51
|
O'Boyle S, Nacul L, Nacul FE, Mudie K, Kingdon CC, Cliff JM, Clark TG, Dockrell HM, Lacerda EM. A Natural History of Disease Framework for Improving the Prevention, Management, and Research on Post-viral Fatigue Syndrome and Other Forms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne) 2022; 8:688159. [PMID: 35155455 PMCID: PMC8835111 DOI: 10.3389/fmed.2021.688159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/27/2021] [Indexed: 01/04/2023] Open
Abstract
We propose a framework for the treatment, rehabilitation, and research into Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) using a natural history of disease approach to outline the distinct disease stages, with an emphasis on cases following infection to provide insights into prevention. Moving away from the method of subtyping patients based on the various phenotypic presentations and instead reframing along the lines of disease progression could help with defining the distinct stages of disease, each of which would benefit from large prospective cohort studies to accurately describe the pathological mechanisms taking place therein. With a better understanding of these mechanisms, management and research can be tailored specifically for each disease stage. Pre-disease and early disease stages call for management strategies that may decrease the risk of long-term morbidity, by focusing on avoidance of further insults, adequate rest to enable recovery, and pacing of activities. Later disease stages require a more holistic and tailored management approach, with treatment-as this becomes available-targeting the alleviation of symptoms and multi-systemic dysfunction. More stringent and standardised use of case definitions in research is critical to improve generalisability of results and to create the strong evidence-based policies for management that are currently lacking in ME/CFS.
Collapse
Affiliation(s)
- Shennae O'Boyle
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- UK Health Security Agency, London, United Kingdom
| | - Luis Nacul
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- B.C. Women's Hospital and Health Centre, Vancouver, BC, Canada
| | - Flavio E. Nacul
- Pro-cardiaco Hospital and Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kathleen Mudie
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Caroline C. Kingdon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jacqueline M. Cliff
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Hazel M. Dockrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eliana M. Lacerda
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
52
|
Baraniuk JN. Review of the Midbrain Ascending Arousal Network Nuclei and Implications for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), Gulf War Illness (GWI) and Postexertional Malaise (PEM). Brain Sci 2022; 12:132. [PMID: 35203896 PMCID: PMC8870178 DOI: 10.3390/brainsci12020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS and Gulf War Illness (GWI) share features of post-exertional malaise (PEM), exertional exhaustion, or postexertional symptom exacerbation. In a two-day model of PEM, submaximal exercise induced significant changes in activation of the dorsal midbrain during a high cognitive load working memory task (Washington 2020) (Baraniuk this issue). Controls had no net change. However, ME/CFS had increased activity after exercise, while GWI had significantly reduced activity indicating differential responses to exercise and pathological mechanisms. These data plus findings of the midbrain and brainstem atrophy in GWI inspired a review of the anatomy and physiology of the dorsal midbrain and isthmus nuclei in order to infer dysfunctional mechanisms that may contribute to disease pathogenesis and postexertional malaise. The nuclei of the ascending arousal network were addressed. Midbrain and isthmus nuclei participate in threat assessment, awareness, attention, mood, cognition, pain, tenderness, sleep, thermoregulation, light and sound sensitivity, orthostatic symptoms, and autonomic dysfunction and are likely to contribute to the symptoms of postexertional malaise in ME/CFS and GWI.
Collapse
Affiliation(s)
- James N Baraniuk
- Department of Medicine, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
53
|
Che X, Brydges CR, Yu Y, Price A, Joshi S, Roy A, Lee B, Barupal DK, Cheng A, Palmer DM, Levine S, Peterson DL, Vernon SD, Bateman L, Hornig M, Montoya JG, Komaroff AL, Fiehn O, Lipkin WI. Evidence for Peroxisomal Dysfunction and Dysregulation of the CDP-Choline Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022. [PMID: 35043127 PMCID: PMC8764736 DOI: 10.1101/2021.06.14.21258895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease that is characterized by unexplained physical fatigue unrelieved by rest. Symptoms also include cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. A syndrome clinically similar to ME/CFS has been reported following well-documented infections with the coronaviruses SARS-CoV and MERS-CoV. At least 10% of COVID-19 survivors develop post acute sequelae of SARS-CoV-2 infection (PASC). Although many individuals with PASC have evidence of structural organ damage, a subset have symptoms consistent with ME/CFS including fatigue, post exertional malaise, cognitive dysfunction, gastrointestinal disturbances, and postural orthostatic intolerance. These common features in ME/CFS and PASC suggest that insights into the pathogenesis of either may enrich our understanding of both syndromes, and could expedite the development of strategies for identifying those at risk and interventions that prevent or mitigate disease. Methods Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of 888 metabolic analytes in plasma samples of 106 ME/CFS cases and 91 frequency-matched healthy controls. Results In ME/CFS cases, regression, Bayesian and enrichment analyses revealed evidence of peroxisomal dysfunction with decreased levels of plasmalogens. Other findings included decreased levels of several membrane lipids, including phosphatidylcholines and sphingomyelins, that may indicate dysregulation of the cytidine-5’-diphosphocholine pathway. Enrichment analyses revealed decreased levels of choline, ceramides and carnitines, and increased levels of long chain triglycerides (TG) and hydroxy-eicosapentaenoic acid. Elevated levels of dicarboxylic acids were consistent with abnormalities in the tricarboxylic acid cycle. Using machine learning algorithms with selected metabolites as predictors, we were able to differentiate female ME/CFS cases from female controls (highest AUC=0.794) and ME/CFS cases without self-reported irritable bowel syndrome (sr-IBS) from controls without sr-IBS (highest AUC=0.873). Conclusion Our findings are consistent with earlier ME/CFS work indicating compromised energy metabolism and redox imbalance, and highlight new abnormalities that may provide insights into the pathogenesis of ME/CFS. Plasma levels of plasmalogens are decreased in patients with myalgic encephalomyelitis/chronic fatigue syndrome suggesting peroxisome dysfunction.
Collapse
|
54
|
Williams ESCP, Martins TB, Shah KS, Hill HR, Coiras M, Spivak AM, Planelles V. Cytokine Deficiencies in Patients with Long-COVID. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2022; 13:672. [PMID: 36742994 PMCID: PMC9894377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood. We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of Interferon Gamma (IFNγ) and Interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID. We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.
Collapse
Affiliation(s)
- Elizabeth SCP Williams
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Thomas B. Martins
- ARUP Institute for Clinical and Experimental Pathology, 1950 Circle of Hope Drive, Salt Lake City, United States
| | - Kevin S. Shah
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Harry R. Hill
- ARUP Institute for Clinical and Experimental Pathology, 1950 Circle of Hope Drive, Salt Lake City, United States;,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States;,Department of Pathology and Pediatrics, University of Utah School of Medicine, Salt Lake City, United States
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology, Madrid, Spain
| | - Adam M. Spivak
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States;,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
55
|
Stanculescu D, Sepúlveda N, Lim CL, Bergquist J. Lessons From Heat Stroke for Understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Neurol 2021; 12:789784. [PMID: 34966354 PMCID: PMC8710546 DOI: 10.3389/fneur.2021.789784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023] Open
Abstract
We here provide an overview of the pathophysiological mechanisms during heat stroke and describe similar mechanisms found in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Both conditions are characterized by disturbed homeostasis in which inflammatory pathways play a central role. Splanchnic vasoconstriction, increased gut permeability, gut-related endotoxemia, systemic inflammatory response, central nervous system dysfunction, blood coagulation disorder, endothelial-cell injury, and mitochondrial dysfunction underlie heat stroke. These mechanisms have also been documented in ME/CFS. Moreover, initial transcriptomic studies suggest that similar gene expressions are altered in both heat stroke and ME/CFS. Finally, some predisposing factors for heat stroke, such as pre-existing inflammation or infection, overlap with those for ME/CFS. Notwithstanding important differences - and despite heat stroke being an acute condition - the overlaps between heat stroke and ME/CFS suggest common pathways in the physiological responses to very different forms of stressors, which are manifested in different clinical outcomes. The human studies and animal models of heat stroke provide an explanation for the self-perpetuation of homeostatic imbalance centered around intestinal wall injury, which could also inform the understanding of ME/CFS. Moreover, the studies of novel therapeutics for heat stroke might provide new avenues for the treatment of ME/CFS. Future research should be conducted to investigate the similarities between heat stroke and ME/CFS to help identify the potential treatments for ME/CFS.
Collapse
Affiliation(s)
| | - Nuno Sepúlveda
- CEAUL—Centro de Estatística e Aplicações da Universidade de Lisboa, Lisbon, Portugal
- Department of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, Uppsala, Sweden
- The ME/CFS Collaborative Research Center at Uppsala University, Uppsala, Sweden
| |
Collapse
|
56
|
Bateman L, Bested AC, Bonilla HF, Chheda BV, Chu L, Curtin JM, Dempsey TT, Dimmock ME, Dowell TG, Felsenstein D, Kaufman DL, Klimas NG, Komaroff AL, Lapp CW, Levine SM, Montoya JG, Natelson BH, Peterson DL, Podell RN, Rey IR, Ruhoy IS, Vera-Nunez MA, Yellman BP. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Essentials of Diagnosis and Management. Mayo Clin Proc 2021; 96:2861-2878. [PMID: 34454716 DOI: 10.1016/j.mayocp.2021.07.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 02/08/2023]
Abstract
Despite myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) affecting millions of people worldwide, many clinicians lack the knowledge to appropriately diagnose or manage ME/CFS. Unfortunately, clinical guidance has been scarce, obsolete, or potentially harmful. Consequently, up to 91% of patients in the United States remain undiagnosed, and those diagnosed often receive inappropriate treatment. These problems are of increasing importance because after acute COVID-19, a significant percentage of people remain ill for many months with an illness similar to ME/CFS. In 2015, the US National Academy of Medicine published new evidence-based clinical diagnostic criteria that have been adopted by the US Centers for Disease Control and Prevention. Furthermore, the United States and other governments as well as major health care organizations have recently withdrawn graded exercise and cognitive-behavioral therapy as the treatment of choice for patients with ME/CFS. Recently, 21 clinicians specializing in ME/CFS convened to discuss best clinical practices for adults affected by ME/CFS. This article summarizes their top recommendations for generalist and specialist health care providers based on recent scientific progress and decades of clinical experience. There are many steps that clinicians can take to improve the health, function, and quality of life of those with ME/CFS, including those in whom ME/CFS develops after COVID-19. Patients with a lingering illness that follows acute COVID-19 who do not fully meet criteria for ME/CFS may also benefit from these approaches.
