51
|
Torres-Ruiz J, Absalón-Aguilar A, Reyes-Islas JA, Cassiano-Quezada F, Mejía-Domínguez NR, Pérez-Fragoso A, Maravillas-Montero JL, Núñez-Álvarez C, Juárez-Vega G, Culebro-Bermejo A, Gómez-Martín D. Peripheral expansion of myeloid-derived suppressor cells is related to disease activity and damage accrual in inflammatory myopathies. Rheumatology (Oxford) 2023; 62:775-784. [PMID: 35766810 DOI: 10.1093/rheumatology/keac374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To assess the proportion of myeloid-derived suppressor cells (MDSCs), their expression of arginase-1 and programmed cell death ligand 1 (PD-L1) and their relationship with the clinical phenotype of patients with idiopathic inflammatory myopathies (IIMs). METHODS We recruited 37 IIM adult patients and 10 healthy donors in Mexico City. We evaluated their clinical features, the proportion of MDSCs and their expression of PD-L1 and arginase-1 by flow cytometry. Polymorphonuclear (PMN)-MDSCs were defined as CD33dim, CD11b+ and CD66b+ while monocytic (M)-MDSCs were CD33+, CD11b+, HLA-DR- and CD14+. Serum cytokines were analysed with a multiplex assay. We compared the quantitative variables with the Kruskal-Wallis and Mann-Whitney U tests and assessed correlations with Spearman's ρ. RESULTS Most patients had dermatomyositis [n = 30 (81.0%)]. IIM patients had a peripheral expansion of PMN-MDSCs and M-MDSCs with an enhanced expression of arginase-1 and PD-L1. Patients with active disease had a decreased percentage {median 1.75% [interquartile range (IQR) 0.31-5.50 vs 10.71 [3.16-15.58], P = 0.011} of M-MDSCs and a higher absolute number of PD-L1+ M-MDSCs [median 23.21 cells/mm3 (IQR 11.16-148.9) vs 5.95 (4.66-102.7), P = 0.046] with increased expression of PD-L1 [median 3136 arbitrary units (IQR 2258-4992) vs 1961 (1885-2335), P = 0.038]. PD-L1 expression in PMN-MDSCs correlated with the visual analogue scale of pulmonary disease activity (r = 0.34, P = 0.040) and damage (r = 0.36, P = 0.031), serum IL-5 (r = 0.55, P = 0.003), IL-6 (r = 0.46, P = 0.003), IL-8 (r = 0.53, P = 0.018), IL-10 (r = 0.48, P = 0.005) and GM-CSF (r = 0.48, P = 0.012). M-MDSCs negatively correlated with the skeletal Myositis Intention to Treat Index (r = -0.34, P = 0.038) and positively with IL-6 (r = 0.40, P = 0.045). CONCLUSION MDSCs expressing arginase-1 and PD-L1 are expanded in IIM and correlate with disease activity, damage accrual and serum cytokines.
Collapse
Affiliation(s)
- Jiram Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Abdiel Absalón-Aguilar
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Juan Alberto Reyes-Islas
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Fabiola Cassiano-Quezada
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, Coordinacion de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Pérez-Fragoso
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, Coordinacion de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Núñez-Álvarez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Coordinacion de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Culebro-Bermejo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| |
Collapse
|
52
|
Impaired muscle stem cell function and abnormal myogenesis in acquired myopathies. Biosci Rep 2023; 43:232343. [PMID: 36538023 PMCID: PMC9829652 DOI: 10.1042/bsr20220284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle possesses a high plasticity and a remarkable regenerative capacity that relies mainly on muscle stem cells (MuSCs). Molecular and cellular components of the MuSC niche, such as immune cells, play key roles to coordinate MuSC function and to orchestrate muscle regeneration. An abnormal infiltration of immune cells and/or imbalance of pro- and anti-inflammatory cytokines could lead to MuSC dysfunctions that could have long lasting effects on muscle function. Different genetic variants were shown to cause muscular dystrophies that intrinsically compromise MuSC function and/or disturb their microenvironment leading to impaired muscle regeneration that contributes to disease progression. Alternatively, many acquired myopathies caused by comorbidities (e.g., cardiopulmonary or kidney diseases), chronic inflammation/infection, or side effects of different drugs can also perturb MuSC function and their microenvironment. The goal of this review is to comprehensively summarize the current knowledge on acquired myopathies and their impact on MuSC function. We further describe potential therapeutic strategies to restore MuSC regenerative capacity.
Collapse
|
53
|
Torres-Ruiz J, Alcalá-Carmona B, Alejandre-Aguilar R, Gómez-Martín D. Inflammatory myopathies and beyond: The dual role of neutrophils in muscle damage and regeneration. Front Immunol 2023; 14:1113214. [PMID: 36923415 PMCID: PMC10008923 DOI: 10.3389/fimmu.2023.1113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Skeletal muscle is one of the most abundant tissues of the human body and is responsible for the generation of movement. Muscle injuries can lead to severe disability. Skeletal muscle is characterized by an important regeneration capacity, which is possible due to the interaction between the myoblasts and immune cells. Neutrophils are fundamental as inducers of muscle damage and as promoters of the initial inflammatory response which eventually allows the muscle repair. The main functions of the neutrophils are phagocytosis, respiratory burst, degranulation, and the production of neutrophil extracellular traps (NETs). An overactivation of neutrophils after muscle injuries may lead to an expansion of the initial damage and can hamper the successful muscle repair. The importance of neutrophils as inducers of muscle damage extends beyond acute muscle injury and recently, neutrophils have become more relevant as part of the immunopathogenesis of chronic muscle diseases like idiopathic inflammatory myopathies (IIM). This heterogeneous group of systemic autoimmune diseases is characterized by the presence of muscle inflammation with a variable amount of extramuscular features. In IIM, neutrophils have been found to have a role as biomarkers of disease activity, and their expansion in peripheral blood is related to certain clinical features like interstitial lung disease (ILD) and cancer. On the other hand, low density granulocytes (LDG) are a distinctive subtype of neutrophils characterized by an enhanced production of NETs. These cells along with the NETs have also been related to disease activity and certain clinical features like ILD, vasculopathy, calcinosis, dermatosis, and cutaneous ulcers. The role of NETs in the immunopathogenesis of IIM is supported by an enhanced production and deficient degradation of NETs that have been observed in patients with dermatomyositis and anti-synthetase syndrome. Finally, new interest has arisen in the study of other phenotypes of LDG with a phenotype corresponding to myeloid-derived suppressor cells, which were also found to be expanded in patients with IIM and were related to disease activity. In this review, we discuss the role of neutrophils as both orchestrators of muscle repair and inducers of muscle damage, focusing on the immunopathogenesis of IIM.
