51
|
Razumilava N, Shiota J, Mohamad Zaki NH, Ocadiz-Ruiz R, Cieslak CM, Zakharia K, Allen BL, Gores GJ, Samuelson LC, Merchant JL. Hedgehog Signaling Modulates Interleukin-33-Dependent Extrahepatic Bile Duct Cell Proliferation in Mice. Hepatol Commun 2019; 3:277-292. [PMID: 30766964 PMCID: PMC6357834 DOI: 10.1002/hep4.1295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023] Open
Abstract
Hedgehog (HH) signaling participates in hepatobiliary repair after injury and is activated in patients with cholangiopathies. Cholangiopathies are associated with bile duct (BD) hyperplasia, including expansion of peribiliary glands, the niche for biliary progenitor cells. The inflammation-associated cytokine interleukin (IL)-33 is also up-regulated in cholangiopathies, including cholangiocarcinoma. We hypothesized that HH signaling synergizes with IL-33 in acute inflammation-induced BD hyperplasia. We measured extrahepatic BD (EHBD) thickness and cell proliferation with and without an IL-33 challenge in wild-type mice, mice overexpressing Sonic HH (pCMV-Shh), and mice with loss of the HH pathway effector glioma-associated oncogene 1 (Gli1lacZ/lacZ ). LacZ reporter mice were used to map the expression of HH effector genes in mouse EHBDs. An EHBD organoid (BDO) system was developed to study biliary progenitor cells in vitro. EHBDs from the HH overexpressing pCMV-Shh mice showed increased epithelial cell proliferation and hyperplasia when challenged with IL-33. In Gli1lacZ/lacZ mice, we observed a decreased proliferative response to IL-33 and decreased expression of Il6. The HH ligands Shh and Indian HH (Ihh) were expressed in epithelial cells, whereas the transcriptional effectors Gli1, Gli2, and Gli3 and the HH receptor Patched1 (Ptch1) were expressed in stromal cells, as assessed by in situ hybridization and lacZ reporter mice. Although BDO cells lacked canonical HH signaling, they expressed the IL-33 receptor suppression of tumorigenicity 2. Accordingly, IL-33 treatment directly induced BDO cell proliferation in a nuclear factor κB-dependent manner. Conclusion: HH ligand overexpression enhances EHBD epithelial cell proliferation induced by IL-33. This proproliferative synergism of HH and IL-33 involves crosstalk between HH ligand-producing epithelial cells and HH-responding stromal cells.
Collapse
Affiliation(s)
| | - Junya Shiota
- Department of Internal Medicine University of Michigan Ann Arbor MI
| | | | | | | | - Kais Zakharia
- Department of Internal Medicine University of Michigan Ann Arbor MI
| | - Benjamin L Allen
- Department of Cell and Developmental Biology University of Michigan Ann Arbor MI
| | | | - Linda C Samuelson
- Department of Internal Medicine University of Michigan Ann Arbor MI
- Molecular and Integrative Physiology University of Michigan Ann Arbor MI
| | - Juanita L Merchant
- Department of Internal Medicine University of Michigan Ann Arbor MI
- Molecular and Integrative Physiology University of Michigan Ann Arbor MI
| |
Collapse
|
52
|
Bonafiglia QA, Lourenssen SR, Hurlbut DJ, Blennerhassett MG. Epigenetic modification of intestinal smooth muscle cell phenotype during proliferation. Am J Physiol Cell Physiol 2018; 315:C722-C733. [DOI: 10.1152/ajpcell.00216.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammation causes proliferation of intestinal smooth muscle cells (ISMC), contributing to a thickened intestinal wall and to stricture formation in Crohn’s disease. Proliferation of ISMC in vitro and in vivo caused decreased expression of marker proteins, but the underlying cause is unclear. Since epigenetic change is important in other systems, we used immunocytochemistry, immunoblotting, and quantitative PCR to examine epigenetic modification in cell lines from rat colon at low passage or after extended growth to evaluate phenotype. Exposure to the histone deacetylase (HDAC) inhibitor trichostatin A or the DNA methyltransferase inhibitor 5-azacytidine reversed the characteristic loss of phenotypic markers among high-passage cell lines of ISMC. Expression of smooth muscle actin and smooth muscle protein 22, as well as functional expression of the neurotrophin glial cell line-derived neurotrophic factor, was markedly increased. Increased expression of muscarinic receptor 3 and myosin light chain kinase was correlated with an upregulated response to cholinergic stimulation. In human ISMC (hISMC) lines from the terminal ileum, phenotype was similarly affected by extended proliferation. However, in hISMC from resected Crohn’s strictures, we observed a significantly reduced contractile phenotype compared with patient-matched intrinsic controls that was associated with increased patient-specific expression of DNA methyltransferase 1, HDAC2, and HDAC5. Therefore, protracted growth causes epigenetic alterations that account for an altered phenotype of ISMC. A similar process may promote stricture formation in Crohn’s disease, where the potential for halting progression, or even reversal, of disease through control of phenotypic modulation may become a novel treatment option.
