51
|
Hodel KP, Sun MJS, Ungerleider N, Park VS, Williams LG, Bauer DL, Immethun VE, Wang J, Suo Z, Lu H, McLachlan JB, Pursell ZF. POLE Mutation Spectra Are Shaped by the Mutant Allele Identity, Its Abundance, and Mismatch Repair Status. Mol Cell 2020; 78:1166-1177.e6. [PMID: 32497495 PMCID: PMC8177757 DOI: 10.1016/j.molcel.2020.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
Human tumors with exonuclease domain mutations in the gene encoding DNA polymerase ε (POLE) have incredibly high mutation burdens. These errors arise in four unique mutation signatures occurring in different relative amounts, the etiologies of which remain poorly understood. We used CRISPR-Cas9 to engineer human cell lines expressing POLE tumor variants, with and without mismatch repair (MMR). Whole-exome sequencing of these cells after defined numbers of population doublings permitted analysis of nascent mutation accumulation. Unlike an exonuclease active site mutant that we previously characterized, POLE cancer mutants readily drive signature mutagenesis in the presence of functional MMR. Comparison of cell line and human patient data suggests that the relative abundance of mutation signatures partitions POLE tumors into distinct subgroups dependent on the nature of the POLE allele, its expression level, and MMR status. These results suggest that different POLE mutants have previously unappreciated differences in replication fidelity and mutagenesis.
Collapse
Affiliation(s)
- Karl P Hodel
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Meijuan J S Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Vivian S Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Leonard G Williams
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; BioInnovation Program, Tulane University, New Orleans, LA 70112, USA
| | - David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Victoria E Immethun
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jieqiong Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Zucai Suo
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA.
| |
Collapse
|
52
|
Wang F, Zhao Q, Xu RH. Evaluation of POLE/ POLD1 Variants as Potential Biomarkers for Immune Checkpoint Inhibitor Treatment Outcomes—Reply. JAMA Oncol 2020; 6:590. [DOI: 10.1001/jamaoncol.2020.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
53
|
Abstract
Polδ and Polε are the two major replicative polymerases in eukaryotes, but their precise roles at the replication fork remain a subject of debate. A bulk of data supports a model where Polε and Polδ synthesize leading and lagging DNA strands, respectively. However, this model has been difficult to reconcile with the fact that mutations in Polδ have much stronger consequences for genome stability than equivalent mutations in Polε. We provide direct evidence for a long-entertained idea that Polδ can proofread errors made by Polε in addition to its own errors, thus, making a more prominent contribution to mutation avoidance. This paper provides an essential advance in the understanding of the mechanism of eukaryotic DNA replication. During eukaryotic replication, DNA polymerases ε (Polε) and δ (Polδ) synthesize the leading and lagging strands, respectively. In a long-known contradiction to this model, defects in the fidelity of Polε have a much weaker impact on mutagenesis than analogous Polδ defects. It has been previously proposed that Polδ contributes more to mutation avoidance because it proofreads mismatches created by Polε in addition to its own errors. However, direct evidence for this model was missing. We show that, in yeast, the mutation rate increases synergistically when a Polε nucleotide selectivity defect is combined with a Polδ proofreading defect, demonstrating extrinsic proofreading of Polε errors by Polδ. In contrast, combining Polδ nucleotide selectivity and Polε proofreading defects produces no synergy, indicating that Polε cannot correct errors made by Polδ. We further show that Polδ can remove errors made by exonuclease-deficient Polε in vitro. These findings illustrate the complexity of the one-strand–one-polymerase model where synthesis appears to be largely divided, but Polδ proofreading operates on both strands.
Collapse
|
54
|
Singh A, Pandey M, Nandakumar D, Raney KD, Yin YW, Patel SS. Excessive excision of correct nucleotides during DNA synthesis explained by replication hurdles. EMBO J 2020; 39:e103367. [PMID: 32037587 PMCID: PMC7073461 DOI: 10.15252/embj.2019103367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022] Open
Abstract
The proofreading exonuclease activity of replicative DNA polymerase excises misincorporated nucleotides during DNA synthesis, but these events are rare. Therefore, we were surprised to find that T7 replisome excised nearly 7% of correctly incorporated nucleotides during leading and lagging strand syntheses. Similar observations with two other DNA polymerases establish its generality. We show that excessive excision of correctly incorporated nucleotides is not due to events such as processive degradation of nascent DNA or spontaneous partitioning of primer‐end to the exonuclease site as a “cost of proofreading”. Instead, we show that replication hurdles, including secondary structures in template, slowed helicase, or uncoupled helicase–polymerase, increase DNA reannealing and polymerase backtracking, and generate frayed primer‐ends that are shuttled to the exonuclease site and excised efficiently. Our studies indicate that active‐site shuttling occurs at a high frequency, and we propose that it serves as a proofreading mechanism to protect primer‐ends from mutagenic extensions.