Collapse
Affiliation(s)
- Jiram Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Beatriz Alcalá-Carmona
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Laboratory of Entomology, Department of Parasitology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ricardo Alejandre-Aguilar
- Laboratory of Entomology, Department of Parasitology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
54
|
Infection Risk in Patients with Dermatomyositis Associated with Anti-MDA5 Antibodies: A Historical Cohort Study. Biomedicines 2022; 10:biomedicines10123176. [PMID: 36551932 PMCID: PMC9776099 DOI: 10.3390/biomedicines10123176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Objective: Dermatomyositis associated with anti-MDA5 autoantibodies (DM-MDA5+) is a rare autoimmune disease usually characterized by skin involvement, often-severe lung involvement, and general features. Several reports of infections have been described, sometimes early after the introduction of immunosuppressive therapy. We studied the infection risk in a DM-MDA5+ population. Methods: A retrospective cohort study comparing the number and type of infections during the follow-up of 19 patients with DM-MDA5+ and 37 patients with another type of inflammatory myopathy was analyzed. Patients in both groups were matched on initial immunosuppressive therapy. We described and compared significant infectious complications (SIC) in each group. Results: Patients DM-MDA5+ had more SIC: 27 events in the DM-MDA5+ group versus 6 in the controls (HR 7.08, 95% CI 2.50−20.04, p < 0.0001). The number of SIC per patient was higher in DM-MDA5+ (1.4 ± 1.57 vs. 0.16 ± 0.44, p < 0.001). These were mainly lung (n = 13, 48%) and skin infections (n = 6, 22%), more often infections of an undetermined infectious agent (n = 11, 41%) or of bacterial origin (n = 9, 33%). A few cases of opportunistic infections were reported. The median duration of follow-up without SIC event in the DM-MDA5+ cohort was 3.5 months. Conclusion: Patients with DM-MDA5+ have an increased infection risk compared to others inflammatory myopathies irrespective of immunosuppressive therapy exposure. These results highlight the importance of monitoring for infection during patient follow-up.
Collapse
|
55
|
Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol 2022; 23:274-288. [PMID: 36257987 PMCID: PMC9579530 DOI: 10.1038/s41577-022-00787-0] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Systemic autoimmune diseases are characterized by the failure of the immune system to differentiate self from non-self. These conditions are associated with significant morbidity and mortality, and they can affect many organs and systems, having significant clinical heterogeneity. Recent discoveries have highlighted that neutrophils, and in particular the neutrophil extracellular traps that they can release upon activation, can have central roles in the initiation and perpetuation of systemic autoimmune disorders and orchestrate complex inflammatory responses that lead to organ damage. Dysregulation of neutrophil cell death can lead to the modification of autoantigens and their presentation to the adaptive immune system. Furthermore, subsets of neutrophils that seem to be more prevalent in patients with systemic autoimmune disorders can promote vascular damage and increased oxidative stress. With the emergence of new technologies allowing for improved assessments of neutrophils, the complexity of neutrophil biology and its dysregulation is now starting to be understood. In this Review, we provide an overview of the roles of neutrophils in systemic autoimmune and autoinflammatory diseases and address putative therapeutic targets that may be explored based on this new knowledge.
Collapse
|
56
|
Li X, Liu Y, Cheng L, Huang Y, Yan S, Li H, Zhan H, Li Y. Roles of biomarkers in anti-MDA5-positive dermatomyositis, associated interstitial lung disease, and rapidly progressive interstitial lung disease. J Clin Lab Anal 2022; 36:e24726. [PMID: 36221983 DOI: 10.1002/jcla.24726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Anti-melanoma differentiation-associated gene 5 (MDA5)-positive dermatomyositis (MDA5+ DM) is significantly associated with interstitial lung disease (ILD), especially rapidly progressive ILD (RPILD) due to poor prognosis, resulting in high mortality rates. However, the pathogenic mechanism of MDA5+ DM-RPILD is unclear. Although some MDA5+ DM patients have a chronic course of ILD, many do not develop RPILD. Therefore, the related biomarkers for the early diagnosis, disease activity monitoring, and prediction of the outcome of RPILD in MDA5+ DM patients should be identified. Blood-based biomarkers are minimally invasive and can be easily detected. METHODS Recent relative studies related to blood biomarkers in PubMed were reviewed. RESULTS An increasing number of studies have demonstrated that dysregulated expression of blood biomarkers related to ILD such as ferritin, Krebs von den Lungen-6 (KL-6), surfactant protein-D (SP-D), and cytokines, and some tumor markers in MDA5+ DM may provide information in disease presence, activity, treatment response, and prognosis. These studies have highlighted the great potentials of blood biomarker values for MDA5+ DM-ILD and MDA5+ DM-RPILD. This review provides an overview of recent studies related to blood biomarkers, besides highlighted protein biomarkers, including antibody (anti-MDA5 IgG subclasses and anti-Ro52 antibody), genetic (exosomal microRNAs and neutrophil extracellular traps related to cell-free DNA), and immune cellular biomarkers in MDA5+ DM, MDA5+ DM-ILD, and MDA5+ DM-RPILD patients, hopefully elucidating the pathogenesis of MDA5+ DM-ILD and providing information on the early diagnosis, disease activity monitoring, and prediction of the outcome of the ILD, especially RPILD. CONCLUSIONS Therefore, this review may provide insight to guide treatment decisions for MDA5+ DM-RPILD patients and improve outcomes.