Collapse
Affiliation(s)
- Quinn A. Bonafiglia
- Gastrointestinal Diseases Research Unit and Queen’s University, Kingston, Ontario, Canada
| | - Sandra R. Lourenssen
- Gastrointestinal Diseases Research Unit and Queen’s University, Kingston, Ontario, Canada
| | - David J. Hurlbut
- Gastrointestinal Diseases Research Unit and Queen’s University, Kingston, Ontario, Canada
| | | |
Collapse
|
53
|
Affiliation(s)
- Juanita L. Merchant
- Correspondence Address correspondence to: Juanita L. Merchant, MD, PhD, 109 Zina Pitcher Place, BSRB 2051, Ann Arbor, Michigan 48109-2200.
| |
Collapse
|
54
|
Tachibana M. The Immunosuppressive Function of Myeloid-derived Suppressor Cells Is Regulated by the HMGB1-TLR4 Axis. YAKUGAKU ZASSHI 2018; 138:143-148. [DOI: 10.1248/yakushi.17-00158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masashi Tachibana
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University
- Global Center for Medical Engineering and Informatics, Osaka University
| |
Collapse
|
55
|
Interleukin-17A Promotes Parietal Cell Atrophy by Inducing Apoptosis. Cell Mol Gastroenterol Hepatol 2018; 5:678-690.e1. [PMID: 29930985 PMCID: PMC6009015 DOI: 10.1016/j.jcmgh.2017.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Atrophic gastritis caused by chronic inflammation in the gastric mucosa leads to the loss of gastric glandular cells, including acid-secreting parietal cells. Parietal cell atrophy in a setting of chronic inflammation induces spasmolytic polypeptide expressing metaplasia, a critical step in gastric carcinogenesis. However, the mechanisms by which inflammation causes parietal cell atrophy and spasmolytic polypeptide expressing metaplasia are not well defined. We investigated the role of interleukin-17A (IL-17A) in causing parietal cell atrophy. METHODS A mouse model of autoimmune atrophic gastritis was used to examine IL-17A production during early and late stages of disease. Organoids derived from corpus glands were used to determine the direct effects of IL-17A on gastric epithelial cells. Immunofluorescent staining was used to examine IL-17A receptors and the direct effect of signaling on parietal cells. Mice were infected with an IL-17A-producing adenovirus to determine the effects of IL-17A on parietal cells in vivo. Finally, IL-17A neutralizing antibodies were administered to mice with active atrophic gastritis to evaluate the effects on parietal cell atrophy and metaplasia. RESULTS Increased IL-17A correlated with disease severity in mice with chronic atrophic gastritis. IL-17A caused caspase-dependent gastric organoid degeneration, which could not be rescued with a necroptosis inhibitor. Parietal cells expressed IL-17A receptors and IL-17A treatment induced apoptosis in parietal cells. Overexpressing IL-17A in vivo induced caspase-3 activation and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining in parietal cells. Finally, IL-17A neutralizing antibody decreased parietal cell atrophy and metaplasia in mice with chronic atrophic gastritis. CONCLUSIONS These data identify IL-17A as a cytokine that promotes parietal cell apoptosis during atrophic gastritis, a precursor lesion for gastric cancer.