Collapse
Affiliation(s)
| | - Alison C Bested
- Integrative Medicine, Dr Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL
| | - Hector F Bonilla
- Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Palo Alto, CA
| | | | - Lily Chu
- Independent Consultant, Burlingame, CA.
| | | | | | | | | | - Donna Felsenstein
- Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston
| | | | - Nancy G Klimas
- Institute for Neuro Immune Medicine, Dr Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL
| | | | | | | | - Jose G Montoya
- Dr Jack S. Remington Laboratory for Specialty Diagnostics, Palo Alto Medical Foundation Research Institute, Palo Alto, CA
| | - Benjamin H Natelson
- Pain & Fatigue Study Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Irma R Rey
- Institute for Neuro Immune Medicine, Dr Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL
| | - Ilene S Ruhoy
- Neurology, Chiari/EDS Center, Mount Sinai South Nassau, Oceanside, NY
| | | | | |
Collapse
|
57
|
Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A 2021; 118:e2024358118. [PMID: 34400495 PMCID: PMC8403932 DOI: 10.1073/pnas.2024358118] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although most patients recover from acute COVID-19, some experience postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection (PASC). One subgroup of PASC is a syndrome called "long COVID-19," reminiscent of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating condition, often triggered by viral and bacterial infections, leading to years-long debilitating symptoms including profound fatigue, postexertional malaise, unrefreshing sleep, cognitive deficits, and orthostatic intolerance. Some are skeptical that either ME/CFS or long COVID-19 involves underlying biological abnormalities. However, in this review, we summarize the evidence that people with acute COVID-19 and with ME/CFS have biological abnormalities including redox imbalance, systemic inflammation and neuroinflammation, an impaired ability to generate adenosine triphosphate, and a general hypometabolic state. These phenomena have not yet been well studied in people with long COVID-19, and each of them has been reported in other diseases as well, particularly neurological diseases. We also examine the bidirectional relationship between redox imbalance, inflammation, energy metabolic deficits, and a hypometabolic state. We speculate as to what may be causing these abnormalities. Thus, understanding the molecular underpinnings of both PASC and ME/CFS may lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Anthony L Komaroff
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02120
| | - Solomon H Snyder
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
58
|
Hoel F, Hoel A, Pettersen IK, Rekeland IG, Risa K, Alme K, Sørland K, Fosså A, Lien K, Herder I, Thürmer HL, Gotaas ME, Schäfer C, Berge RK, Sommerfelt K, Marti HP, Dahl O, Mella O, Fluge Ø, Tronstad KJ. A map of metabolic phenotypes in patients with myalgic encephalomyelitis/chronic fatigue syndrome. JCI Insight 2021; 6:e149217. [PMID: 34423789 PMCID: PMC8409979 DOI: 10.1172/jci.insight.149217] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease usually presenting after infection. Emerging evidence supports that energy metabolism is affected in ME/CFS, but a unifying metabolic phenotype has not been firmly established. We performed global metabolomics, lipidomics, and hormone measurements, and we used exploratory data analyses to compare serum from 83 patients with ME/CFS and 35 healthy controls. Some changes were common in the patient group, and these were compatible with effects of elevated energy strain and altered utilization of fatty acids and amino acids as catabolic fuels. In addition, a set of heterogeneous effects reflected specific changes in 3 subsets of patients, and 2 of these expressed characteristic contexts of deregulated energy metabolism. The biological relevance of these metabolic phenotypes (metabotypes) was supported by clinical data and independent blood analyses. In summary, we report a map of common and context-dependent metabolic changes in ME/CFS, and some of them presented possible associations with clinical patient profiles. We suggest that elevated energy strain may result from exertion-triggered tissue hypoxia and lead to systemic metabolic adaptation and compensation. Through various mechanisms, such metabolic dysfunction represents a likely mediator of key symptoms in ME/CFS and possibly a target for supportive intervention.
Collapse
Affiliation(s)
| | - August Hoel
- Department of Biomedicine and.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Ingrid G Rekeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kristin Risa
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kine Alme
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kari Sørland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Alexander Fosså
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,KJ Jebsen Centre for B-cell malignancies, University of Oslo, Oslo, Norway
| | - Katarina Lien
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Herder
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Merete E Gotaas
- Department of Pain and Complex Disorders, St. Olav's Hospital, Trondheim, Norway
| | - Christoph Schäfer
- Department of Rehabilitation Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristian Sommerfelt
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics and
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
59
|
Fluge Ø, Tronstad KJ, Mella O. Pathomechanisms and possible interventions in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Clin Invest 2021; 131:e150377. [PMID: 34263741 DOI: 10.1172/jci150377] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science and
| | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science and
| |
Collapse
|
60
|
Fernandez-Guerra P, Gonzalez-Ebsen AC, Boonen SE, Courraud J, Gregersen N, Mehlsen J, Palmfeldt J, Olsen RKJ, Brinth LS. Bioenergetic and Proteomic Profiling of Immune Cells in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients: An Exploratory Study. Biomolecules 2021; 11:961. [PMID: 34209852 PMCID: PMC8301912 DOI: 10.3390/biom11070961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous, debilitating, and complex disease. Along with disabling fatigue, ME/CFS presents an array of other core symptoms, including autonomic nervous system (ANS) dysfunction, sustained inflammation, altered energy metabolism, and mitochondrial dysfunction. Here, we evaluated patients' symptomatology and the mitochondrial metabolic parameters in peripheral blood mononuclear cells (PBMCs) and plasma from a clinically well-characterised cohort of six ME/CFS patients compared to age- and gender-matched controls. We performed a comprehensive cellular assessment using bioenergetics (extracellular flux analysis) and protein profiles (quantitative mass spectrometry-based proteomics) together with self-reported symptom measures of fatigue, ANS dysfunction, and overall physical and mental well-being. This ME/CFS cohort presented with severe fatigue, which correlated with the severity of ANS dysfunction and overall physical well-being. PBMCs from ME/CFS patients showed significantly lower mitochondrial coupling efficiency. They exhibited proteome alterations, including altered mitochondrial metabolism, centred on pyruvate dehydrogenase and coenzyme A metabolism, leading to a decreased capacity to provide adequate intracellular ATP levels. Overall, these results indicate that PBMCs from ME/CFS patients have a decreased ability to fulfill their cellular energy demands.
Collapse
Affiliation(s)
- Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (A.C.G.-E.); (N.G.); (J.P.)
- KMEB, Department of Endocrinology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Ana C. Gonzalez-Ebsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (A.C.G.-E.); (N.G.); (J.P.)
| | - Susanne E. Boonen
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark;
| | - Julie Courraud
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark;
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (A.C.G.-E.); (N.G.); (J.P.)
| | - Jesper Mehlsen
- Section for Surgical Pathophysiology, Juliane Marie Center, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (A.C.G.-E.); (N.G.); (J.P.)
| | - Rikke K. J. Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (A.C.G.-E.); (N.G.); (J.P.)
| | - Louise Schouborg Brinth
- Department of Clinical Physiology and Nuclear Medicine, Nordsjaellands Hospital, 2400 Hilleroed, Denmark;
| |
Collapse
|
61
|
Froehlich L, Hattesohl DBR, Jason LA, Scheibenbogen C, Behrends U, Thoma M. Medical Care Situation of People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in Germany. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:646. [PMID: 34201825 PMCID: PMC8306083 DOI: 10.3390/medicina57070646] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Background and Objective: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a severe illness with the hallmark symptom of Post-Exertional Malaise (PEM). Currently, no biomarkers or established diagnostic tests for ME/CFS exist. In Germany, it is estimated that over 300,000 people are affected by ME/CFS. Research from the United States and the UK shows that patients with ME/CFS are medically underserved, as they face barriers to medical care access and are dissatisfied with medical care. The first aim of the current research was to investigate whether patients with ME/CFS are medically underserved in Germany in terms of access to and satisfaction with medical care. Second, we aimed at providing a German-language version of the DePaul Symptom Questionnaire Short Form (DSQ-SF) as a tool for ME/CFS diagnostics and research in German-speaking countries. Materials and Methods: The current research conducted an online questionnaire study in Germany investigating the medical care situation of patients with ME/CFS. The questionnaire was completed by 499 participants who fulfilled the Canadian Consensus Criteria and reported PEM of 14 h or longer. Results: Participants frequently reported geographic and financial reasons for not using the available medical services. Furthermore, they reported low satisfaction with medical care by the physician they most frequently visited due to ME/CFS. The German version of the DSQ-SF showed good reliability, a one-factorial structure and construct validity, demonstrated by correlations with the SF-36 as a measure of functional status. Conclusions: Findings provide evidence that patients with ME/CFS in Germany are medically underserved. The German-language translation of the DSQ-SF provides a brief, reliable and valid instrument to assess ME/CFS symptoms to be used for research and clinical practice in German-speaking countries. Pathways to improve the medical care of patients with ME/CFS are discussed.
Collapse
Affiliation(s)
- Laura Froehlich
- Research Cluster DL, FernUniversität in Hagen, 58097 Hagen, Germany
| | | | - Leonard A. Jason
- Center for Community Research, DePaul University, Chicago, IL 60614, USA;
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany;
| | - Uta Behrends
- Department of Pediatrics, School of Medicine, Technical University of Munich, 80333 München, Germany;
| | - Manuel Thoma
- German Association for ME/CFS, 20146 Hamburg, Germany; (D.B.R.H.); (M.T.)
| |
Collapse
|
62
|
Tolerability and Efficacy of s.c. IgG Self-Treatment in ME/CFS Patients with IgG/IgG Subclass Deficiency: A Proof-of-Concept Study. J Clin Med 2021; 10:jcm10112420. [PMID: 34072494 PMCID: PMC8198960 DOI: 10.3390/jcm10112420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Chronic fatigue syndrome (ME/CFS) is a complex disease frequently triggered by infections. IgG substitution may have therapeutic effect both by ameliorating susceptibility to infections and due to immunomodulatory effects. METHODS We conducted a proof of concept open trial with s.c. IgG in 17 ME/CFS patients suffering from recurrent infections and mild IgG or IgG subclass deficiency to assess tolerability and efficacy. Patients received s.c. IgG therapy of 0.8 g/kg/month for 12 months with an initial 2 months dose escalation phase of 0.2 g and 0.4 g/kg/month. RESULTS Primary outcome was improvement of fatigue assessed by Chalder Fatigue Scale (CFQ; decrease ≥ 6 points) and of physical functioning assessed by SF-36 (increase ≥ 25 points) at month 12. Of 12 patients receiving treatment per protocol 5 had a clinical response at month 12. Two additional patients had an improvement according to this definition at months 6 and 9. In four patients treatment was ceased due to adverse events and in one patient due to disease worsening. We identified LDH and soluble IL-2 receptor as potential biomarker for response. CONCLUSION Our data indicate that self-administered s.c. IgG treatment is feasible and led to clinical improvement in a subset of ME/CFS patients.
Collapse
|
63
|
Jäkel B, Kedor C, Grabowski P, Wittke K, Thiel S, Scherbakov N, Doehner W, Scheibenbogen C, Freitag H. Hand grip strength and fatigability: correlation with clinical parameters and diagnostic suitability in ME/CFS. J Transl Med 2021; 19:159. [PMID: 33874961 PMCID: PMC8056497 DOI: 10.1186/s12967-021-02774-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/01/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and debilitating disease accompanied by muscular fatigue and pain. A functional measure to assess muscle fatigability of ME/CFS patients is, however, not established in clinical routine. The aim of this study is to evaluate by assessing repeat maximum handgrip strength (HGS), muscle fatigability as a diagnostic tool and its correlation with clinical parameters. METHODS We assessed the HGS of 105 patients with ME/CFS, 18 patients with Cancer related fatigue (CRF) and 66 healthy controls (HC) using an electric dynamometer assessing maximal (Fmax) and mean force (Fmean) of ten repetitive measurements. Results were correlated with clinical parameters, creatinine kinase (CK) and lactate dehydrogenase (LDH). Further, maximum isometric quadriceps strength measurement was conducted in eight ME/CFS patients and eight HC. RESULTS ME/CFS patients have a significantly lower Fmax and Fmean HGS compared to HC (p < 0.0001). Further, Fatigue Ratio assessing decline in strength during repeat maximal HGS measurement (Fmax/Fmean) was higher (p ≤ 0.0012). The Recovery Ratio after an identical second testing 60 min later was significantly lower in ME/CFS compared to HC (Fmean2/Fmean1; p ≤ 0.0020). Lower HGS parameters correlated with severity of disease, post-exertional malaise and muscle pain and with higher CK and LDH levels after exertion. CONCLUSION Repeat HGS assessment is a sensitive diagnostic test to assess muscular fatigue and fatigability and an objective measure to assess disease severity in ME/CFS.