Collapse
Affiliation(s)
- Xiaomeng Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
57
|
Liu L, Wang J, Zhang P, Sun W, Zhu X, Sun X, Xue J, Wu H. Promising Neutrophil-Associated Biomarkers in Lung Diseases of Patients with Antisynthetase Syndrome and Dermatomyositis. J Immunol Res 2022; 2022:1886083. [PMID: 36199667 PMCID: PMC9529515 DOI: 10.1155/2022/1886083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Antisynthetase syndrome (ASS) and dermatomyositis (DM) are serious autoimmune diseases, with lungs being the most frequently involved organ and sometimes fatal. This study is aimed at clarifying the role of neutrophil-associated biological markers in suggesting ASS and DM-associated respiratory infections and interstitial lung diseases. Methods We carried out a retrospective review of the medical records of 46 cases of ASS and DM diagnosed at the Second Hospital of Zhejiang University College of Medicine, between January 2017 and December 2020. Serum myeloperoxidase (MPO), neutrophil elastase (NE), α1 anti-trypsin (AAT), and interleukin-6 (IL-6) were also detected. Results Gottron's sign is characteristic of dermatomyositis, while polyarthritis is more characteristic of ASS. Pulmonary function is worse in ASS than in DM patients. Patients with ASS and DM had abnormal lymphocyte and neutrophil counts compared to healthy subjects, but not in relation to lung function and rapid progression of interstitial lung disease (RP-ILD). Elevated serum NE, MPO, and IL-6 levels are suggestive of respiratory infections, whereas decreased circulating IL-6 is predictive of RP-ILD. Conclusion Our study identified the neutrophil-associated biomarkers MPO, NE, and IL-6 as promising indicators with different suggestive roles in respiratory infections and interstitial lung diseases in patients with ASS and DM.
Collapse
Affiliation(s)
- Lei Liu
- Department of Rheumatology, The Second Hospital Affiliated to Zhejiang University, College of Medicine, China
| | - Jundi Wang
- Department of Rheumatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China
| | - Peiyu Zhang
- Department of Rheumatology, The Second Hospital Affiliated to Zhejiang University, College of Medicine, China
| | - Wenjia Sun
- Department of Rheumatology, The Second Hospital Affiliated to Zhejiang University, College of Medicine, China
| | - Xiuliang Zhu
- Department of Radiology, The Second Hospital Affiliated to Zhejiang University, College of Medicine, China
| | - Xiujuan Sun
- Department of Radiology, The Second Hospital Affiliated to Zhejiang University, College of Medicine, China
| | - Jing Xue
- Department of Rheumatology, The Second Hospital Affiliated to Zhejiang University, College of Medicine, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Hospital Affiliated to Zhejiang University, College of Medicine, China
| |
Collapse
|
58
|
Abstract
PURPOSE OF REVIEW This review provides updates regarding biomarker studies that address key clinical unmet needs, which relate to the evaluation of the disease activity in patients with dermatomyositis. RECENT FINDINGS Increasing evidence supports that the serum levels of dermatomyositis-specific antibodies (DM-MSAs), which include anti-Mi-2, anti-NXP2, anti-MDA5, anti-TNF1-γ, and anti-SAE, are correlated with the disease activity. Moreover, serial measurements of DM-MSA levels may help to predict the disease status. Beyond the MSA, macrophage activation-related biomarker-soluble CD163, CD206, neopterin, and galectin-3/9 are the most currently talked biomarkers for disease activity in dermatomyositis; new circulating T-cell subsets CD4+CXCR5+CCR7loPD-1hi and TIGIT+CD226+ CD4 T cells can potentially harbor biomarkers of disease activity in dermatomyositis. In addition, LDGs and NETs were also shown to be correlated with the disease activities of dermatomyositis. SUMMARY Promising candidate biomarkers are now available for evaluating disease activity in dermatomyositis. These biomarkers need external validation in other large cohort studies.
Collapse
|
59
|
Peng Y, Wu X, Zhang S, Deng C, Zhao L, Wang M, Wu Q, Yang H, Zhou J, Peng L, Luo X, Chen Y, Wang A, Xiao Q, Zhang W, Zhao Y, Zeng X, Fei Y. The potential roles of type I interferon activated neutrophils and neutrophil extracellular traps (NETs) in the pathogenesis of primary Sjögren's syndrome. Arthritis Res Ther 2022; 24:170. [PMID: 35854322 PMCID: PMC9295258 DOI: 10.1186/s13075-022-02860-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Neutrophils and aberrant NETosis have been implicated in the pathogenesis of diverse autoimmune diseases; however, their roles in primary Sjögren’s syndrome (pSS) remain unclear. We aimed to reveal the potential roles of neutrophils and neutrophil extracellular traps (NETs) in pSS. Methods pSS patients were enrolled and NETosis markers were measured in plasma and labial glands using ELISA and immunofluorescence. The gene signatures of neutrophils were assessed by RNA-Seq and RT-PCR. Reactive oxygen species (ROS), mitochondrial ROS (MitoSOX) production, and JC-1 were measured by flow cytometry. Results NETosis markers including cell-free DNA (cf-DNA) and myeloperoxidase (MPO) in plasma and labial glands from pSS patients were significantly higher than healthy controls (HCs) and were associated with disease activity. RNA sequencing and RT-qPCR revealed activated type I IFN signaling pathway and higher expression of genes related to type I interferon in pSS neutrophils. Further stimulating with IFN-α 2a in vitro significantly induced ROS production and JC-1 monomer percentage in pSS neutrophils. Conclusions Our data suggest the involvement of neutrophils and enhanced NETosis in pSS patients. Further mechanism study in vitro revealed that type I IFN activation in pSS neutrophils led to mitochondrial damage and related ROS production which finally result in the generation of NETs. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02860-4.
Collapse
Affiliation(s)
- Yu Peng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Xunyao Wu
- Clinical Biobank, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Chuiwen Deng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Lidan Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Mu Wang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Qingjun Wu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Huaxia Yang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Jiaxin Zhou
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Linyi Peng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Xuan Luo
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Yingying Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Anqi Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Qiufeng Xiao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Yan Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China
| | - Yunyun Fei
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, #1 Shuai-Fu-Yuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
60
|
Galindo-Feria AS, Wang G, Lundberg IE. Autoantibodies: Pathogenic or epiphenomenon. Best Pract Res Clin Rheumatol 2022; 36:101767. [PMID: 35810122 DOI: 10.1016/j.berh.2022.101767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Idiopathic inflammatory myopathies (IIM) are heterogeneous autoimmune diseases. There are distinct subgroups, including antisynthetase syndrome, dermatomyositis, polymyositis, immune-mediated necrotizing myopathy, and sporadic inclusion body myositis. In patients with IIM, autoantibodies are present in up to 80% of the patients. These autoantibodies are often characterized as myositis-specific autoantibodies (MSA) or myositis-associated autoantibodies (MAA). The recognition of the importance of autoantibodies, especially MSA, is increasing in recent years. In this chapter, we provide an overview of the MSAs, including some new autoantibodies of interest as they target mainly muscle-specific autoantigen, in clinical classification, the measurement of the disease activity, and a possible role in the pathogenesis in the patients with IIM.