Collapse
|
56
|
Razumilava N, Gumucio DL, Samuelson LC, Shah YM, Nusrat A, Merchant JL. Indian Hedgehog Suppresses Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 2017; 5:63-64. [PMID: 29276751 PMCID: PMC5736880 DOI: 10.1016/j.jcmgh.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nataliya Razumilava
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Linda C Samuelson
- Department of Internal Medicine, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Yatrik M Shah
- Department of Internal Medicine, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Juanita L Merchant
- Department of Internal Medicine, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
57
|
Spechler SJ, Merchant JL, Wang TC, Chandrasoma P, Fox JG, Genta RM, Goldenring JR, Hayakawa Y, Kuipers EJ, Lund PK, McKeon F, Mills JC, Odze RD, Peek RM, Pham T, Que J, Rustgi AK, Shaheen NJ, Shivdasani RA, Souza RF, Storz P, Todisco A, Wang DH, Wright NA. A Summary of the 2016 James W. Freston Conference of the American Gastroenterological Association: Intestinal Metaplasia in the Esophagus and Stomach: Origins, Differences, Similarities and Significance. Gastroenterology 2017; 153:e6-e13. [PMID: 28583825 PMCID: PMC5828164 DOI: 10.1053/j.gastro.2017.05.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stuart J Spechler
- Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas.
| | - Juanita L Merchant
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University Medical Center, New York, New York
| | | | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - James R Goldenring
- Nashville VA Medical Center and the Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Japan
| | - Ernst J Kuipers
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pauline K Lund
- Division of Biomedical Research Workforce, Office of Extramural Research, National Institutes of Health, Bethesda, Maryland
| | - Frank McKeon
- Department of Biology Biochemistry, University of Houston, Texas
| | - Jason C Mills
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert D Odze
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard M Peek
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thai Pham
- Esophageal Diseases Center, Department of Surgery, University of Texas Southwestern Medical Center and Surgical Service, Dallas VA Medical Center, Dallas, Texas
| | - Jianwen Que
- Department of Surgery, Division of Digestive and Liver Diseases, Center for Human Development, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania
| | - Nicholas J Shaheen
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology & Hepatology, University of North Carolina, Chapel Hill, North Carolina
| | - Ramesh A Shivdasani
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Rhonda F Souza
- Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Andrea Todisco
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan
| | - David H Wang
- Esophageal Diseases Center, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center and Medical Service, Dallas VA Medical Center, Dallas, Texas
| | - Nicholas A Wright
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, United Kingdom
| |
Collapse
|
58
|
Liu F, Zhou P, Wang Q, Zhang M, Li D. The Schlafen family: complex roles in different cell types and virus replication. Cell Biol Int 2017; 42:2-8. [PMID: 28460425 DOI: 10.1002/cbin.10778] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/23/2017] [Indexed: 12/28/2022]
Abstract
The Schlafen (slfn) gene family members express broadly, but the research has mainly focused on human slfn (h-slfn) and mouse slfn (m-slfn). The slfn members can be divided into three groups, and each group has its own characteristics and functions. Although the effects of slfns are still poorly understood, it has been confirmed that slfns are involved in the defense of immune system and regulate immune cells' proliferation and differentiation. In some malignant tumors, the slfn proteins can inhibit the growth and invasion of cancer cells, promote cancer cells sensibility to chemotherapeutics, and can be a promising new therapeutic target. In addition, the slfn proteins also disturb replication and virulence of viruses. In this review, we summarize the characteristics of the Schlafen family's structures and functions with the aim to achieve a more comprehensive understanding of slfns.