Collapse
Affiliation(s)
- Bianka Jäkel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Claudia Kedor
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Patricia Grabowski
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
- MVZ Onkologie Havelhöhe, Berlin, Germany
| | - Kirsten Wittke
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Silvia Thiel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Nadja Scherbakov
- Department of Cardiology (Virchow Klinikum), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Wolfram Doehner
- Department of Cardiology (Virchow Klinikum), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany
| | - Helma Freitag
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany.
| |
Collapse
|
64
|
Insights into Metabolite Diagnostic Biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2021; 22:ijms22073423. [PMID: 33810365 PMCID: PMC8037376 DOI: 10.3390/ijms22073423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a persistent and unexplained pathological state characterized by exertional and severely debilitating fatigue, with/without infectious or neuropsychiatric symptoms, and with a minimum duration of 6 consecutive months. Its pathogenesis is not fully understood. There are no firmly established diagnostic biomarkers or treatment, due to incomplete understanding of the etiology of ME/CFS and diagnostic uncertainty. Establishing a biomarker for the objective diagnosis is urgently needed to treat a lot of patients. Recently, research on ME/CFS using metabolome analysis methods has been increasing. Here, we overview recent findings concerning the metabolic features in patients with ME/CFS and the animal models which contribute to the development of diagnostic biomarkers for ME/CFS and its treatment. In addition, we discuss future perspectives of studies on ME/CFS.
Collapse
|
65
|
Sørland K, Sandvik MK, Rekeland IG, Ribu L, Småstuen MC, Mella O, Fluge Ø. Reduced Endothelial Function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Results From Open-Label Cyclophosphamide Intervention Study. Front Med (Lausanne) 2021; 8:642710. [PMID: 33829023 PMCID: PMC8019750 DOI: 10.3389/fmed.2021.642710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction: Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) present with a range of symptoms including post-exertional malaise (PEM), orthostatic intolerance, and autonomic dysfunction. Dysfunction of the blood vessel endothelium could be an underlying biological mechanism, resulting in inability to fine-tune regulation of blood flow according to the metabolic demands of tissues. The objectives of the present study were to investigate endothelial function in ME/CFS patients compared to healthy individuals, and assess possible changes in endothelial function after intervention with IV cyclophosphamide. Methods: This substudy to the open-label phase II trial "Cyclophosphamide in ME/CFS" included 40 patients with mild-moderate to severe ME/CFS according to Canadian consensus criteria, aged 18-65 years. Endothelial function was measured by Flow-mediated dilation (FMD) and Post-occlusive reactive hyperemia (PORH) at baseline and repeated after 12 months. Endothelial function at baseline was compared with two cohorts of healthy controls (N = 66 and N = 30) from previous studies. Changes in endothelial function after 12 months were assessed and correlated with clinical response to cyclophosphamide. Biological markers for endothelial function were measured in serum at baseline and compared with healthy controls (N = 30). Results: Baseline FMD was significantly reduced in patients (median FMD 5.9%, range 0.5-13.1, n = 35) compared to healthy individuals (median FMD 7.7%, range 0.7-21, n = 66) (p = 0.005), as was PORH with patient score median 1,331 p.u. (range 343-4,334) vs. healthy individuals 1,886 p.u. (range 808-8,158) (p = 0.003). No significant associations were found between clinical response to cyclophosphamide intervention (reported in 55% of patients) and changes in FMD/PORH from baseline to 12 months. Serum levels of metabolites associated with endothelial dysfunction showed no significant differences between ME/CFS patients and healthy controls. Conclusions: Patients with ME/CFS had reduced endothelial function affecting both large and small vessels compared to healthy controls. Changes in endothelial function did not follow clinical responses during follow-up after cyclophosphamide IV intervention.
Collapse
Affiliation(s)
- Kari Sørland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | | | - Ingrid Gurvin Rekeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Institute of Medicine, University of Bergen, Bergen, Norway
| | - Lis Ribu
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | | | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Institute of Medicine, University of Bergen, Bergen, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Institute of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
66
|
Dysregulated Provision of Oxidisable Substrates to the Mitochondria in ME/CFS Lymphoblasts. Int J Mol Sci 2021; 22:ijms22042046. [PMID: 33669532 PMCID: PMC7921983 DOI: 10.3390/ijms22042046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Although understanding of the biomedical basis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is growing, the underlying pathological mechanisms remain uncertain. We recently reported a reduction in the proportion of basal oxygen consumption due to ATP synthesis by Complex V in ME/CFS patient-derived lymphoblast cell lines, suggesting mitochondrial respiratory inefficiency. This was accompanied by elevated respiratory capacity, elevated mammalian target of rapamycin complex 1 (mTORC1) signaling activity and elevated expression of enzymes involved in the TCA cycle, fatty acid β-oxidation and mitochondrial transport. These and other observations led us to hypothesise the dysregulation of pathways providing the mitochondria with oxidisable substrates. In our current study, we aimed to revisit this hypothesis by applying a combination of whole-cell transcriptomics, proteomics and energy stress signaling activity measures using subsets of up to 34 ME/CFS and 31 healthy control lymphoblast cell lines from our growing library. While levels of glycolytic enzymes were unchanged in accordance with our previous observations of unaltered glycolytic rates, the whole-cell proteomes of ME/CFS lymphoblasts contained elevated levels of enzymes involved in the TCA cycle (p = 1.03 × 10−4), the pentose phosphate pathway (p = 0.034, G6PD p = 5.5 × 10−4), mitochondrial fatty acid β-oxidation (p = 9.2 × 10−3), and degradation of amino acids including glutamine/glutamate (GLS p = 0.034, GLUD1 p = 0.048, GOT2 p = 0.026), branched-chain amino acids (BCKDHA p = 0.028, BCKDHB p = 0.031) and essential amino acids (FAH p = 0.036, GCDH p = 0.006). The activity of the major cellular energy stress sensor, AMPK, was elevated but the increase did not reach statistical significance. The results suggest that ME/CFS metabolism is dysregulated such that alternatives to glycolysis are more heavily utilised than in controls to provide the mitochondria with oxidisable substrates.
Collapse
|
67
|
Toogood PL, Clauw DJ, Phadke S, Hoffman D. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Where will the drugs come from? Pharmacol Res 2021; 165:105465. [PMID: 33529750 DOI: 10.1016/j.phrs.2021.105465] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic debilitating disease characterized by severe and disabling fatigue that fails to improve with rest; it is commonly accompanied by multifocal pain, as well as sleep disruption, and cognitive dysfunction. Even mild exertion can exacerbate symptoms. The prevalence of ME/CFS in the U.S. is estimated to be 0.5-1.5 % and is higher among females. Viral infection is an established trigger for the onset of ME/CFS symptoms, raising the possibility of an increase in ME/CFS prevalence resulting from the ongoing COVID-19 pandemic. Current treatments are largely palliative and limited to alleviating symptoms and addressing the psychological sequelae associated with long-term disability. While ME/CFS is characterized by broad heterogeneity, common features include immune dysregulation and mitochondrial dysfunction. However, the underlying mechanistic basis of the disease remains poorly understood. Herein, we review the current understanding, diagnosis and treatment of ME/CFS and summarize past clinical studies aimed at identifying effective therapies. We describe the current status of mechanistic studies, including the identification of multiple targets for potential pharmacological intervention, and ongoing efforts towards the discovery of new medicines for ME/CFS treatment.
Collapse
Affiliation(s)
- Peter L Toogood
- Michigan Drug Discovery, University of Michigan, Life Science Institute, 210 Washtenaw Avenue, Ann Arbor, MI, 48109, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North University Building, 428 Church Street, Ann Arbor, MI, 48109, United States.
| | - Daniel J Clauw
- Departments of Anesthesiology, Internal Medicine (Rheumatology) and Psychiatry, University of Michigan/Michigan Medicine, Chronic Pain and Fatigue Center, 24 Frank Lloyd Wright Drive, P.O. Box 3885, Ann Arbor, MI, 48109, United States
| | - Sameer Phadke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North University Building, 428 Church Street, Ann Arbor, MI, 48109, United States
| | - David Hoffman
- Cayman Chemical Company, 1180 E. Ellsworth Road, Ann Arbor, MI, 48108, United States
| |
Collapse
|
68
|
Germain A, Levine SM, Hanson MR. In-Depth Analysis of the Plasma Proteome in ME/CFS Exposes Disrupted Ephrin-Eph and Immune System Signaling. Proteomes 2021; 9:6. [PMID: 33572894 PMCID: PMC7931008 DOI: 10.3390/proteomes9010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling disease with worldwide prevalence and limited therapies exclusively aimed at treating symptoms. To gain insights into the molecular disruptions in ME/CFS, we utilized an aptamer-based technology that quantified 4790 unique human proteins, allowing us to obtain the largest proteomics dataset yet available for this disease, detecting highly abundant proteins as well as rare proteins over a nine-log dynamic range. We report a pilot study of 20 ME/CFS patients and 20 controls, all females. Significant differences in the levels of 19 proteins between cohorts implicate pathways related to the extracellular matrix, the immune system and cell-cell communication. Outputs of pathway and cluster analyses robustly highlight the ephrin pathway, which is involved in cell-cell signaling and regulation of an expansive variety of biological processes, including axon guidance, angiogenesis, epithelial cell migration, and immune response. Receiver Operating Characteristic (ROC) curve analyses distinguish the plasma proteomes of ME/CFS patients from controls with a high degree of accuracy (Area Under the Curve (AUC) > 0.85), and even higher when using protein ratios (AUC up to 0.95), that include some protein pairs with established biological relevance. Our results illustrate the promise of plasma proteomics for diagnosing and deciphering the molecular basis of ME/CFS.
Collapse
Affiliation(s)
| | | | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; (A.G.); (S.M.L.)
| |
Collapse
|
69
|
Stanculescu D, Larsson L, Bergquist J. Hypothesis: Mechanisms That Prevent Recovery in Prolonged ICU Patients Also Underlie Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med (Lausanne) 2021; 8:628029. [PMID: 33585528 PMCID: PMC7876311 DOI: 10.3389/fmed.2021.628029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Here the hypothesis is advanced that maladaptive mechanisms that prevent recovery in some intensive care unit (ICU) patients may also underlie Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Specifically, these mechanisms are: (a) suppression of the pituitary gland's pulsatile secretion of tropic hormones, and (b) a "vicious circle" between inflammation, oxidative and nitrosative stress (O&NS), and low thyroid hormone function. This hypothesis should be investigated through collaborative research projects.