Collapse
Affiliation(s)
- Angeles S Galindo-Feria
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden.
| | - Guochun Wang
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
61
|
Davuluri S, Duvvuri B, Lood C, Faghihi-Kashani S, Chung L. Calcinosis in dermatomyositis: Origins and possible therapeutic avenues. Best Pract Res Clin Rheumatol 2022; 36:101768. [PMID: 35803868 DOI: 10.1016/j.berh.2022.101768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcinosis, insoluble calcium compounds deposited in skin and other tissues, is a crippling sequela of dermatomyositis. Prolonged disease associated with ongoing inflammation, ischemia, repetitive trauma, and certain autoantibodies are associated with calcinosis. Herein, we describe potential pathogenic mechanisms including the role of mitochondrial calcification. There are no widely effective treatments for calcinosis. We review available pharmacologic therapies for calcinosis including those targeting calcium and phosphorus metabolism; immunosuppressive/anti-inflammatory therapies; and vasodilators. Mounting evidence supports the use of various formulations of sodium thiosulfate in the treatment of calcinosis. Although the early institution of aggressive immunosuppression may prevent calcinosis in juvenile dermatomyositis, only limited data support improvement once it has developed. Minocycline can be useful particularly for lesions associated with surrounding inflammation. Powerful vasodilators, such as prostacyclin analogs, may have promise in the treatment of calcinosis, but further studies are necessary. Surgical removal of lesions when amenable is our treatment of choice.
Collapse
Affiliation(s)
- Srijana Davuluri
- Stanford School of Medicine, Division of Immunology &Rheumatology, 1000 Welch Road, Suite 204, Palo Alto, 94304, California, USA.
| | - Bhargavi Duvvuri
- University of Washington, Department of Medicine, Division of Rheumatology, 750 Republican Street, Seattle, WA, 98109, USA.
| | - Christian Lood
- University of Washington, Division of Rheumatology, 750 Republican Street, Room E-545, Seattle, WA, 98109, USA.
| | - Sara Faghihi-Kashani
- Stanford School of Medicine, Division of Immunology &Rheumatology, 1000 Welch Road, Suite 204, Palo Alto, 94304, California, USA.
| | - Lorinda Chung
- Stanford School of Medicine & Palo Alto VA Health Care System, Division of Immunology &Rheumatology, 1000 Welch Road, Suite 203, Palo Alto, 94304, California, USA.
| |
Collapse
|
62
|
Could a simple biomarker as neutrophil-to-lymphocyte ratio reflect complex processes orchestrated by neutrophils? J Transl Autoimmun 2022. [DOI: 10.1016/j.jtauto.2022.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
63
|
Torres-Ruiz J, Carrillo-Vázquez DA, Leal-Alanis A, Zentella-Dehesa A, Tapia-Rodríguez M, Maravillas-Montero JL, Nuñez-Álvarez CA, Carazo-Vargas ER, Romero-Hernández I, Juárez-Vega G, Alcocer-Varela J, Gómez-Martín D. Low-Density Granulocytes and Neutrophil Extracellular Traps as Biomarkers of Disease Activity in Adult Inflammatory Myopathies. J Clin Rheumatol 2022; 28:e480-e487. [PMID: 34643846 DOI: 10.1097/rhu.0000000000001772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVE Biomarkers for disease activity and damage accrual in idiopathic inflammatory myopathies (IIMs) are currently lacking. The purpose of this cross-sectional study is to analyze the relationship among low-density granulocytes (LDGs), neutrophil extracellular traps (NETs), and clinical and immunological features of patients with IIM. METHODS We assessed disease activity, damage accrual, amount of LDGs, NETs, expression of LL-37, and serum cytokines in 65 adult patients with IIM. Differences between groups and correlations were assessed by Kruskal-Wallis, Mann-Whitney U, and Spearman ρ tests. The association between LDGs, NETs, disease activity, calcinosis, and cutaneous ulcers was assessed by logistic regression. To address the capacity of LDGs and NETs to diagnose disease activity, we used receiving operating characteristic curves. RESULTS Low-density granulocytes were higher in patients with active disease, ulcers, calcinosis, and anti-MDA5 antibodies, which correlated with serum levels of IL-17A and IL-18. Neutrophil extracellular traps were higher in patients with calcinosis, elevated titers of antinuclear antibodies, and positive anti-PM/Scl75 tests. The combination of a high proportion of both total LDGs and NETs was associated with the presence of calcinosis and cutaneous ulcers. LL-37 was higher in NETs originating from LDGs. Normal-density neutrophils were elevated in patients with active dermatomyositis. CONCLUSIONS Low-density granulocytes and NETs containing LL-37 are increased in patients with IIM and active disease, and correlate with proinflammatory cytokines. Both total and CD10+ LDGs are potential biomarkers for disease activity and, in combination with NETs, have the potential to detect patients who are at risk for cutaneous ulcers and calcinosis.
Collapse
Affiliation(s)
| | | | - Araceli Leal-Alanis
- Internal Medicine, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran
| | | | - Miguel Tapia-Rodríguez
- Microscopy Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico
| | | | | | | | | | - Guillermo Juárez-Vega
- Flow Cytometry Unit, Red de Apoyo a la Investigación, Coordinacion de Investigación Cientifica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | | | | |
Collapse
|
64
|
Autoantibodies Present in Hidradenitis Suppurativa Correlate with Disease Severity and Promote the Release of Proinflammatory Cytokines in Macrophages. J Invest Dermatol 2022; 142:924-935. [PMID: 34606886 PMCID: PMC8860851 DOI: 10.1016/j.jid.2021.07.187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022]
Abstract
Hidradenitis suppurativa (HS), also known as acne inversa, is a debilitating inflammatory skin disorder that is characterized by nodules that lead to the development of connected tunnels and scars as it progresses from Hurley stages I to III. HS has been associated with several autoimmune diseases, including inflammatory bowel disease and spondyloarthritis. We previously reported dysregulation of humoral immune responses in HS, characterized by elevated serum total IgG, B-cell activation, and antibodies recognizing citrullinated proteins. In this study, we characterized IgG autoreactivity in HS sera and lesional skin compared with those in normal healthy controls using an array-based high-throughput autoantibody screening. The Cy3-labeled anti-human assay showed the presence of autoantibodies against nuclear antigens, cytokines, cytoplasmic proteins, extracellular matrix proteins, neutrophil proteins, and citrullinated antigens. Most of these autoantibodies were significantly elevated in stages II‒III in HS sera and stage III in HS skin lesions compared with those of healthy controls. Furthermore, immune complexes containing both native and citrullinated versions of antigens can activate M1 and M2 macrophages to release proinflammatory cytokines such as TNF-α, IL-8, IL-6, and IL-12. Taken together, the identification of specific IgG autoantibodies that recognize circulating and tissue antigens in HS suggests an autoimmune mechanism and uncovers putative therapeutic targets.