Collapse
Affiliation(s)
- Furao Liu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pingting Zhou
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Wang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
59
|
Zavros Y. Initiation and Maintenance of Gastric Cancer: A Focus on CD44 Variant Isoforms and Cancer Stem Cells. Cell Mol Gastroenterol Hepatol 2017; 4:55-63. [PMID: 28560289 PMCID: PMC5439237 DOI: 10.1016/j.jcmgh.2017.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/01/2017] [Indexed: 01/06/2023]
Abstract
Gastric cancer is the third most common cause of cancer-related death. Although the incidence of gastric cancer in the United States is relatively low, it remains significantly higher in some countries, including Japan and Korea. Interactions between cancer stem cells and the tumor microenvironment can have a substantial impact on tumor characteristics and contribute to heterogeneity. The mechanisms responsible for maintaining malignant cancer stem cells within the tumor microenvironment in human gastric cancer are largely unknown. Tumor cell and genetic heterogeneity contribute to either de novo intrinsic or the therapy-induced emergence of drug-resistant clones and eventual tumor recurrence. Although chemotherapy often is capable of inducing cell death in tumors, many cancer patients experience recurrence because of failure to effectively target the cancer stem cells, which are believed to be key tumor-initiating cells. Among the population of stem cells within the stomach that may be targeted during chronic Helicobacter pylori infection and altered into tumor-initiating cells are those cells marked by the cluster-of-differentiation (CD)44 cell surface receptor. CD44 variable isoforms (CD44v) have been implicated as key players in malignant transformation whereby their expression is highly restricted and specific, unlike the canonical CD44 standard isoform. Overall, CD44v, in particular CD44v9, are believed to mark the gastric cancer cells that contribute to increased resistance for chemotherapy- or radiation-induced cell death. This review focuses on the following: the alteration of the gastric stem cell during bacterial infection, and the role of CD44v in the initiation, maintenance, and growth of tumors associated with gastric cancer.
Collapse
Key Words
- CD, cluster-of-differentiation
- CD44v6
- CD44v9
- CD44v9, CD44 variant isoform containing exon v9
- CSC, cancer stem cell
- Cag, cytotoxin-associated gene
- Helicobacter pylori
- Inflammation
- Lgr5, leucine-rich, repeat-containing, G-protein–coupled receptor 5
- MDSC, myeloid-derived suppressor cell
- PDL1, programmed cell death 1 ligand
- PDTX, patient-derived tumor xenograft
- ROS, reactive oxygen species
- SPEM, spasmolytic polypeptide expressing metaplasia
- xCT, SLC7A11
Collapse
Affiliation(s)
- Yana Zavros
- Correspondence Address correspondence to: Yana Zavros, PhD, Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert B. Sabin Way, Room 4255 MSB, Cincinnati, Ohio 45267-0576. fax: (513) 558-5738.Department of Molecular and Cellular PhysiologyUniversity of Cincinnati College of Medicine231 Albert B. Sabin WayRoom 4255 MSBCincinnatiOhio 45267-0576
| |
Collapse
|
60
|
Merchant JL, Ding L. Hedgehog Signaling Links Chronic Inflammation to Gastric Cancer Precursor Lesions. Cell Mol Gastroenterol Hepatol 2017; 3:201-210. [PMID: 28275687 PMCID: PMC5331830 DOI: 10.1016/j.jcmgh.2017.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
Abstract
Since its initial discovery in Drosophila, Hedgehog (HH) signaling has long been associated with foregut development. The mammalian genome expresses 3 HH ligands, with sonic hedgehog (SHH) levels highest in the mucosa of the embryonic foregut. More recently, interest in the pathway has shifted to improving our understanding of its role in gastrointestinal cancers. The use of reporter mice proved instrumental in our ability to probe the expression pattern of SHH ligand and the cell types responding to canonical HH signaling during homeostasis, inflammation, and neoplastic transformation. SHH is highly expressed in parietal cells and is required for these cells to produce gastric acid. Furthermore, myofibroblasts are the predominant cell type responding to HH ligand in the uninfected stomach. Chronic infection caused by Helicobacter pylori and associated inflammation induces parietal cell atrophy and the expansion of metaplastic cell types, a precursor to gastric cancer in human subjects. During Helicobacter infection in mice, canonical HH signaling is required for inflammatory cells to be recruited from the bone marrow to the stomach and for metaplastic development. Specifically, polarization of the invading myeloid cells to myeloid-derived suppressor cells requires the HH-regulated transcription factor GLI1, thereby creating a microenvironment favoring wound healing and neoplastic transformation. In mice, GLI1 mediates the phenotypic shift to gastric myeloid-derived suppressor cells by directly inducing Schlafen 4 (slfn4). However, the human homologs of SLFN4, designated SLFN5 and SLFN12L, also correlate with intestinal metaplasia and could be used as biomarkers to predict the subset of individuals who might progress to gastric cancer and benefit from treatment with HH antagonists.