Collapse
Affiliation(s)
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry – Biomedical Center, Uppsala University, Uppsala, Sweden
- The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
70
|
Baraniuk JN, Kern G, Narayan V, Cheema A. Exercise modifies glutamate and other metabolic biomarkers in cerebrospinal fluid from Gulf War Illness and Myalgic encephalomyelitis / Chronic Fatigue Syndrome. PLoS One 2021; 16:e0244116. [PMID: 33440400 PMCID: PMC7806361 DOI: 10.1371/journal.pone.0244116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Myalgic encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) and Gulf War Illness (GWI) share many symptoms of fatigue, pain, and cognitive dysfunction that are not relieved by rest. Patterns of serum metabolites in ME/CFS and GWI are different from control groups and suggest potential dysfunction of energy and lipid metabolism. The metabolomics of cerebrospinal fluid was contrasted between ME/CFS, GWI and sedentary controls in 2 sets of subjects who had lumbar punctures after either (a) rest or (b) submaximal exercise stress tests. Postexercise GWI and control subjects were subdivided according to acquired transient postexertional postural tachycardia. Banked cerebrospinal fluid specimens were assayed using Biocrates AbsoluteIDQ® p180 kits for quantitative targeted metabolomics studies of amino acids, amines, acylcarnitines, sphingolipids, lysophospholipids, alkyl and ether phosphocholines. Glutamate was significantly higher in the subgroup of postexercise GWI subjects who did not develop postural tachycardia after exercise compared to nonexercise and other postexercise groups. The only difference between nonexercise groups was higher lysoPC a C28:0 in GWI than ME/CFS suggesting this biochemical or phospholipase activities may have potential as a biomarker to distinguish between the 2 diseases. Exercise effects were suggested by elevation of short chain acylcarnitine C5-OH (C3-DC-M) in postexercise controls compared to nonexercise ME/CFS. Limitations include small subgroup sample sizes and absence of postexercise ME/CFS specimens. Mechanisms of glutamate neuroexcitotoxicity may contribute to neuropathology and “neuroinflammation” in the GWI subset who did not develop postural tachycardia after exercise. Dysfunctional lipid metabolism may distinguish the predominantly female ME/CFS group from predominantly male GWI subjects.
Collapse
Affiliation(s)
- James N Baraniuk
- Department of Medicine, Georgetown University, Washington, DC, United States of America
| | - Grant Kern
- Department of Medicine, Georgetown University, Washington, DC, United States of America
| | - Vaishnavi Narayan
- Department of Medicine, Georgetown University, Washington, DC, United States of America
| | - Amrita Cheema
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, DC, United States of America
| |
Collapse
|
71
|
Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109976. [PMID: 32470498 DOI: 10.1016/j.pnpbp.2020.109976] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
It is widely accepted that the pathophysiology and treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) could be considerably improved. The heterogeneity of ME/CFS and the confusion over its classification have undoubtedly contributed to this, although this would seem a consequence of the complexity of the array of ME/CFS presentations and high levels of diverse comorbidities. This article reviews the biological underpinnings of ME/CFS presentations, including the interacting roles of the gut microbiome/permeability, endogenous opioidergic system, immune cell mitochondria, autonomic nervous system, microRNA-155, viral infection/re-awakening and leptin as well as melatonin and the circadian rhythm. This details not only relevant pathophysiological processes and treatment options, but also highlights future research directions. Due to the complexity of interacting systems in ME/CFS pathophysiology, clarification as to its biological underpinnings is likely to considerably contribute to the understanding and treatment of other complex and poorly managed conditions, including fibromyalgia, depression, migraine, and dementia. The gut and immune cell mitochondria are proposed to be two important hubs that interact with the circadian rhythm in driving ME/CFS pathophysiology.
Collapse
Affiliation(s)
- G Anderson
- CRC Scotland & London, Eccleston Square, London, UK.
| | - M Maes
- Dept Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dept Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.; IMPACT Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
72
|
Lim EJ, Kang EB, Jang ES, Son CG. The Prospects of the Two-Day Cardiopulmonary Exercise Test (CPET) in ME/CFS Patients: A Meta-Analysis. J Clin Med 2020; 9:4040. [PMID: 33327624 PMCID: PMC7765094 DOI: 10.3390/jcm9124040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The diagnosis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is problematic due to the lack of established objective measurements. Postexertional malaise (PEM) is a hallmark of ME/CFS, and the two-day cardiopulmonary exercise test (CPET) has been tested as a tool to assess functional impairment in ME/CFS patients. This study aimed to estimate the potential of the CPET. METHODS We reviewed studies of the two-day CPET and meta-analyzed the differences between ME/CFS patients and controls regarding four parameters: volume of oxygen consumption and level of workload at peak (VO2peak, Workloadpeak) and at ventilatory threshold (VO2@VT, Workload@VT). RESULTS The overall mean values of all parameters were lower on the 2nd day of the CPET than the 1st in ME/CFS patients, while it increased in the controls. From the meta-analysis, the difference between patients and controls was highly significant at Workload@VT (overall mean: -10.8 at Test 1 vs. -33.0 at Test 2, p < 0.05), which may reflect present the functional impairment associated with PEM. CONCLUSIONS Our results show the potential of the two-day CPET to serve as an objective assessment of PEM in ME/CFS patients. Further clinical trials are required to validate this tool compared to other fatigue-inducing disorders, including depression, using well-designed large-scale studies.
Collapse
Affiliation(s)
- Eun-Jin Lim
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 34520, Korea; (E.-J.L.); (E.-S.J.)
| | - Eun-Bum Kang
- Department of Health and Exercise Management, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 34520, Korea;
| | - Eun-Su Jang
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 34520, Korea; (E.-J.L.); (E.-S.J.)
| | - Chang-Gue Son
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 34520, Korea; (E.-J.L.); (E.-S.J.)
| |
Collapse
|
73
|
Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: A possible approach to SARS-CoV-2 'long-haulers'? Chronic Dis Transl Med 2020; 7:14-26. [PMID: 33251031 PMCID: PMC7680046 DOI: 10.1016/j.cdtm.2020.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
A significant number of SARS-CoV-2 (COVID-19) pandemic patients have developed chronic symptoms lasting weeks or months which are very similar to those described for myalgic encephalomyelitis/chronic fatigue syndrome. This study reviews the current literature and understanding of the role that mitochondria, oxidative stress and antioxidants may play in the understanding of the pathophysiology and treatment of chronic fatigue. It describes what is known about the dysfunctional pathways which can develop in mitochondria and their relationship to chronic fatigue. It also reviews what is known about oxidative stress and how this can be related to the pathophysiology of fatigue, as well as examining the potential for specific therapy directed at mitochondria for the treatment of chronic fatigue in the form of antioxidants. This study identifies areas which require urgent, further research in order to fully elucidate the clinical and therapeutic potential of these approaches.
Collapse
|
74
|
Deep phenotyping of myalgic encephalomyelitis/chronic fatigue syndrome in Japanese population. Sci Rep 2020; 10:19933. [PMID: 33199820 PMCID: PMC7669873 DOI: 10.1038/s41598-020-77105-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and debilitating disease with no molecular diagnostics and no treatment options. To identify potential markers of this illness, we profiled 48 patients and 52 controls for standard laboratory tests, plasma metabolomics, blood immuno-phenotyping and transcriptomics, and fecal microbiome analysis. Here, we identified a set of 26 potential molecular markers that distinguished ME/CFS patients from healthy controls. Monocyte number, microbiome abundance, and lipoprotein profiles appeared to be the most informative markers. When we correlated these molecular changes to sleep and cognitive measurements of fatigue, we found that lipoprotein and microbiome profiles most closely correlated with sleep disruption while a different set of markers correlated with a cognitive parameter. Sleep, lipoprotein, and microbiome changes occur early during the course of illness suggesting that these markers can be examined in a larger cohort for potential biomarker application. Our study points to a cluster of sleep-related molecular changes as a prominent feature of ME/CFS in our Japanese cohort.
Collapse
|
75
|
Changes in DNA methylation profiles of myalgic encephalomyelitis/chronic fatigue syndrome patients reflect systemic dysfunctions. Clin Epigenetics 2020; 12:167. [PMID: 33148325 PMCID: PMC7641803 DOI: 10.1186/s13148-020-00960-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a lifelong debilitating disease with a complex pathology not yet clearly defined. Susceptibility to ME/CFS involves genetic predisposition and exposure to environmental factors, suggesting an epigenetic association. Epigenetic studies with other ME/CFS cohorts have used array-based technology to identify differentially methylated individual sites. Changes in RNA quantities and protein abundance have been documented in our previous investigations with the same ME/CFS cohort used for this study. RESULTS DNA from a well-characterised New Zealand cohort of 10 ME/CFS patients and 10 age-/sex-matched healthy controls was isolated from peripheral blood mononuclear (PBMC) cells, and used to generate reduced genome-scale DNA methylation maps using reduced representation bisulphite sequencing (RRBS). The sequencing data were analysed utilising the DMAP analysis pipeline to identify differentially methylated fragments, and the MethylKit pipeline was used to quantify methylation differences at individual CpG sites. DMAP identified 76 differentially methylated fragments and Methylkit identified 394 differentially methylated cytosines that included both hyper- and hypo-methylation. Four clusters were identified where differentially methylated DNA fragments overlapped with or were within close proximity to multiple differentially methylated individual cytosines. These clusters identified regulatory regions for 17 protein encoding genes related to metabolic and immune activity. Analysis of differentially methylated gene bodies (exons/introns) identified 122 unique genes. Comparison with other studies on PBMCs from ME/CFS patients and controls with array technology showed 59% of the genes identified in this study were also found in one or more of these studies. Functional pathway enrichment analysis identified 30 associated pathways. These included immune, metabolic and neurological-related functions differentially regulated in ME/CFS patients compared to the matched healthy controls. CONCLUSIONS Major differences were identified in the DNA methylation patterns of ME/CFS patients that clearly distinguished them from the healthy controls. Over half found in gene bodies with RRBS in this study had been identified in other ME/CFS studies using the same cells but with array technology. Within the enriched functional immune, metabolic and neurological pathways, a number of enriched neurotransmitter and neuropeptide reactome pathways highlighted a disturbed neurological pathophysiology within the patient group.
Collapse
|
76
|
Mandarano AH, Maya J, Giloteaux L, Peterson DL, Maynard M, Gottschalk CG, Hanson MR. Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations. J Clin Invest 2020; 130:1491-1505. [PMID: 31830003 DOI: 10.1172/jci132185] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease with no known cause or mechanism. There is an increasing appreciation for the role of immune and metabolic dysfunction in the disease. ME/CFS has historically presented in outbreaks, often has a flu-like onset, and results in inflammatory symptoms. Patients suffer from severe fatigue and postexertional malaise. There is little known about the metabolism of specific immune cells in patients with ME/CFS. To investigate immune metabolism in ME/CFS, we isolated CD4+ and CD8+ T cells from 53 patients with ME/CFS and 45 healthy controls. We analyzed glycolysis and mitochondrial respiration in resting and activated T cells, along with markers related to cellular metabolism and plasma cytokines. We found that ME/CFS CD8+ T cells had reduced mitochondrial membrane potential compared with those from healthy controls. Both CD4+ and CD8+ T cells from patients with ME/CFS had reduced glycolysis at rest, whereas CD8+ T cells also had reduced glycolysis following activation. Patients with ME/CFS had significant correlations between measures of T cell metabolism and plasma cytokine abundance that differed from correlations seen in healthy control subjects. Our data indicate that patients have impaired T cell metabolism consistent with ongoing immune alterations in ME/CFS that may illuminate the mechanism behind this disease.
Collapse
Affiliation(s)
- Alexandra H Mandarano
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Jessica Maya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Ludovic Giloteaux
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | | - Marco Maynard
- Simmaron Research Institute, Incline Village, Nevada, USA
| | | | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
77
|
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a highly debilitating disease with heterogeneous constitutional and neurological complaints. Infection-like symptoms often herald disease onset, but no pathogen or immune defect has been conclusively linked. In this issue of the JCI, Mandarano et al. illuminate bioenergetic derangements of ME/CFS T cell subsets. CD4+ and CD8+ T cells had impaired resting glycolysis. CD8+ cells additionally showed activation-related metabolic remodeling deficits and decreased mitochondrial membrane potential; a subset had increased resting mitochondrial mass. Immune senescence and exhaustion paradigms offer only partial explanations. Hence, unique mechanisms of disrupted immunometabolism may underlie the complex neuroimmune dysfunction of ME/CFS.