Collapse
Affiliation(s)
- Anupam Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Manjula Pandey
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, The University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Y Whitney Yin
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
55
|
Abstract
The replisome quickly and accurately copies billions of DNA bases each cell division cycle. However, it can make errors, especially when the template DNA is damaged. In these cases, replication-coupled repair mechanisms remove the mistake or repair the template lesions to ensure high fidelity and complete copying of the genome. Failures in these genome maintenance activities generate mutations, rearrangements, and chromosome segregation problems that cause many human diseases. In this review, I provide a broad overview of replication-coupled repair pathways, explaining how they fix polymerase mistakes, respond to template damage that acts as obstacles to the replisome, deal with broken forks, and impact human health and disease.
Collapse
|
56
|
Wang F, Zhao Q, Wang YN, Jin Y, He MM, Liu ZX, Xu RH. Evaluation of POLE and POLD1 Mutations as Biomarkers for Immunotherapy Outcomes Across Multiple Cancer Types. JAMA Oncol 2019; 5:1504-1506. [PMID: 31415061 DOI: 10.1001/jamaoncol.2019.2963] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying-Nan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming-Ming He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
57
|
Opportunities for new studies of nuclear DNA replication enzymology in budding yeast. Curr Genet 2019; 66:299-302. [PMID: 31493018 DOI: 10.1007/s00294-019-01023-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
Three major eukaryotic DNA polymerases, Polymerases α, δ, and ε (Pols α, δ, and ε), perform the fundamental process of DNA synthesis at the replication fork both accurately and efficiently. In trying to understand the necessity and flexibility of the polymerase usage, we recently reported that budding yeast cells lacking Pol ε exonuclease and polymerase domains (pol2-16) survive, but have severe growth defects, checkpoint activation, increased level of dNTP pools as well as significant increase in the mutation rates. Herein, we suggest new opportunities to distinguish the roles of Pol ε from those of two other eukaryotic B-family DNA polymerases, Pols δ and ζ.
Collapse
|
58
|
Park VS, Pursell ZF. POLE proofreading defects: Contributions to mutagenesis and cancer. DNA Repair (Amst) 2019; 76:50-59. [PMID: 30818169 PMCID: PMC6467506 DOI: 10.1016/j.dnarep.2019.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/14/2022]
Abstract
DNA polymerases are uniquely poised to contribute to the elevated mutation burdens seen in many human tumors. These mutations can arise through a number of different polymerase-dependent mechanisms, including intrinsic errors made using template DNA and precursor dNTPs free from chemical modifications, misinsertion events opposite chemically damaged template DNA or insertion events using modified nucleotides. While specific DNA repair polymerases have been known to contribute to tumorigenesis, the role of replication polymerases in mutagenesis in human disease has come into sharp focus over the last decade. This review describes how mutations in these replication DNA polymerases help to drive mutagenesis and tumor development, with particular attention to DNA polymerase epsilon. Recent studies using cancer genome sequencing, mutational signature analyses, yeast and mouse models, and the influence of mismatch repair on tumors with DNA polymerase mutations are discussed.
Collapse
Affiliation(s)
- Vivian S Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA; Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, USA.
| |
Collapse
|
59
|
Ou X, Cao J, Cheng A, Peppelenbosch MP, Pan Q. Errors in translational decoding: tRNA wobbling or misincorporation? PLoS Genet 2019; 15:e1008017. [PMID: 30921315 PMCID: PMC6438450 DOI: 10.1371/journal.pgen.1008017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As the central dogma of molecular biology, genetic information flows from DNA through transcription into RNA followed by translation of the message into protein by transfer RNAs (tRNAs). However, mRNA translation is not always perfect, and errors in the amino acid composition may occur. Mistranslation is generally well tolerated, but once it reaches superphysiological levels, it can give rise to a plethora of diseases. The key causes of mistranslation are errors in translational decoding of the codons in mRNA. Such errors mainly derive from tRNA misdecoding and misacylation, especially when certain codon-paired tRNA species are missing. Substantial progress has recently been made with respect to the mechanistic basis of erroneous mRNA decoding as well as the resulting consequences for physiology and pathology. Here, we aim to review this progress with emphasis on viral evolution and cancer development.