Collapse
|
65
|
Ma X, Gao HJ, Zhang Q, Yang MG, Bi ZJ, Ji SQ, Li Y, Xu L, Bu BT. Endoplasmic Reticulum Stress Is Involved in Muscular Pathogenesis in Idiopathic Inflammatory Myopathies. Front Cell Dev Biol 2022; 10:791986. [PMID: 35237595 PMCID: PMC8882762 DOI: 10.3389/fcell.2022.791986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/10/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives: Endoplasmic reticulum (ER) stress plays pivotal roles in the regulation of skeletal muscle damage and dysfunction in multiple disease conditions. We postulate the activation of ER stress in idiopathic inflammatory myopathies (IIM). Methods: Thirty-seven patients with immune-mediated necrotizing myopathy (IMNM), 21 patients with dermatomyositis (DM), 6 patients with anti-synthetase syndrome (ASS), and 10 controls were enrolled. The expression of ER stress-induced autophagy pathway was detected using histological sections, Western blot, and real-time quantitative Polymerase Chain Reaction. Results: ER stress-induced autophagy pathway was activated in biopsied muscle of patients with IMNM, DM, and ASS. The ER chaperone protein, glucose-regulated protein 78 (GRP78)/BiP expression in skeletal muscle correlated with autophagy, myofiber atrophy, myonecrosis, myoregeneration, and disease activity in IMNM. Conclusion: ER stress was involved in patients with IIM and correlates with disease activity in IMNM. ER stress response may be responsible for skeletal muscle damage and repair in IIM.
Collapse
|
66
|
Zhao L, Xie S, Zhou B, Shen C, Li L, Pi W, Gong Z, Zhao J, Peng Q, Zhou J, Peng J, Zhou Y, Zou L, Song L, Zhu H, Luo H. Machine Learning Algorithms Identify Clinical Subtypes and Cancer in Anti-TIF1γ+ Myositis: A Longitudinal Study of 87 Patients. Front Immunol 2022; 13:802499. [PMID: 35237262 PMCID: PMC8883045 DOI: 10.3389/fimmu.2022.802499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/20/2022] [Indexed: 01/09/2023] Open
Abstract
BackgroundAnti-TIF1γ antibodies are a class of myositis-specific antibodies (MSAs) and are closely associated with adult cancer-associated myositis (CAM). The heterogeneity in anti-TIF1γ+ myositis is poorly explored, and whether anti-TIF1γ+ patients will develop cancer or not is unknown at their first diagnosis. Here, we aimed to explore the subtypes of anti-TIF1γ+ myositis and construct machine learning classifiers to predict cancer in anti-TIF1γ+ patients based on clinical features.MethodsA cohort of 87 anti-TIF1γ+ patients were enrolled and followed up in Xiangya Hospital from June 2017 to June 2021. Sankey diagrams indicating temporal relationships between anti-TIF1γ+ myositis and cancer were plotted. Elastic net and random forest were used to select and rank the most important variables. Multidimensional scaling (MDS) plot and hierarchical cluster analysis were performed to identify subtypes of anti-TIF1γ+ myositis. The clinical characteristics were compared among subtypes of anti-TIF1γ+ patients. Machine learning classifiers were constructed to predict cancer in anti-TIF1γ+ myositis, the accuracy of which was evaluated by receiver operating characteristic (ROC) curves.ResultsForty-seven (54.0%) anti-TIF1γ+ patients had cancer, 78.7% of which were diagnosed within 0.5 years of the myositis diagnosis. Fourteen variables contributing most to distinguishing cancer and non-cancer were selected and used for the calculation of the similarities (proximities) of samples and the construction of machine learning classifiers. The top 10 were disease duration, percentage of lymphocytes (L%), percentage of neutrophils (N%), neutrophil-to-lymphocyte ratio (NLR), sex, C-reactive protein (CRP), shawl sign, arthritis/arthralgia, V-neck sign, and anti-PM-Scl75 antibodies. Anti-TIF1γ+ myositis patients can be clearly separated into three clinical subtypes, which correspond to patients with low, intermediate, and high cancer risk, respectively. Machine learning classifiers [random forest, support vector machines (SVM), extreme gradient boosting (XGBoost), elastic net, and decision tree] had good predictions for cancer in anti-TIF1γ+ myositis patients. In particular, the prediction accuracy of random forest was >90%, and decision tree highlighted disease duration, NLR, and CRP as critical clinical parameters for recognizing cancer patients.ConclusionAnti-TIF1γ+ myositis can be separated into three distinct subtypes with low, intermediate, and high risk of cancer. Machine learning classifiers constructed with clinical characteristics have favorable performance in predicting cancer in anti-TIF1γ+ myositis, which can help physicians in choosing appropriate cancer screening programs.
Collapse
Affiliation(s)
- Lijuan Zhao
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital of Central South University, Changsha, China
| | - Shuoshan Xie
- Department of Nephrology, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuyu Shen
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liya Li
- Department of Rheumatology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Weiwei Pi
- Department of Oncology, The First People’s Hospital of Changde City, Changde, China
| | - Zhen Gong
- Department of Rheumatology, Yiyang Central Hospital, Yiyang, China
| | - Jing Zhao
- Department of Rheumatology, The First Affiliated Hospital of Jishou University, Jishou, China
| | - Qi Peng
- Department of Rheumatology, Yueyang People’s Hospital, Yueyang, China
| | - Junyu Zhou
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Peng
- Huaihua No.1 People’s Hospital Affiliated to Nanhua University, Huaihua, China
| | - Yan Zhou
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Lingxiao Zou
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liang Song
- Huaihua No.1 People’s Hospital Affiliated to Nanhua University, Huaihua, China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Honglin Zhu, ; Hui Luo,
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Honglin Zhu, ; Hui Luo,
| |
Collapse
|
67
|
Low-Density Granulocytes in Immune-Mediated Inflammatory Diseases. J Immunol Res 2022; 2022:1622160. [PMID: 35141336 PMCID: PMC8820945 DOI: 10.1155/2022/1622160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Low-density granulocytes (LDGs), a distinct subset of neutrophils that colocalize with peripheral blood mononuclear cells after density gradient centrifugation, have been observed in many immune-mediated diseases. LDGs are considered highly proinflammatory because of enhanced spontaneous formation of neutrophil extracellular traps, endothelial toxicity, and cytokine production. Concomitantly, increased numbers of LDGs are associated with the severity of many immune-mediated inflammatory diseases. Recent studies, with the help of advanced transcriptomic technologies, demonstrated that LDGs were a mixed cell population composed of immature subset and mature subset, and these two subsets showed different pathogenic features. In this review, we summarize the current knowledge on the composition, origin, and pathogenic properties of LDGs in several immune-mediated inflammatory diseases and discuss potential medical interventions targeting LDGs.