Collapse
|
78
|
Tomas C, Elson JL, Newton JL, Walker M. Substrate utilisation of cultured skeletal muscle cells in patients with CFS. Sci Rep 2020; 10:18232. [PMID: 33106563 PMCID: PMC7588462 DOI: 10.1038/s41598-020-75406-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic fatigue syndrome (CFS) patients often suffer from severe muscle pain and an inability to exercise due to muscle fatigue. It has previously been shown that CFS skeletal muscle cells have lower levels of ATP and have AMP-activated protein kinase dysfunction. This study outlines experiments looking at the utilisation of different substrates by skeletal muscle cells from CFS patients (n = 9) and healthy controls (n = 11) using extracellular flux analysis. Results show that CFS skeletal muscle cells are unable to utilise glucose to the same extent as healthy control cells. CFS skeletal muscle cells were shown to oxidise galactose and fatty acids normally, indicating that the bioenergetic dysfunction lies upstream of the TCA cycle. The dysfunction in glucose oxidation is similar to what has previously been shown in blood cells from CFS patients. The consistency of cellular bioenergetic dysfunction in different cell types supports the hypothesis that CFS is a systemic disease. The retention of bioenergetic defects in cultured cells indicates that there is a genetic or epigenetic component to the disease. This is the first study to use cells derived from skeletal muscle biopsies in CFS patients and healthy controls to look at cellular bioenergetic function in whole cells.
Collapse
Affiliation(s)
- Cara Tomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Joanna L Elson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Julia L Newton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark Walker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
79
|
Cardiac Dimensions and Function are Not Altered among Females with the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Healthcare (Basel) 2020; 8:healthcare8040406. [PMID: 33081294 PMCID: PMC7712104 DOI: 10.3390/healthcare8040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/05/2022] Open
Abstract
Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition associated with several negative health outcomes. A hallmark of ME/CFS is decreased exercise capacity and often profound exercise intolerance. The causes of ME/CSF and its related symptoms are unknown, but there are indications of a dysregulated metabolism with impaired glycolytic vs oxidative energy balance. In line with this, we recently demonstrated abnormal lactate accumulation among ME/CFS patients compared with healthy controls after exercise testing. Here we examined if cardiac dimensions and function were altered in ME/CFS, as this could lead to increased lactate production. Methods: We studied 16 female ME/CFS patients and 10 healthy controls with supine transthoracic echocardiography, and we assessed cardiac dimensions and function by conventional echocardiographic and Doppler analysis as well as novel tissue Doppler and strain variables. Results: A detailed analyses of key variables of cardiac dimensions and cardiac function revealed no significant differences between the two study groups. Conclusion: In this cohort of well-described ME/CFS patients, we found no significant differences in echocardiographic variables characterizing cardiac dimensions and function compared with healthy controls.
Collapse
|
80
|
Dibble JJ, McGrath SJ, Ponting CP. Genetic risk factors of ME/CFS: a critical review. Hum Mol Genet 2020; 29:R117-R124. [PMID: 32744306 PMCID: PMC7530519 DOI: 10.1093/hmg/ddaa169] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multisystem illness that lacks effective therapy and a biomedical understanding of its causes. Despite a prevalence of ∼0.2-0.4% and its high public health burden, and evidence that it has a heritable component, ME/CFS has not yet benefited from the advances in technology and analytical tools that have improved our understanding of many other complex diseases. Here we critically review existing evidence that genetic factors alter ME/CFS risk before concluding that most ME/CFS candidate gene associations are not replicated by the larger CFS cohort within the UK Biobank. Multiple genome-wide association studies of this cohort also have not yielded consistently significant associations. Ahead of upcoming larger genome-wide association studies, we discuss how these could generate new lines of enquiry into the DNA variants, genes and cell types that are causally involved in ME/CFS disease.
Collapse
Affiliation(s)
- Joshua J Dibble
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | | | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| |
Collapse
|
81
|
Sweetman E, Kleffmann T, Edgar C, de Lange M, Vallings R, Tate W. A SWATH-MS analysis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome peripheral blood mononuclear cell proteomes reveals mitochondrial dysfunction. J Transl Med 2020; 18:365. [PMID: 32972442 PMCID: PMC7512220 DOI: 10.1186/s12967-020-02533-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a serious and complex physical illness that affects all body systems with a multiplicity of symptoms, but key hallmarks of the disease are pervasive fatigue and 'post-exertional malaise', exacerbation after physical and/or mental activity of the intrinsic fatigue and other symptoms that can be highly debilitating and last from days to months. Although the disease can vary widely between individuals, common symptoms also include pain, cognitive deficits, sleep dysfunction, as well as immune, neurological and autonomic symptoms. Typically, it is a very isolating illness socially, carrying a stigma because of the lack of understanding of the cause and pathophysiology. METHODS To gain insight into the pathophysiology of ME/CFS, we examined the proteomes of peripheral blood mononuclear cells (PBMCs) by SWATH-MS analysis in a small well-characterised group of patients and matched controls. A principal component analysis (PCA) was used to stratify groups based on protein abundance patterns, which clearly segregated the majority of the ME/CFS patients (9/11) from the controls. This majority subgroup of ME/CFS patients was then further compared to the control group. RESULTS A total of 60 proteins in the ME/CFS patients were differentially expressed (P < 0.01, Log10 (Fold Change) > 0.2 and < -0.2). Comparison of the PCA selected subgroup of ME/CFS patients (9/11) with controls increased the number of proteins differentially expressed to 99. Of particular relevance to the core symptoms of fatigue and post-exertional malaise experienced in ME/CFS, a proportion of the identified proteins in the ME/CFS groups were involved in mitochondrial function, oxidative phosphorylation, electron transport chain complexes, and redox regulation. A significant number were also involved in previously implicated disturbances in ME/CFS, such as the immune inflammatory response, DNA methylation, apoptosis and proteasome activation. CONCLUSIONS The results from this study support a model of deficient ATP production in ME/CFS, compensated for by upregulation of immediate pathways upstream of Complex V that would suggest an elevation of oxidative stress. This study and others have found evidence of a distinct pathology in ME/CFS that holds promise for developing diagnostic biomarkers.
Collapse
Affiliation(s)
- Eiren Sweetman
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Torsten Kleffmann
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Christina Edgar
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Michel de Lange
- Centre for Biostatistics, University of Otago, Dunedin, 9016, New Zealand
| | | | - Warren Tate
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
82
|
Nasralla K, Khieri SA, Kunna A, Saadia Z, Ali AO, Alsammani MA. The Relationship Between the Weight of the Placenta, Body Mass Index and Fetal Birth Weight Among Sudanese Women. Mater Sociomed 2020; 32:196-199. [PMID: 38644982 PMCID: PMC11027961 DOI: 10.5455/msm.2020.32.196-199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/30/2020] [Indexed: 11/03/2022] Open
Abstract
Introduction Accurate estimation of fetal birth weight is essential for the management of labor and delivery. The predictability of fetal weighs by clinical assessment and ultrasound is limited. Aim The study aimed to evaluate the association between fetal birth weight and placental weight and other demographic characteristics. Methods a total of 369 live born of a singleton term pregnancies (37 to 42 weeks gestations) were included in the study. Immediately after delivery, the placenta was weighed with cord and membranes. A linear regression was used to examine the effect of placental weight and other variables on fetal birth weight. Results The mean of birth weight was 3122.5±477.8 grams. Placenta weight had a mean of 556.92±112.488 grams. The mean gestational age was 39.0543±.89642 weeks. The association between the placental weight and the birth weight was significant, and we found that for each gram increase in placental weight, birth weight is increased by 2.848g (SE = 0.178, p < 0.01). Similarly, there was a significant association between placental weight and fetal birth weight, and we found that for each kg increase in maternal weight, birth weight is increased by 17.018 g (SE = 5.281, p =0.001). Conclusion Placenta weight and BMI are independent predictors of fetal birth weight.
Collapse
Affiliation(s)
- Khalid Nasralla
- Obstetrics and Gynecology, College of Medicine, Qassim University, Buriadah, Saudi Arabia
| | - Sumeya A Khieri
- Department of Obstetrics and Gynecology, University of Bahri, Khartoum, Sudan
| | - Abdelilah Kunna
- Department of Obstetrics and Gynecology, University of Bahri, Khartoum, Sudan
| | - Zaheera Saadia
- Obstetrics and Gynecology, College of Medicine, Qassim University, Buriadah, Saudi Arabia
| | - Ali Osman Ali
- Department of Obstetrics and Gynecology, University of Alazhari, Khartoum, Sudan
| | - Mohamed Alkhatim Alsammani
- Obstetrics and Gynecology, College of Medicine, Qassim University, Buriadah, Saudi Arabia
- Department of Obstetrics and Gynecology, University of Bahri, Khartoum, Sudan
| |
Collapse
|
83
|
Milivojevic M, Che X, Bateman L, Cheng A, Garcia BA, Hornig M, Huber M, Klimas NG, Lee B, Lee H, Levine S, Montoya JG, Peterson DL, Komaroff AL, Lipkin WI. Plasma proteomic profiling suggests an association between antigen driven clonal B cell expansion and ME/CFS. PLoS One 2020; 15:e0236148. [PMID: 32692761 PMCID: PMC7373296 DOI: 10.1371/journal.pone.0236148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an unexplained chronic, debilitating illness characterized by fatigue, sleep disturbances, cognitive dysfunction, orthostatic intolerance and gastrointestinal problems. Using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we analyzed the plasma proteomes of 39 ME/CFS patients and 41 healthy controls. Logistic regression models, with both linear and quadratic terms of the protein levels as independent variables, revealed a significant association between ME/CFS and the immunoglobulin heavy variable (IGHV) region 3-23/30. Stratifying the ME/CFS group based on self-reported irritable bowel syndrome (sr-IBS) status revealed a significant quadratic effect of immunoglobulin lambda constant region 7 on its association with ME/CFS with sr-IBS whilst IGHV3-23/30 and immunoglobulin kappa variable region 3-11 were significantly associated with ME/CFS without sr-IBS. In addition, we were able to predict ME/CFS status with a high degree of accuracy (AUC = 0.774-0.838) using a panel of proteins selected by 3 different machine learning algorithms: Lasso, Random Forests, and XGBoost. These algorithms also identified proteomic profiles that predicted the status of ME/CFS patients with sr-IBS (AUC = 0.806-0.846) and ME/CFS without sr-IBS (AUC = 0.754-0.780). Our findings are consistent with a significant association of ME/CFS with immune dysregulation and highlight the potential use of the plasma proteome as a source of biomarkers for disease.