Collapse
Affiliation(s)
- Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jingyu Cao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail: (AC); (QP)
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
- * E-mail: (AC); (QP)
| |
Collapse
|
60
|
Parkash V, Kulkarni Y, Ter Beek J, Shcherbakova PV, Kamerlin SCL, Johansson E. Structural consequence of the most frequently recurring cancer-associated substitution in DNA polymerase ε. Nat Commun 2019; 10:373. [PMID: 30670696 PMCID: PMC6342957 DOI: 10.1038/s41467-018-08114-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022] Open
Abstract
The most frequently recurring cancer-associated DNA polymerase ε (Pol ε) mutation is a P286R substitution in the exonuclease domain. While originally proposed to increase genome instability by disrupting exonucleolytic proofreading, the P286R variant was later found to be significantly more pathogenic than Pol ε proofreading deficiency per se. The mechanisms underlying its stronger impact remained unclear. Here we report the crystal structure of the yeast orthologue, Pol ε−P301R, complexed with DNA and an incoming dNTP. Structural changes in the protein are confined to the exonuclease domain, with R301 pointing towards the exonuclease site. Molecular dynamics simulations suggest that R301 interferes with DNA binding to the exonuclease site, an outcome not observed with the exonuclease-inactive Pol ε−D290A,E292A variant lacking the catalytic residues. These results reveal a distinct mechanism of exonuclease inactivation by the P301R substitution and a likely basis for its dramatically higher mutagenic and tumorigenic effects. Mutations in the human POLE gene are associated with tumours with high mutational loads. Here the authors provide a structural rationale for the mutagenic activity of the cancer-associated DNA polymerase ε P286R variant.
Collapse
Affiliation(s)
- Vimal Parkash
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden
| | - Yashraj Kulkarni
- Department of Chemistry - BMC, Uppsala University, Box 576, Uppsala, S-751 23, Sweden
| | - Josy Ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden.
| |
Collapse
|
61
|
Xing X, Kane DP, Bulock CR, Moore EA, Sharma S, Chabes A, Shcherbakova PV. A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme. Nat Commun 2019; 10:374. [PMID: 30670691 PMCID: PMC6343027 DOI: 10.1038/s41467-018-08145-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022] Open
Abstract
Alterations in the exonuclease domain of DNA polymerase ε (Polε) cause ultramutated tumors. Severe mutator effects of the most common variant, Polε-P286R, modeled in yeast suggested that its pathogenicity involves yet unknown mechanisms beyond simple proofreading deficiency. We show that, despite producing a catastrophic amount of replication errors in vivo, the yeast Polε-P286R analog retains partial exonuclease activity and is more accurate than exonuclease-dead Polε. The major consequence of the arginine substitution is a dramatically increased DNA polymerase activity. This is manifested as a superior ability to copy synthetic and natural templates, extend mismatched primer termini, and bypass secondary DNA structures. We discuss a model wherein the cancer-associated substitution limits access of the 3’-terminus to the exonuclease site and promotes binding at the polymerase site, thus stimulating polymerization. We propose that the ultramutator effect results from increased polymerase activity amplifying the contribution of Polε errors to the genomic mutation rate. Somatic alterations in the exonuclease domain of DNA polymerase ɛ have been linked to the development of highly mutated cancers. Here, the authors report that a major consequence of the most common cancer-associated Polɛ variant is a dramatically increased DNA polymerase activity.
Collapse
Affiliation(s)
- Xuanxuan Xing
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Daniel P Kane
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY, 13214, USA
| | - Chelsea R Bulock
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87, Umeå, Sweden
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
62
|
Kunkel TA. A simple but profound mutation in mouse DNA polymerase ε drives tumorigenesis. J Clin Invest 2018; 128:3754-3756. [PMID: 30124465 DOI: 10.1172/jci123021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Over 40 years ago, Loeb and colleagues proposed that errors in DNA replication produce a mutator phenotype that is involved in generating the multiple mutations required for tumor development. In this issue of the JCI, Li, Castrillon, and colleagues describe a mouse model containing a single base change in the gene encoding replicative DNA polymerase ε (POLE) that mimics the "ultramutator" phenotype recently reported in many human tumors. Their seminal accomplishment validates Loeb's hypothesis and the use of mutational signatures to understand the origins and potentially the treatment of human tumors, and it offers an exciting opportunity to further explore the mechanisms responsible for normal DNA replication fidelity and their perturbations.
Collapse
|