Collapse
|
68
|
Wang K, Zhu R, Li J, Zhang Z, Wen X, Chen H, Sun L. Coexpression network analysis coupled with connectivity map database mining reveals novel genetic biomarkers and potential therapeutic drugs for polymyositis. Clin Rheumatol 2022; 41:1719-1730. [DOI: 10.1007/s10067-021-06035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
|
69
|
Shi J, Tang M, Zhou S, Xu D, Zhao J, Wu C, Wang Q, Tian X, Li M, Zeng X. Programmed Cell Death Pathways in the Pathogenesis of Idiopathic Inflammatory Myopathies. Front Immunol 2021; 12:783616. [PMID: 34899749 PMCID: PMC8651702 DOI: 10.3389/fimmu.2021.783616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Idiopathic inflammatory myopathy (IIM) is a heterogeneous group of acquired, autoimmune muscle diseases characterized by muscle inflammation and extramuscular involvements. Present literatures have revealed that dysregulated cell death in combination with impaired elimination of dead cells contribute to the release of autoantigens, damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and result in immune responses and tissue damages in autoimmune diseases, including IIMs. This review summarizes the roles of various forms of programmed cell death pathways in the pathogenesis of IIMs and provides evidence for potential therapeutic targets.
Collapse
Affiliation(s)
- Jia Shi
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Mingwei Tang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| |
Collapse
|
70
|
Yen TH, Tseng CW, Wang KL, Fu PK. Combination Therapy with Rituximab, Tofacitinib and Pirfenidone in a Patient with Rapid Progressive Interstitial Lung Disease (RP-ILD) Due to MDA5 Antibody-Associated Dermatomyositis: A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1358. [PMID: 34946303 PMCID: PMC8708605 DOI: 10.3390/medicina57121358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
Anti-melanoma differentiation-associated protein 5 (MDA5)-positive rapidly progressive interstitial lung disease (RP-ILD) is associated with poor prognosis, and the most effective therapeutic intervention has not been established. Herein we report a case of a 45-year-old female patient who presented with myalgia, Gottron's papules with ulceration, and dyspnea on exertion which became aggravated within weeks. Laboratory examination and electromyography confirmed myopathy changes, and a survey of myositis-specific antibodies was strongly positive for anti-MDA5 antibody. High-resolution chest tomography suggested organizing pneumonia with rapidly progressive changes within the first month after diagnosis of the disease. Anti-MDA5-associated dermatomyositis with RP-ILD was diagnosed. Following combination therapy with rituximab, tofacitinib and pirfenidone, clinical symptoms, including cutaneous manifestation, respiratory conditions and radiographic changes, showed significant and sustainable improvement. To our knowledge, this is the first reported case of anti-MDA5-associated dermatomyositis with RP-ILD successfully treated with the combination of rituximab, tofacitinib, and pirfenidone.
Collapse
Affiliation(s)
- Tsai-Hung Yen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (T.-H.Y.); (C.-W.T.)
| | - Chih-Wei Tseng
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (T.-H.Y.); (C.-W.T.)
| | - Kao-Lun Wang
- Department of Radiology, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Pin-Kuei Fu
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Integrated Care Center of Interstitial Lung Disease, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| |
Collapse
|
71
|
Miripour ZS, Aminifar M, Akbari ME, Abbasvandi F, Miraghaie SH, Hoseinpour P, Javadi MR, Dabbagh N, Mohajerzadeh L, Aghdam MK, Shamsian S, Sanati H, Abdolahad M. Electrochemical measuring of reactive oxygen species levels in the blood to detect ratio of high-density neutrophils, suitable to alarm presence of cancer in suspicious cases. J Pharm Biomed Anal 2021; 209:114488. [PMID: 34896978 DOI: 10.1016/j.jpba.2021.114488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
Here for the first time, a real-time electrochemical assay on unprocessed blood was designed to detect the presence of cancer in patients. The system has been based on the recently approved pathway, which indicates that the abundance of immature and mature low-density neutrophils (LDNs) with reduced ROS production in peripheral blood is increased with the presence of active cancer tumors. Reduced ROS/H2O2 released from LDNs play the main role in determining the ROS/H2O2 levels of peripheral blood. In contrast, HDNs with increased levels of released ROS/H2O2 have higher concentrations than LDNs in normal cases. Hence, the reduced level of ROS species in peripheral blood recorded by our carbon nanostructure decorated sensor in less than 30 seconds showed a great pre-warning about the presence of non-treated cancer in patients with suspicious mass who have been sent for further evaluations.