Collapse
Affiliation(s)
- Milica Milivojevic
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Xiaoyu Che
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Lucinda Bateman
- Bateman Horne Center, Salt Lake City, UT, United States of America
| | - Aaron Cheng
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Benjamin A. Garcia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Manuel Huber
- German Research Center for Environmental Health, Institute for Health Economics and Health Care Management, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nancy G. Klimas
- Institute for Neuro Immune Medicine, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- Miami VA Medical Center, Miami, FL, United States of America
| | - Bohyun Lee
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Hyoungjoo Lee
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Susan Levine
- Levine Clinic, New York, NY, United States of America
| | - Jose G. Montoya
- Palo Alto Medical Foundation, Jack S. Remington Laboratory for Specialty Diagnostics of Toxoplasmosis, Palo Alto, CA, United States of America
| | - Daniel L. Peterson
- Sierra Internal Medicine at Incline Village, Incline Village, NV, United States of America
| | - Anthony L. Komaroff
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| |
Collapse
|
84
|
Huth TK, Eaton-Fitch N, Staines D, Marshall-Gradisnik S. A systematic review of metabolomic dysregulation in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis/Systemic Exertion Intolerance Disease (CFS/ME/SEID). J Transl Med 2020; 18:198. [PMID: 32404171 PMCID: PMC7222338 DOI: 10.1186/s12967-020-02356-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic Fatigue Syndrome/Myalgic Encephalomyelitis/Systemic Exertion Intolerance Disease (CFS/ME/SEID) is a complex illness that has an unknown aetiology. It has been proposed that metabolomics may contribute to the illness pathogenesis of CFS/ME/SEID. In metabolomics, the systematic identification of measurable changes in small molecule metabolite products have been identified in cases of both monogenic and heterogenic diseases. Therefore, the aim of this systematic review was to evaluate if there is any evidence of metabolomics contributing to the pathogenesis of CFS/ME/SEID. METHODS PubMed, Scopus, EBSCOHost (Medline) and EMBASE were searched using medical subject headings terms for Chronic Fatigue Syndrome, metabolomics and metabolome to source papers published from 1994 to 2020. Inclusion and exclusion criteria were used to identify studies reporting on metabolites measured in blood and urine samples from CFS/ME/SEID patients compared with healthy controls. The Joanna Briggs Institute Checklist was used to complete a quality assessment for all the studies included in this review. RESULTS 11 observational case control studies met the inclusion criteria for this review. The primary outcome of metabolite measurement in blood samples of CFS/ME/SEID patients was reported in ten studies. The secondary outcome of urine metabolites was measured in three of the included studies. No studies were excluded from this review based on a low-quality assessment score, however there was inconsistency in the scientific research design of the included studies. Metabolites associated with the amino acid pathway were the most commonly impaired with significant results in seven out of the 10 studies. However, no specific metabolite was consistently impaired across all of the studies. Urine metabolite results were also inconsistent. CONCLUSION The findings of this systematic review reports that a lack of consistency with scientific research design provides little evidence for metabolomics to be clearly defined as a contributing factor to the pathogenesis of CFS/ME/SEID. Further research using the same CFS/ME/SEID diagnostic criteria, metabolite analysis method and control of the confounding factors that influence metabolite levels are required.
Collapse
Affiliation(s)
- Teilah Kathryn Huth
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast, Australia.
- School of Medicine, University of Notre Dame, Sydney, Australia.
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast, Australia
| |
Collapse
|
85
|
Rekeland IG, Fosså A, Lande A, Ktoridou-Valen I, Sørland K, Holsen M, Tronstad KJ, Risa K, Alme K, Viken MK, Lie BA, Dahl O, Mella O, Fluge Ø. Intravenous Cyclophosphamide in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. An Open-Label Phase II Study. Front Med (Lausanne) 2020; 7:162. [PMID: 32411717 PMCID: PMC7201056 DOI: 10.3389/fmed.2020.00162] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disease with high symptom burden, of unknown etiology, with no established treatment. We observed patients with long-standing ME/CFS who got cancer, and who reported improvement of ME/CFS symptoms after chemotherapy including cyclophosphamide, forming the basis for this prospective trial. Materials and methods: This open-label phase II trial included 40 patients with ME/CFS diagnosed by Canadian criteria. Treatment consisted of six intravenous infusions of cyclophosphamide, 600-700 mg/m2, given at four-week intervals with follow-up for 18 months, extended to 4 years. Response was defined by self-reported improvements in symptoms by Fatigue score, supported by Short Form 36 (SF-36) scores, physical activity measures and other instruments. Repeated measures of outcome variables were assessed by General linear models. Responses were correlated with specific Human Leukocyte Antigen (HLA) alleles. Results: The overall response rate by Fatigue score was 55.0% (22 of 40 patients). Fatigue score and other outcome variables showed significant improvements compared to baseline. The SF-36 Physical Function score increased from mean 33.0 at baseline to 51.5 at 18 months (all patients), and from mean 35.0 to 69.5 among responders. Mean steps per 24 h increased from mean 3,199 at baseline to 4,347 at 18 months (all patients), and from 3,622 to 5,589 among responders. At extended follow-up to 4 years 68% (15 of 22 responders) were still in remission. Patients positive for HLA-DQB1*03:03 and/or HLA-C*07:04 (n = 12) had significantly higher response rate compared to patients negative for these alleles (n = 28), 83 vs. 43%, respectively. Nausea and constipation were common grade 1-2 adverse events. There were one suspected unexpected serious adverse reaction (aggravated POTS) and 11 serious adverse events in eight patients. Conclusion: Intravenous cyclophosphamide treatment was feasible for ME/CFS patients and associated with an acceptable toxicity profile. More than half of the patients responded and with prolonged follow-up, a considerable proportion of patients reported ongoing remission. Without a placebo group, clinical response data must be interpreted with caution. We nevertheless believe a future randomized trial is warranted. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02444091.
Collapse
Affiliation(s)
- Ingrid G Rekeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Alexander Fosså
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Asgeir Lande
- Department of Medical Genetics, Oslo University Hospital and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Irini Ktoridou-Valen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kari Sørland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Mari Holsen
- Clinical Research Unit, Haukeland University Hospital, Bergen, Norway
| | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Kristin Risa
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kine Alme
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Marte K Viken
- Department of Medical Genetics, Oslo University Hospital and Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Benedicte A Lie
- Department of Medical Genetics, Oslo University Hospital and Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Olav Dahl
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
86
|
Tomas C, Elson JL, Strassheim V, Newton JL, Walker M. The effect of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) severity on cellular bioenergetic function. PLoS One 2020; 15:e0231136. [PMID: 32275686 PMCID: PMC7147788 DOI: 10.1371/journal.pone.0231136] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/ Chronic fatigue syndrome (ME/CFS) has been associated with abnormalities in mitochondrial function. In this study we have analysed previous bioenergetics data in peripheral blood mononuclear cells (PBMCs) using new techniques in order to further elucidate differences between ME/CFS and healthy control cohorts. We stratified our ME/CFS cohort into two individual cohorts representing moderately and severely affected patients in order to determine if disease severity is associated with bioenergetic function in PBMCs. Both ME/CFS cohorts showed reduced mitochondrial function when compared to a healthy control cohort. This shows that disease severity does not correlate with mitochondrial function and even those with a moderate form of the disease show evidence of mitochondrial dysfunction. Equations devised by another research group have enabled us to calculate ATP-linked respiration rates and glycolytic parameters. Parameters of glycolytic function were calculated by taking into account respiratory acidification. This revealed severely affected ME/CFS patients to have higher rates of respiratory acidification and showed the importance of accounting for respiratory acidification when calculating parameters of glycolytic function. Analysis of previously published glycolysis data, after taking into account respiratory acidification, showed severely affected patients have reduced glycolysis compared to moderately affected patients and healthy controls. Rates of ATP-linked respiration were also calculated and shown to be lower in both ME/CFS cohorts. This study shows that severely affected patients have mitochondrial and glycolytic impairments, which sets them apart from moderately affected patients who only have mitochondrial impairment. This may explain why these patients present with a more severe phenotype.
Collapse
Affiliation(s)
- Cara Tomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Joanna L. Elson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Victoria Strassheim
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Julia L. Newton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Mark Walker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
87
|
Wirth K, Scheibenbogen C. A Unifying Hypothesis of the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Recognitions from the finding of autoantibodies against ß2-adrenergic receptors. Autoimmun Rev 2020; 19:102527. [PMID: 32247028 DOI: 10.1016/j.autrev.2020.102527] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Myalgic Encephalomyelitis or Chronic Fatigue Syndrome (CFS/ME) is a complex and severely disabling disease with a prevalence of 0.3% and no approved treatment and therefore a very high medical need. Following an infectious onset patients suffer from severe central and muscle fatigue, chronic pain, cognitive impairment, and immune and autonomic dysfunction. Although the etiology of CFS/ME is not solved yet, there is numerous evidence for an autoantibody mediated dysregulation of the immune and autonomic nervous system. We found elevated ß2 adrenergic receptor (ß2AdR) and M3 acetylcholine receptor antibodies in a subset of CFS/ME patients. As both ß2AdR and M3 acetylcholine receptor are important vasodilators, we would expect their functional disturbance to result in vasoconstriction and hypoxemia. An impaired circulation and oxygen supply could result in many symptoms of ME/CFS. There are consistent reports of vascular dysfunction in ME/CFS. Muscular and cerebral hypoperfusion has been shown in ME/CFS in various studies and correlated with fatigue. Metabolic changes in ME/CFS are also in line with a concept of hypoxia and ischemia. Here we try to develop a unifying working concept for the complex pathomechanism of ME/CFS based on the presence of dysfunctional autoantibodies against ß2AdR and M3 acetylcholine receptor and extrapolate it to the pathophysiology of ME/CFS without an autoimmune pathogenesis.
Collapse
Affiliation(s)
- Klaus Wirth
- Sanofi-Aventis Deutschland, R&D, Frankfurt a.M., Germany.
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité University Medicine Berlin, Campus Virchow, Berlin, Germany.
| |
Collapse
|
88
|
Nilsson I, Palmer J, Apostolou E, Gottfries CG, Rizwan M, Dahle C, Rosén A. Metabolic Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Not Due to Anti-mitochondrial Antibodies. Front Med (Lausanne) 2020; 7:108. [PMID: 32296708 PMCID: PMC7136523 DOI: 10.3389/fmed.2020.00108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic profiling studies have recently indicated dysfunctional mitochondria in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This includes an impaired function of pyruvate dehydrogenase complex (PDC), possibly driven by serum factor(s), which leads to inadequate adenosine triphosphate generation and excessive lactate accumulation. A reminiscent energy blockade is likely to occur in primary biliary cholangitis (PBC), caused by anti-PDC autoantibodies, as recently proposed. PBC is associated with fatigue and post-exertional malaise, also signifying ME/CFS. We herein have investigated whether ME/CFS patients have autoreactive antibodies that could interfere with mitochondrial function. We found that only 1 of 161 examined ME/CFS patients was positive for anti-PDC, while all PBC patients (15/15) presented significant IgM, IgG, and IgA anti-PDC reactivity, as previously shown. None of fibromyalgia patients (0/14), multiple sclerosis patients (0/29), and healthy blood donors (0/44) controls showed reactivities. Anti-mitochondrial autoantibodies (inner and outer membrane) were negative in ME/CFS cohort. Anti-cardiolipin antibody levels in patients did not differ significantly from healthy blood donors. In conclusion, the impaired mitochondrial/metabolic dysfunction, observed in ME/CFS, cannot be explained by presence of circulating autoantibodies against the tested mitochondrial epitopes.