Collapse
Key Words
- ATPase, adenosine triphosphatase
- DAMP, damage-associated molecular pattern
- DAMPs
- GLI, glioma-associated protein
- GLI1
- Gr-MDSC, granulocytic myeloid-derived suppressor cell
- HH, hedgehog
- HHIP, hedgehog-interacting protein
- IFN, interferon
- IL, interleukin
- MDSC, myeloid-derived suppressor cell
- MDSCs
- Metaplasia
- Mo-MDSC, monocytic myeloid-derived suppressor cell
- PTCH, Patched
- SHH
- SHH, sonic hedgehog
- SLFN4, Schlafen 4
- SMO, Smoothened
- SP, spasmolytic polypeptide
- SPEM
- SPEM, spasmolytic polypeptide–expressing mucosa
- SST, somatostatin
- TLR, Toll-like receptor
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Juanita L. Merchant
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Correspondence Address correspondence to: Juanita L. Merchant, MD, PhD, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200. fax: (734) 763-4686.University of Michigan109 Zina Pitcher PlaceAnn ArborMichigan 48109-2200
| | - Lin Ding
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
61
|
Varga MG, Piazuelo MB, Romero-Gallo J, Delgado AG, Suarez G, Whitaker ME, Krishna US, Patel RV, Skaar EP, Wilson KT, Algood HMS, Peek RM. TLR9 activation suppresses inflammation in response to Helicobacter pylori infection. Am J Physiol Gastrointest Liver Physiol 2016; 311:G852-G858. [PMID: 27758771 PMCID: PMC5130555 DOI: 10.1152/ajpgi.00175.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/13/2016] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori (H. pylori) induces chronic gastritis in humans, and infection can persist for decades. One H. pylori strain-specific constituent that augments disease risk is the cag pathogenicity island. The cag island encodes a type IV secretion system (T4SS) that translocates DNA into host cells. Toll-like receptor 9 (TLR9) is an innate immune receptor that detects hypo-methylated CpG DNA motifs. In this study, we sought to define the role of the H. pylori cag T4SS on TLR9-mediated responses in vivo. H. pylori strain PMSS1 or its cagE- mutant, which fails to assemble a T4SS, were used to infect wild-type or Tlr9-/- C57BL/6 mice. PMSS1-infected Tlr9-/- mice developed significantly higher levels of inflammation, despite similar levels of colonization density, compared with PMSS1-infected wild-type mice. These changes were cag dependent, as both mouse genotypes infected with the cagE- mutant only developed minimal inflammation. Tlr9-/- genotypes did not alter the microbial phenotypes of in vivo-adapted H. pylori strains; therefore, we examined host immunological responses. There were no differences in levels of TH1 or TH2 cytokines in infected mice when stratified by host genotype. However, gastric mucosal levels of IL-17 were significantly increased in infected Tlr9-/- mice compared with infected wild-type mice, and H. pylori infection of IL-17A-/- mice concordantly led to significantly decreased levels of gastritis. Thus loss of Tlr9 selectively augments the intensity of IL-17-driven immune responses to H. pylori in a cag T4SS-dependent manner. These results suggest that H. pylori utilizes the cag T4SS to manipulate the intensity of the host immune response.
Collapse
Affiliation(s)
- Matthew G. Varga
- 1Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - M. Blanca Piazuelo
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Judith Romero-Gallo
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Alberto G. Delgado
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Giovanni Suarez
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Morgan E. Whitaker
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Uma S. Krishna
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Rachna V. Patel
- 3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Eric P. Skaar
- 3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Keith T. Wilson
- 1Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; ,2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; ,3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Holly M. S. Algood
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; ,3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Richard M. Peek
- 1Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; ,2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; ,3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| |
Collapse
|