Collapse
Affiliation(s)
- Zohreh Sadat Miripour
- Nano Bio Electronic Devices Lab, Cancer Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mina Aminifar
- Nano Bio Electronic Devices Lab, Cancer Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | | | - Fereshteh Abbasvandi
- Nano Bio Electronic Devices Lab, Cancer Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran; ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P. O. Box 16 15179/64311, Tehran, Iran
| | - Seyyed Hossein Miraghaie
- Nano Bio Electronic Devices Lab, Cancer Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Parisa Hoseinpour
- Nano Bio Electronic Devices Lab, Cancer Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran; SEPAS Pathology Laboratory, P.O. Box: 1991945391, Tehran, Iran
| | - Mohammad Reza Javadi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Dabbagh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leily Mohajerzadeh
- Pathology Surgery Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, P.O. Box. 19395-4719, Tehran, Irang
| | - Maryam Kazemi Aghdam
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, P.O. Box. 19395-4719, Tehran, Iran
| | - Shahin Shamsian
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, P.O. Box. 19395-4719, Tehran, Iran
| | - Hassan Sanati
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P. O. Box 16 15179/64311, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Bio Electronic Devices Lab, Cancer Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
72
|
Amici DR, Pinal-Fernandez I, Christopher-Stine L, Mammen AL, Mendillo ML. A network of core and subtype-specific gene expression programs in myositis. Acta Neuropathol 2021; 142:887-898. [PMID: 34499219 PMCID: PMC8555743 DOI: 10.1007/s00401-021-02365-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022]
Abstract
Myositis comprises a heterogeneous group of skeletal muscle disorders which converge on chronic muscle inflammation and weakness. Our understanding of myositis pathogenesis is limited, and many myositis patients lack effective therapies. Using muscle biopsy transcriptome profiles from 119 myositis patients (spanning major clinical and serological disease subtypes) and 20 normal controls, we generated a co-expression network of 8101 dynamically regulated transcripts. This network organized the myositis transcriptome into a map of gene expression modules representing interrelated biological processes and disease signatures. Universally myositis-upregulated network modules included muscle regeneration, specific cytokine signatures, the acute phase response, and neutrophil degranulation. Universally myositis-suppressed pathways included a specific subset of myofilaments, the mitochondrial envelope, and nuclear isoforms of the anti-apoptotic humanin protein. Myositis subtype-specific modules included type 1 interferon signaling and titin (dermatomyositis), RNA processing (antisynthetase syndrome), and vasculogenesis (inclusion body myositis). Importantly, therapies exist to target influential proteins in many myositis-dysregulated modules, and nearly all modules contained understudied proteins and non-coding RNAs - many of which were extraordinarily dysregulated in myositis and may represent novel therapeutic targets. Finally, we apply our network to patient classification, finding that a deep learning algorithm trained on patient-level network "images" successfully assigned patients to clinical groups and further into molecular subclusters. Altogether, we provide a global resource to probe and contextualize differential gene expression in myositis.
Collapse
Affiliation(s)
- David R Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Iago Pinal-Fernandez
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Lisa Christopher-Stine
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew L Mammen
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
73
|
Uto K, Ueda K, Okano T, Akashi K, Takahashi S, Nakamachi Y, Imanishi T, Awano H, Morinobu A, Kawano S, Saegusa J. Identification of Plexin D1 on circulating extracellular vesicles as a potential biomarker of polymyositis and dermatomyositis. Rheumatology (Oxford) 2021; 61:1669-1679. [PMID: 34297034 DOI: 10.1093/rheumatology/keab588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/19/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We aimed to identify disease-specific surface proteins on extracellular vesicles (EVs) as novel serum biomarkers of polymyositis and dermatomyositis (PM/DM). METHODS We performed liquid chromatography-tandem mass spectrometry (LC/MS) on purified EVs from sera of 10 PM/DM, 23 patients with other autoimmune diseases and 10 healthy controls (HC). We identified membrane proteins preferentially present in EVs of PM/DM patients by bioinformatics and biostatistical analyses. We developed EV sandwich ELISA for directly detecting serum EVs expressing disease-specific membrane proteins and evaluated their clinical utility using sera of 54 PM/DM, 24 rheumatoid arthritis (RA), 20 systemic lupus erythematosus (SLE), 13 systemic sclerosis, 25 Duchenne and Becker muscular dystrophy (DMD/BMD) patients, and 36 HC. RESULTS LC/MS analysis identified 1,220 proteins in serum EVs. Of these, Plexin D1 was enriched in those from PM/DM patients relative to HC or patients without PM/DM. Using a specific EV sandwich ELISA, we found that levels of Plexin D1-positive EVs (Plexin D1+ EVs) in serum were significantly greater in PM/DM patients than in HC, RA or SLE, or DMD/BMD patients. Serum levels of Plexin D1+ EVs were greater in those PM/DM patients with muscle pain or weakness. Serum levels of Plexin D1+ EVs were significantly correlated with levels of aldolase (rs=0.481), white blood cells (rs=0.381), neutrophils (rs=0.450), and platelets (rs=0.408) in PM/DM patients. Finally, serum levels of Plexin D1+ EVs decreased significantly in patients with PM/DM in clinical remission after treatment. CONCLUSION We have identified levels of circulating Plexin D1+ EVs as a novel serum biomarker for PM/DM.
Collapse
Affiliation(s)
- Kenichi Uto
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takaichi Okano
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan.,Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kengo Akashi
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Yuji Nakamachi
- Administration Department, Kobe University School of Medicine, Kobe, Japan
| | - Takamitsu Imanishi
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seiji Kawano
- Integrated Clinical Education Center, Kobe University Hospital, Kobe, Japan
| | - Jun Saegusa
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan.,Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
74
|
Nakabo S, Romo-Tena J, Kaplan MJ. Neutrophils as Drivers of Immune Dysregulation in Autoimmune Diseases with Skin Manifestations. J Invest Dermatol 2021; 142:823-833. [PMID: 34253374 DOI: 10.1016/j.jid.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Dysregulation in the phenotype and function of neutrophils may play important roles in the initiation and perpetuation of autoimmune responses, including conditions affecting the skin. Neutrophils can have local and systemic effects on innate and adaptive immune cells as well as on resident cells in the skin, including keratinocytes (KCs). Aberrant formation/clearance of neutrophil extracellular traps (NETs) in systemic autoimmunity and chronic inflammatory diseases have been associated with the externalization of modified autoantigens in peripheral blood and tissues. NETs can impact the function of many cells, including macrophages, lymphocytes, dendritic cells, fibroblasts, and KCs. Emerging evidence has unveiled the pathogenic key roles of neutrophils in systemic lupus erythematosus, idiopathic inflammatory myopathies, psoriasis, hidradenitis suppurativa, and other chronic inflammatory conditions. As such, neutrophil-targeting strategies represent promising therapeutic options for these diseases.
Collapse
Affiliation(s)
- Shuichiro Nakabo
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jorge Romo-Tena
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA; Medical Science PhD Program, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
75
|
Liu Y, Kaplan MJ. Neutrophil Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2021; 47:317-333. [PMID: 34215366 DOI: 10.1016/j.rdc.2021.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent identifications of a subset of proinflammatory neutrophils, low-density granulocytes, and their ability to readily form neutrophil extracellular traps led to a resurgence of interest in neutrophil dysregulation in the pathogenesis of systemic lupus erythematosus (SLE). This article presents an overview on how neutrophil dysregulation modulates the innate and adaptive immune responses in SLE and their putative roles in disease pathogenesis. The therapeutic potential of targeting this pathogenic process in the treatment of SLE is also discussed.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD 20892-1930, USA.
