitulated the expansive effect of AF; furthermore, predominantly elevated levels of IL-6 and IL-10 has been noted in the AF which was positively correlated with the abundance of M-MDSC as well as poor prognosis of OC patients. As expected, we observed that AF-driven STAT3 activation upregulated the expression of arginase (ARG1) and inducible nitric oxide synthase (iNOS) in induced M-MDSC through which these MDSC executed the immunosuppressive activity. Taken together, these results demonstrate that abundant M-MDSC are present in both periphery and ascites of OC patients whose accumulation and suppressive activity is critically attributable to ascites-derived IL-6 and IL-10 and their downstream STAT3 signal, thus providing a potentially novel therapeutic option by locally targeting MDSC to improve antitumor efficacy.
Collapse
|
97
|
Safarzadeh E, Orangi M, Mohammadi H, Babaie F, Baradaran B. Myeloid-derived suppressor cells: Important contributors to tumor progression and metastasis. J Cell Physiol 2017; 233:3024-3036. [DOI: 10.1002/jcp.26075] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Elham Safarzadeh
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mona Orangi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamed Mohammadi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Farhad Babaie
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
98
|
Roussel M, Ferrell PB, Greenplate AR, Lhomme F, Le Gallou S, Diggins KE, Johnson DB, Irish JM. Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow. J Leukoc Biol 2017; 102:437-447. [PMID: 28400539 PMCID: PMC6608074 DOI: 10.1189/jlb.5ma1116-457r] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022] Open
Abstract
The monocyte phagocyte system (MPS) includes numerous monocyte, macrophage, and dendritic cell (DC) populations that are heterogeneous, both phenotypically and functionally. In this study, we sought to characterize those diverse MPS phenotypes with mass cytometry (CyTOF). To identify a deep phenotype of monocytes, macrophages, and DCs, a panel was designed to measure 38 identity, activation, and polarization markers, including CD14, CD16, HLA-DR, CD163, CD206, CD33, CD36, CD32, CD64, CD13, CD11b, CD11c, CD86, and CD274. MPS diversity was characterized for 1) circulating monocytes from healthy donors, 2) monocyte-derived macrophages further polarized in vitro (i.e., M-CSF, GM-CSF, IL-4, IL-10, IFN-γ, or LPS long-term stimulations), 3) monocyte-derived DCs, and 4) myeloid-derived suppressor cells (MDSCs), generated in vitro from bone marrow and/or peripheral blood. Known monocyte subsets were detected in peripheral blood to validate the panel and analysis pipeline. Then, using various culture conditions and stimuli before CyTOF analysis, we constructed a multidimensional framework for the MPS compartment, which was registered against historical M1 or M2 macrophages, monocyte subsets, and DCs. Notably, MDSCs generated in vitro from bone marrow expressed more S100A9 than when generated from peripheral blood. Finally, to test the approach in vivo, peripheral blood from patients with melanoma (n = 5) was characterized and observed to be enriched for MDSCs with a phenotype of CD14+HLA-DRlowS100A9high (3% of PBMCs in healthy donors, 15.5% in patients with melanoma, P < 0.02). In summary, mass cytometry comprehensively characterized phenotypes of human monocyte, MDSC, macrophage, and DC subpopulations in both in vitro models and patients.
Collapse
Affiliation(s)
- Mikael Roussel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA;
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- CHU de Rennes, Pole de Biologie, Rennes, France
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France; and
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Allison R Greenplate
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Simon Le Gallou
- CHU de Rennes, Pole de Biologie, Rennes, France
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France; and
| | - Kirsten E Diggins
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan M Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA;
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
99
|
Wu Y, Yan Y, Su Z, Bie Q, Chen X, Barnie PA, Guo Q, Wang S, Xu H. Enhanced circulating ILC2s and MDSCs may contribute to ensure maintenance of Th2 predominant in patients with lung cancer. Mol Med Rep 2017; 15:4374-4381. [PMID: 28487978 DOI: 10.3892/mmr.2017.6537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/07/2017] [Indexed: 01/25/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) were demonstrated to be involved in the initiation and coordination of type 2 T helper cell (Th2) responses. Myeloid‑derived suppressor cells (MDSCs) have received a great deal of attention for their role in creating an immunosuppressive microenvironment in cancer‑bearing hosts. However, the contributions of ILC2s in the occurrence and development of lung cancer, and the association between ILC2s and Th2 or MDSCs in lung cancer remain to be elucidated. In the present study, 36 patients newly diagnosed with lung cancer based on the guidelines of the International Union Against Cancer Tumor Node Metastasis were included. The frequencies of ILC2s and MDSCs in peripheral blood mononuclear cells were determined, and the mRNA expression levels of ILC2s or Th2‑related transcription factors and cytokines, and MDSCs‑related products were assessed. The results demonstrated that the frequencies of the circulatory ILC2s and MDSCs were enhanced in lung cancer patients, as were ILC2‑related transcription factors and cytokines in peripheral blood. A positive correlation was identified between the Th2‑dominated phenotype and the expression levels of ILC2s‑associated cytokines or transcription factors. In addition, increased autophagy related 1 was closely associated with Th2‑associated transcription factors. It was demonstrated that ILC2s and MDSCs were clearly upregulated and accompanied by a predominant Th2 phenotype in patients with lung cancer; this may lead to new immunotherapy approaches for lung cancer based on the associated metabolites and cytokines.
Collapse
Affiliation(s)
- Yumin Wu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yulan Yan
- Department of Pulmonology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qingli Bie
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaobo Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Prince Amoah Barnie
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qi Guo
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
100
|
Li J, Wang L, Chen X, Li L, Li Y, Ping Y, Huang L, Yue D, Zhang Z, Wang F, Li F, Yang L, Huang J, Yang S, Li H, Zhao X, Dong W, Yan Y, Zhao S, Huang B, Zhang B, Zhang Y. CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology 2017; 6:e1320011. [PMID: 28680754 PMCID: PMC5486179 DOI: 10.1080/2162402x.2017.1320011] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 01/26/2023] Open
Abstract
CD39/CD73-adenosine pathway has been recently defined as an important tumor-induced immunosuppressive mechanism. We here documented a fraction of CD11b+CD33+ myeloid-derived suppressor cells (MDSCs) in peripheral blood and tumor tissues from non-small cell lung cancer (NSCLC) patients expressed surface ectonucleotidases CD39 and CD73. Tumor TGF-β stimulated CD39 and CD73 expression, thereby inhibited T cell and NK cell activity, and protected tumor cells from the cytotoxic effect of chemotherapy through ectonucleotidase activity. Mechanistically, TGF-β triggered phosphorylation of mammalian target of rapamycin, and subsequently activated hypoxia-inducible factor-1α (HIF-1α) that induced CD39/CD73 expression on MDSCs. CD39 and CD73 on MDSCs, therefore, link their immunosuppressive and chemo-protective effects to NSCLC progression, providing novel targets for chemo-immunotherapeutic intervention.
Collapse
Affiliation(s)
- Jieyao Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinfeng Chen
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lifeng Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lan Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongli Yue
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianmin Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuangning Yang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuan Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjie Dong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Yan
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Huang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|