Collapse
Affiliation(s)
- Isabell Nilsson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jeremy Palmer
- The Medical School, The University Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Eirini Apostolou
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Muhammad Rizwan
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotte Dahle
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Rosén
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
89
|
Missailidis D, Sanislav O, Allan CY, Annesley SJ, Fisher PR. Cell-Based Blood Biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2020; 21:ijms21031142. [PMID: 32046336 PMCID: PMC7037777 DOI: 10.3390/ijms21031142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a devastating illness whose biomedical basis is now beginning to be elucidated. We reported previously that, after recovery from frozen storage, lymphocytes (peripheral blood mononuclear cells, PBMCs) from ME/CFS patients die faster in culture medium than those from healthy controls. We also found that lymphoblastoid cell lines (lymphoblasts) derived from these PBMCs exhibit multiple abnormalities in mitochondrial respiratory function and signalling activity by the cellular stress-sensing kinase Target Of Rapamycin Complex 1 (TORC1). These differences were correlated with disease severity, as measured by the Richardson and Lidbury weighted standing test. The clarity of the differences between these cells derived from ME/CFS patient blood and those from healthy controls suggested that they may provide useful biomarkers for ME/CFS. Here, we report a preliminary investigation into that possibility using a variety of analytical classification tools, including linear discriminant analysis, logistic regression and receiver operating characteristic (ROC) curve analysis. We found that results from three different tests—lymphocyte death rate, mitochondrial respiratory function and TORC1 activity—could each individually serve as a biomarker with better than 90% sensitivity but only modest specificity vís a vís healthy controls. However, in combination, they provided a cell-based biomarker with sensitivity and specificity approaching 100% in our sample. This level of sensitivity and specificity was almost equalled by a suggested protocol in which the frozen lymphocyte death rate was used as a highly sensitive test to triage positive samples to the more time consuming and expensive tests measuring lymphoblast respiratory function and TORC1 activity. This protocol provides a promising biomarker that could assist in more rapid and accurate diagnosis of ME/CFS.
Collapse
|
90
|
Missailidis D, Annesley SJ, Allan CY, Sanislav O, Lidbury BA, Lewis DP, Fisher PR. An Isolated Complex V Inefficiency and Dysregulated Mitochondrial Function in Immortalized Lymphocytes from ME/CFS Patients. Int J Mol Sci 2020; 21:ijms21031074. [PMID: 32041178 PMCID: PMC7036826 DOI: 10.3390/ijms21031074] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an enigmatic condition characterized by exacerbation of symptoms after exertion (post-exertional malaise or “PEM”), and by fatigue whose severity and associated requirement for rest are excessive and disproportionate to the fatigue-inducing activity. There is no definitive molecular marker or known underlying pathological mechanism for the condition. Increasing evidence for aberrant energy metabolism suggests a role for mitochondrial dysfunction in ME/CFS. Our objective was therefore to measure mitochondrial function and cellular stress sensing in actively metabolizing patient blood cells. We immortalized lymphoblasts isolated from 51 ME/CFS patients diagnosed according to the Canadian Consensus Criteria and an age- and gender-matched control group. Parameters of mitochondrial function and energy stress sensing were assessed by Seahorse extracellular flux analysis, proteomics, and an array of additional biochemical assays. As a proportion of the basal oxygen consumption rate (OCR), the rate of ATP synthesis by Complex V was significantly reduced in ME/CFS lymphoblasts, while significant elevations were observed in Complex I OCR, maximum OCR, spare respiratory capacity, nonmitochondrial OCR and “proton leak” as a proportion of the basal OCR. This was accompanied by a reduction of mitochondrial membrane potential, chronically hyperactivated TOR Complex I stress signaling and upregulated expression of mitochondrial respiratory complexes, fatty acid transporters, and enzymes of the β-oxidation and TCA cycles. By contrast, mitochondrial mass and genome copy number, as well as glycolytic rates and steady state ATP levels were unchanged. Our results suggest a model in which ME/CFS lymphoblasts have a Complex V defect accompanied by compensatory upregulation of their respiratory capacity that includes the mitochondrial respiratory complexes, membrane transporters and enzymes involved in fatty acid β-oxidation. This homeostatically returns ATP synthesis and steady state levels to “normal” in the resting cells, but may leave them unable to adequately respond to acute increases in energy demand as the relevant homeostatic pathways are already activated.
Collapse
Affiliation(s)
- Daniel Missailidis
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (D.M.); (S.J.A.); (C.Y.A.); (O.S.)
| | - Sarah J. Annesley
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (D.M.); (S.J.A.); (C.Y.A.); (O.S.)
| | - Claire Y. Allan
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (D.M.); (S.J.A.); (C.Y.A.); (O.S.)
| | - Oana Sanislav
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (D.M.); (S.J.A.); (C.Y.A.); (O.S.)
| | - Brett A. Lidbury
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT 2601, Australia;
| | | | - Paul R. Fisher
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (D.M.); (S.J.A.); (C.Y.A.); (O.S.)
- Correspondence: ; Tel.: +61-3-9479-2229
| |
Collapse
|
91
|
Germain A, Barupal DK, Levine SM, Hanson MR. Comprehensive Circulatory Metabolomics in ME/CFS Reveals Disrupted Metabolism of Acyl Lipids and Steroids. Metabolites 2020; 10:E34. [PMID: 31947545 PMCID: PMC7023305 DOI: 10.3390/metabo10010034] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 12/11/2022] Open
Abstract
The latest worldwide prevalence rate projects that over 65 million patients suffer from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), an illness with known effects on the functioning of the immune and nervous systems. We performed an extensive metabolomics analysis on the plasma of 52 female subjects, equally sampled between controls and ME/CFS patients, which delivered data for about 1750 blood compounds spanning 20 super-pathways, subdivided into 113 sub-pathways. Statistical analysis combined with pathway enrichment analysis points to a few disrupted metabolic pathways containing many unexplored compounds. The most intriguing finding concerns acyl cholines, belonging to the fatty acid metabolism sub-pathway of lipids, for which all compounds are consistently reduced in two distinct ME/CFS patient cohorts. We compiled the extremely limited knowledge about these compounds and regard them as promising in the quest to explain many of the ME/CFS symptoms. Another class of lipids with far-reaching activity on virtually all organ systems are steroids; androgenic, progestin, and corticosteroids are broadly reduced in our patient cohort. We also report on lower dipeptides and elevated sphingolipids abundance in patients compared to controls. Disturbances in the metabolism of many of these molecules can be linked to the profound organ system symptoms endured by ME/CFS patients.
Collapse
Affiliation(s)
- Arnaud Germain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; (A.G.); (S.M.L.)
| | - Dinesh K. Barupal
- UC Davis Genome Center—Metabolomics, University of California, Davis, CA 95616, USA;
| | - Susan M. Levine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; (A.G.); (S.M.L.)
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; (A.G.); (S.M.L.)
| |
Collapse
|
92
|
Fosså A, Smeland KH, Fluge Ø, Tronstad KJ, Loge JH, Midttun Ø, Ueland PM, Kiserud CE. Metabolic analysis of amino acids and vitamin B6 pathways in lymphoma survivors with cancer related chronic fatigue. PLoS One 2020; 15:e0227384. [PMID: 31923274 PMCID: PMC6953873 DOI: 10.1371/journal.pone.0227384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic cancer-related fatigue (CF) is a common and distressing condition in a subset of cancer survivors and common also after successful treatment of malignant lymphoma. The etiology and pathogenesis of CF is unknown, and lack of biomarkers hampers development of diagnostic tests and successful therapy. Recent studies on the changes of amino acid levels and other metabolites in patients with chronic fatigue syndrome/myalgic encephalopathy (CFS/ME) have pointed to possible central defects in energy metabolism. Here we report a comprehensive analysis of serum concentrations of amino acids, including metabolites of tryptophan, the kynurenine pathway and vitamin B6 in a well characterized national Norwegian cohort of lymphoma survivors after high-dose therapy and autologous stem cell transplantation. Among the 20 standard amino acids in humans, only tryptophan levels were significantly lower in both males and females with CF compared to non-fatigued survivors, a strikingly different pattern than seen in CFS/ME. Markers of tryptophan degradation by the kynurenine pathway (kynurenine/tryptophan ratio) and activation of vitamin B6 catabolism (pyridoxic acid/(pyridoxal + pyridoxal 5'-phosphate), PAr index) differed in survivors with or without CF and correlated with known markers of immune activation and inflammation, such as neopterin, C-reactive protein and Interleukin-6. Among personal traits and clinical findings assessed simultaneously in participating survivors, higher neuroticism score, obesity and higher PAr index were significantly associated with increased risk of CF. Collectively, these data point to low grade immune activation and inflammation as a basis for CF in lymphoma survivors.
Collapse
Affiliation(s)
- Alexander Fosså
- Department of Oncology, National Advisory Unit on Late Effects after Cancer Treatment, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell malignancies, Oslo University, Oslo, Norway
- * E-mail:
| | - Knut Halvor Smeland
- Department of Oncology, National Advisory Unit on Late Effects after Cancer Treatment, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Jon Håvard Loge
- Regional Centre for Excellence in Palliative Care, Oslo University Hospital, Oslo, Norway
| | | | - Per Magne Ueland
- Bevital AS, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Cecilie Essholt Kiserud
- Department of Oncology, National Advisory Unit on Late Effects after Cancer Treatment, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
93
|
Zhu X, Long D, Zabalawi M, Ingram B, Yoza BK, Stacpoole PW, McCall CE. Stimulating pyruvate dehydrogenase complex reduces itaconate levels and enhances TCA cycle anabolic bioenergetics in acutely inflamed monocytes. J Leukoc Biol 2020; 107:467-484. [PMID: 31894617 DOI: 10.1002/jlb.3a1119-236r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/24/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
The pyruvate dehydrogenase complex (PDC)/pyruvate dehydrogenase kinase (PDK) axis directs the universal survival principles of immune resistance and tolerance in monocytes by controlling anabolic and catabolic energetics. Immune resistance shifts to immune tolerance during inflammatory shock syndromes when inactivation of PDC by increased PDK activity disrupts the tricarboxylic acid (TCA) cycle support of anabolic pathways. The transition from immune resistance to tolerance also diverts the TCA cycle from citrate-derived cis-aconitate to itaconate, a recently discovered catabolic mediator that separates the TCA cycle at isocitrate and succinate dehydrogenase (SDH). Itaconate inhibits succinate dehydrogenase and its anabolic role in mitochondrial ATP generation. We previously reported that inhibiting PDK in septic mice with dichloroacetate (DCA) increased TCA cycle activity, reversed septic shock, restored innate and adaptive immune and organ function, and increased survival. Here, using unbiased metabolomics in a monocyte culture model of severe acute inflammation that simulates sepsis reprogramming, we show that DCA-induced activation of PDC restored anabolic energetics in inflammatory monocytes while increasing TCA cycle intermediates, decreasing itaconate, and increasing amino acid anaplerotic catabolism of branched-chain amino acids (BCAAs). Our study provides new mechanistic insight that the DCA-stimulated PDC homeostat reconfigures the TCA cycle and promotes anabolic energetics in monocytes by reducing levels of the catabolic mediator itaconate. It further supports the theory that PDC is an energy sensing and signaling homeostat that restores metabolic and energy fitness during acute inflammation.
Collapse
Affiliation(s)
- Xuewei Zhu
- Department of Internal Medicine/Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David Long
- Department of Internal Medicine/Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Manal Zabalawi
- Department of Internal Medicine/Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Brian Ingram
- Metabolon, Inc., Morrisville, North Carolina, USA
| | - Barbara K Yoza
- Department of Surgery/General Surgery and Trauma, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter W Stacpoole
- Division of Endocrinology, Diabetes & Metabolism, and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Charles E McCall
- Department of Internal Medicine/Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
94
|
Tomas C, Lodge TA, Potter M, Elson JL, Newton JL, Morten KJ. Assessing cellular energy dysfunction in CFS/ME using a commercially available laboratory test. Sci Rep 2019; 9:11464. [PMID: 31391529 PMCID: PMC6686017 DOI: 10.1038/s41598-019-47966-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
The mitochondrial energy score (MES) protocol, developed by the Myhill group, is marketed as a diagnostic test for chronic fatigue syndrome/Myalgic Encephalomyelitis (CFS/ME). This study assessed the reliability and reproducibility of the test, currently provided by private clinics, to assess its potential to be developed as an NHS accredited laboratory test. We replicated the MES protocol using neutrophils and peripheral blood mononuclear cells (PBMCs) from CFS/ME patients (10) and healthy controls (13). The protocol was then repeated in PBMCs and neutrophils from healthy controls to investigate the effect of delayed sample processing time used by the Myhill group. Experiments using the established protocol showed no differences between CFS/ME patients and healthy controls in any of the components of the MES (p ≥ 0.059). Delaying blood sample processing by 24 hours (well within the 72 hour time frame quoted by the Myhill group) significantly altered many of the parameters used to calculate the MES in both neutrophils and PBMCs. The MES test does not have the reliability and reproducibility required of a diagnostic test and therefore should not currently be offered as a diagnostic test for CFS/ME. The differences observed by the Myhill group may be down to differences in sample processing time between cohorts.