| |
Collapse
|
76
|
Hardisty GR, Llanwarne F, Minns D, Gillan JL, Davidson DJ, Gwyer Findlay E, Gray RD. High Purity Isolation of Low Density Neutrophils Casts Doubt on Their Exceptionality in Health and Disease. Front Immunol 2021; 12:625922. [PMID: 34168640 PMCID: PMC8217868 DOI: 10.3389/fimmu.2021.625922] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Low density neutrophils (LDNs) are described in a number of inflammatory conditions, cancers and infections and associated with immunopathology, and a mechanistic role in disease. The role of LDNs at homeostasis in healthy individuals has not been investigated. We have developed an isolation protocol that generates high purity LDNs from healthy donors. Healthy LDNs were identical to healthy normal density neutrophils (NDNs), aside from reduced neutrophil extracellular trap formation. CD66b, CD16, CD15, CD10, CD54, CD62L, CXCR2, CD47 and CD11b were expressed at equivalent levels in healthy LDNs and NDNs and underwent apoptosis and ROS production interchangeably. Healthy LDNs had no differential effect on CD4+ or CD8+ T cell proliferation or IFNγ production compared with NDNs. LDNs were generated from healthy NDNs in vitro by activation with TNF, LPS or fMLF, suggesting a mechanism of LDN generation in disease however, we show neutrophilia in people with Cystic Fibrosis (CF) was not due to increased LDNs. LDNs are present in the neutrophil pool at homeostasis and have limited functional differences to NDNs. We conclude that increased LDN numbers in disease reflect the specific pathology or inflammatory environment and that neutrophil density alone is inadequate to classify discrete functional populations of neutrophils.
Collapse
Affiliation(s)
- Gareth R Hardisty
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Frances Llanwarne
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Danielle Minns
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jonathan L Gillan
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Donald J Davidson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Gwyer Findlay
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert D Gray
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
77
|
Gupta S, Kaplan MJ. Bite of the wolf: innate immune responses propagate autoimmunity in lupus. J Clin Invest 2021; 131:144918. [PMID: 33529160 PMCID: PMC7843222 DOI: 10.1172/jci144918] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The etiopathogenesis of systemic lupus erythematosus (SLE), a clinically heterogeneous multisystemic syndrome that derives its name from the initial characterization of facial lesions that resemble the bite of a wolf, is considered a complex, multifactorial interplay between underlying genetic susceptibility factors and the environment. Prominent pathogenic factors include the induction of aberrant cell death pathways coupled with defective cell death clearance mechanisms that promote excessive externalization of modified cellular and nuclear debris with subsequent loss of tolerance to a wide variety of autoantigens and innate and adaptive immune dysregulation. While abnormalities in adaptive immunity are well recognized and are key to the pathogenesis of SLE, recent findings have emphasized fundamental roles of the innate immune system in the initiation and propagation of autoimmunity and the development of organ damage in this disease. This Review focuses on recent discoveries regarding the role of components of the innate immune system, specifically neutrophils and interferons, in promoting various aspects of lupus pathogenesis, with potential implications for novel therapeutic strategies.
Collapse
|
78
|
Opinc AH, Makowska JS. Antisynthetase syndrome - much more than just a myopathy. Semin Arthritis Rheum 2020; 51:72-83. [PMID: 33360231 DOI: 10.1016/j.semarthrit.2020.09.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
The aim of the study was to summarize current knowledge on antisynthetase syndrome (ASS), including its epidemiology, pathogenesis, proposed so far diagnostic criteria, heterogeneity of clinical manifestations, prognostic factors and therapeutic possibilities. PubMed database was screened for "antisynthetase syndrome" OR "antisynthetase antibodies" between February and April 2020. Aminoacyl-tRNA synthetases participate in the immune system activation as antigens, but also serve chemoattractive and cytokine-resembling roles, initiating innate and adaptive pathways. Exposure to various inhaled antigens may induce the autoimmune cascade leading to ASS. NK cells with its impaired INF-y production as well as formation of NETs by neutrophils contribute to pathogenesis. The prevalence of symptoms vary significantly depending on the study with muscular, articular and pulmonary involvement being the most frequently observed. Although classified as subtype of idiopathic inflammatory myopathies, myositis may not necessarily be the prominent manifestation. Since clinical presentation is heterogeneous and symptoms can emerge gradually, ASS could be considered as a heterogeneous spectrum rather than a homogenous disease entity. The currently available classification criteria do not fully correspond with the clinical patterns of the disease. Therapy is based on glucocorticosteroids and other immunosuppressive agents. Randomized controlled trials, dedicated for patients with ASS, are needed to form treatment algorithms.
Collapse
Affiliation(s)
| | - Joanna Samanta Makowska
- Department of Rheumatology, Medical University of Lodz, ul. Pieniny 30, 92-115 Łódź, Poland.
| |
Collapse
|
79
|
Liu Y, Kaplan MJ. Neutrophils in the Pathogenesis of Rheumatic Diseases: Fueling the Fire. Clin Rev Allergy Immunol 2020; 60:1-16. [DOI: 10.1007/s12016-020-08816-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
|
80
|
Becker RC, Phillip Owens A, Sadayappan S. The potential roles of Von Willebrand factor and neutrophil extracellular traps in the natural history of hypertrophic and hypertensive cardiomyopathy. Thromb Res 2020; 192:78-87. [PMID: 32460175 DOI: 10.1016/j.thromres.2020.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 02/09/2023]
Abstract
Inflammation is often applied broadly to human disease. Despite its general familiarity, inflammation is highly complex. There are numerous injurious, immune and infectious determinants, functional elements and signaling pathways, ranging from genetic to epigenetic, environmental, racial, molecular and cellular that participate in disease onset and progression, phenotypic heterogeneity, and treatment selection and response. In addition, inflammation can be tissue and organ specific, adding a layer of complexity to achieving a detailed and translatable understanding of its role in health and disease. The following review takes a close look at inflammation in the context of two common heart diseases, hypertrophic cardiomyopathy and hypertensive cardiomyopathy.
Collapse
Affiliation(s)
- Richard C Becker
- Division of Cardiovascular Health and Disease, Heart, Lung and Blood Institute, University of Cincinnati College of Medicine, United States of America.
| | - A Phillip Owens
- Division of Cardiovascular Health and Disease, Heart, Lung and Blood Institute, University of Cincinnati College of Medicine, United States of America
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Heart, Lung and Blood Institute, University of Cincinnati College of Medicine, United States of America
| |
Collapse
|
81
|
McHugh J. NET formation implicated in myositis. Nat Rev Rheumatol 2020; 16:187. [PMID: 32051593 DOI: 10.1038/s41584-020-0389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|