Collapse
Affiliation(s)
- Cara Tomas
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Tiffany A Lodge
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Michelle Potter
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Julia L Newton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Karl J Morten
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
95
|
Pettersen IKN, Tusubira D, Ashrafi H, Dyrstad SE, Hansen L, Liu XZ, Nilsson LIH, Løvsletten NG, Berge K, Wergedahl H, Bjørndal B, Fluge Ø, Bruland O, Rustan AC, Halberg N, Røsland GV, Berge RK, Tronstad KJ. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. Mitochondrion 2019; 49:97-110. [PMID: 31351920 DOI: 10.1016/j.mito.2019.07.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
Fatty acid oxidation is a central fueling pathway for mitochondrial ATP production. Regulation occurs through multiple nutrient- and energy-sensitive molecular mechanisms. We explored if upregulated mRNA expression of the mitochondrial enzyme pyruvate dehydrogenase kinase 4 (PDK4) may be used as a surrogate marker of increased mitochondrial fatty acid oxidation, by indicating an overall shift from glucose to fatty acids as the preferred oxidation fuel. The association between fatty acid oxidation and PDK4 expression was studied in different contexts of metabolic adaption. In rats treated with the modified fatty acid tetradecylthioacetic acid (TTA), Pdk4 was upregulated simultaneously with fatty acid oxidation genes in liver and heart, whereas muscle and white adipose tissue remained unaffected. In MDA-MB-231 cells, fatty acid oxidation increased nearly three-fold upon peroxisome proliferator-activated receptor α (PPARα, PPARA) overexpression, and four-fold upon TTA-treatment. PDK4 expression was highly increased under these conditions. Further, overexpression of PDK4 caused increased fatty acid oxidation in these cells. Pharmacological activators of PPARα and AMPK had minor effects, while the mTOR inhibitor rapamycin potentiated the effect of TTA. There were minor changes in mitochondrial respiration, glycolytic function, and mitochondrial biogenesis under conditions of increased fatty acid oxidation. TTA was found to act as a mild uncoupler, which is likely to contribute to the metabolic effects. Repeated experiments with HeLa cells supported these findings. In summary, PDK4 upregulation implies an overarching metabolic shift towards increased utilization of fatty acids as energy fuel, and thus constitutes a sensitive marker of enhanced fatty acid oxidation.
Collapse
Affiliation(s)
| | | | - Hanan Ashrafi
- Department of Biomedicine, University of Bergen, Norway
| | | | - Lena Hansen
- Department of Biomedicine, University of Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | - Hege Wergedahl
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Ove Bruland
- Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Nils Halberg
- Department of Biomedicine, University of Bergen, Norway
| | - Gro Vatne Røsland
- Department of Biomedicine, University of Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
96
|
Missailidis D, Annesley SJ, Fisher PR. Pathological Mechanisms Underlying Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Diagnostics (Basel) 2019; 9:E80. [PMID: 31330791 PMCID: PMC6787592 DOI: 10.3390/diagnostics9030080] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The underlying molecular basis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is not well understood. Characterized by chronic, unexplained fatigue, a disabling payback following exertion ("post-exertional malaise"), and variably presenting multi-system symptoms, ME/CFS is a complex disease, which demands a concerted biomedical investigation from disparate fields of expertise. ME/CFS research and patient treatment have been challenged by the lack of diagnostic biomarkers and finding these is a prominent direction of current work. Despite these challenges, modern research demonstrates a tangible biomedical basis for the disorder across many body systems. This evidence is mostly comprised of disturbances to immunological and inflammatory pathways, autonomic and neurological dysfunction, abnormalities in muscle and mitochondrial function, shifts in metabolism, and gut physiology or gut microbiota disturbances. It is possible that these threads are together entangled as parts of an underlying molecular pathology reflecting a far-reaching homeostatic shift. Due to the variability of non-overlapping symptom presentation or precipitating events, such as infection or other bodily stresses, the initiation of body-wide pathological cascades with similar outcomes stemming from different causes may be implicated in the condition. Patient stratification to account for this heterogeneity is therefore one important consideration during exploration of potential diagnostic developments.
Collapse
Affiliation(s)
- Daniel Missailidis
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia.
| |
Collapse
|
97
|
Sweetman E, Noble A, Edgar C, Mackay A, Helliwell A, Vallings R, Ryan M, Tate W. Current Research Provides Insight into the Biological Basis and Diagnostic Potential for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Diagnostics (Basel) 2019; 9:E73. [PMID: 31295930 PMCID: PMC6787691 DOI: 10.3390/diagnostics9030073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/22/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe fatigue illness that occurs most commonly following a viral infection, but other physiological triggers are also implicated. It has a profound long-term impact on the life of the affected person. ME/CFS is diagnosed primarily by the exclusion of other fatigue illnesses, but the availability of multiple case definitions for ME/CFS has complicated diagnosis for clinicians. There has been ongoing controversy over the nature of ME/CFS, but a recent detailed report from the Institute of Medicine (Academy of Sciences, USA) concluded that ME/CFS is a medical, not psychiatric illness. Importantly, aspects of the biological basis of the ongoing disease have been revealed over the last 2-3 years that promise new leads towards an effective clinical diagnostic test that may have a general application. Our detailed molecular studies with a preclinical study of ME/CFS patients, along with the complementary research of others, have reported an elevation of inflammatory and immune processes, ongoing neuro-inflammation, and decreases in general metabolism and mitochondrial function for energy production in ME/CFS, which contribute to the ongoing remitting/relapsing etiology of the illness. These biological changes have generated potential molecular biomarkers for use in diagnostic ME/CFS testing.
Collapse
Affiliation(s)
- Eiren Sweetman
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Alex Noble
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Christina Edgar
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Angus Mackay
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Amber Helliwell
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | | | - Margaret Ryan
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Warren Tate
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
98
|
Post-Exertional Malaise Is Associated with Hypermetabolism, Hypoacetylation and Purine Metabolism Deregulation in ME/CFS Cases. Diagnostics (Basel) 2019; 9:diagnostics9030070. [PMID: 31277442 PMCID: PMC6787670 DOI: 10.3390/diagnostics9030070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/30/2022] Open
Abstract
Post-exertional malaise (PEM) is a cardinal predictive symptom in the definition of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). If the cases overexert themselves they have what is termed "payback" resulting in a worsening of symptoms or relapse which can last for days, weeks or even months. The aim was to assess the changes in biochemistry associated with the cases self-reported PEM scores over a 7-day period and the frequency of reporting over a 12-month period. Forty-seven ME/CFS cases and age/sex-matched controls had a clinical examination, completed questionnaires; were subjected to standard serum biochemistry; had their serum and urine metabolomes analyzed in an observational study. Thirty-five of the 46 ME/CFS cases reported PEM in the last 7-days and these were allocated to the PEM group. The principal biochemical change related to the 7-day severity of PEM was the fall in the purine metabolite, hypoxanthine. This decrease correlated with alterations in the glucose:lactate ratio highly suggestive of a glycolytic anomaly. Increased excretion of urine metabolites within the 7-day response period indicated a hypermetabolic event was occurring. Increases in urine excretion of methylhistidine (muscle protein degradation), mannitol (intestinal barrier deregulation) and acetate were noted with the hypermetabolic event. These data indicate hypoacetylation was occurring, which may also be related to deregulation of multiple cytoplasmic enzymes and DNA histone regulation. These findings suggest the primary events associated with PEM were due to hypoacetylation and metabolite loss during the acute PEM response.
Collapse
|
99
|
Ohba T, Domoto S, Tanaka M, Nakamura S, Shimazawa M, Hara H. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Induced by Repeated Forced Swimming in Mice. Biol Pharm Bull 2019; 42:1140-1145. [DOI: 10.1248/bpb.b19-00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takuya Ohba
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Shinichi Domoto
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Miyu Tanaka
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Shinsuke Nakamura
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Masamitsu Shimazawa
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| |
Collapse
|
100
|
Lien K, Johansen B, Veierød MB, Haslestad AS, Bøhn SK, Melsom MN, Kardel KR, Iversen PO. Abnormal blood lactate accumulation during repeated exercise testing in myalgic encephalomyelitis/chronic fatigue syndrome. Physiol Rep 2019; 7:e14138. [PMID: 31161646 PMCID: PMC6546966 DOI: 10.14814/phy2.14138] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/09/2023] Open
Abstract
Post-exertional malaise and delayed recovery are hallmark symptoms of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Studies on repeated cardiopulmonary exercise testing (CPET) show that previous exercise negatively affects oxygen uptake (VO2 ) and power output (PO) in ME/CFS. Whether this affects arterial lactate concentrations ([Laa ]) is unknown. We studied 18 female patients (18-50 years) fulfilling the Canadian Consensus Criteria for ME/CFS and 15 healthy females (18-50 years) who underwent repeated CPETs 24 h apart (CPET1 and CPET2 ) with [Laa ] measured every 30th second. VO2 at peak exercise (VO2peak ) was lower in patients than in controls on CPET1 (P < 0.001) and decreased in patients on CPET2 (P < 0.001). However, the difference in VO2peak between CPETs did not differ significantly between groups. [Laa ] per PO was higher in patients during both CPETs (Pinteraction < 0.001), but increased in patients and decreased in controls from CPET1 to CPET2 (Pinteraction < 0.001). Patients had lower VO2 (P = 0.02) and PO (P = 0.002) at the gas exchange threshold (GET, the point where CO2 production increases relative to VO2 ), but relative intensity (%VO2peak ) and [Laa ] at GET did not differ significantly from controls on CPET1 . Patients had a reduction in VO2 (P = 0.02) and PO (P = 0.01) at GET on CPET2 , but no significant differences in %VO2peak and [Laa ] at GET between CPETs. Controls had no significant differences in VO2 , PO or %VO2peak at GET between CPETs, but [Laa ] at GET was reduced on CPET2 (P = 0.008). In conclusion, previous exercise deteriorates physical performance and increases [Laa ] during exercise in patients with ME/CFS while it lowers [Laa ] in healthy subjects.
Collapse
Affiliation(s)
- Katarina Lien
- Department of NutritionInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- CFS/ME CentreDivision of MedicineOslo University HospitalOsloNorway
| | - Bjørn Johansen
- Department of Respiratory DiseasesRikshospitaletOslo University HospitalOsloNorway
| | - Marit B. Veierød
- Oslo Centre for Biostatistics and EpidemiologyDepartment of BiostatisticsInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Annicke S. Haslestad
- Department of NutritionInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Siv K. Bøhn
- Department of NutritionInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | | | - Kristin R. Kardel
- Department of NutritionInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Per O. Iversen
- Department of NutritionInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of HematologyOslo University HospitalOsloNorway
| |
Collapse
|