51
|
Birjandi AA, Sharpe P. Potential of extracellular space for tissue regeneration in dentistry. Front Physiol 2022; 13:1034603. [DOI: 10.3389/fphys.2022.1034603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
With the proven relationship between oral and general health and the growing aging population, it is pivotal to provide accessible therapeutic approaches to regenerate oral tissues and restore clinical function. However, despite sharing many core concepts with medicine, dentistry has fallen behind the progress in precision medicine and regenerative treatments. Stem cell therapies are a promising avenue for tissue regeneration, however, ethical, safety and cost issues may limit their clinical use. With the significance of paracrine signalling in stem cell and tissue regeneration, extracellular space comprising of the cell secretome, and the extracellular matrix can serve as a potent source for tissue regeneration. Extravesicles are secreted and naturally occurring vesicles with biologically active cargo that can be harvested from the extracellular space. These vesicles have shown great potential as disease biomarkers and can be used in regenerative medicine. As a cell free therapy, secretome and extracellular vesicles can be stored and transferred easily and pose less ethical and safety risks in clinical application. Since there are currently many reviews on the secretome and the biogenesis, characterization and function of extracellular vesicles, here we look at the therapeutic potential of extracellular space to drive oral tissue regeneration and the current state of the field in comparison to regenerative medicine.
Collapse
|
52
|
Regenerative Endodontics by Cell Homing: A Review of Recent Clinical trials. J Endod 2022; 49:4-17. [DOI: 10.1016/j.joen.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/05/2022] [Accepted: 09/25/2022] [Indexed: 12/03/2022]
|
53
|
The Four Pillars for Successful Regenerative Therapy in Endodontics: Stem Cells, Biomaterials, Growth Factors, and Their Synergistic Interactions. Stem Cells Int 2022; 2022:1580842. [PMID: 36193253 PMCID: PMC9526564 DOI: 10.1155/2022/1580842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
Endodontics has made significant progress in regenerative approaches in recent years, thanks to advances in biologically based procedures or regenerative endodontic therapy (RET). In recent years, our profession has witnessed a clear conceptual shift in this therapy. RET was initially based on a blood clot induced by apical bleeding without harvesting the patient’s cells or cell-free RET. Later, the RET encompassed the three principles of tissue engineering, stromal/stem cells, scaffolds, and growth factors, aiming for the regeneration of a functional dentin pulp complex. The regenerated dental pulp will recover the protective mechanisms including innate immunity, tertiary dentin formation, and pain sensitivity. This comprehensive review covers the basic knowledge and practical information for translational applications of stem cell-based RET and tissue engineering procedures for the regeneration of dental pulp. It will also provide overall information on the emerging technologies in biological and synthetic matrices, biomaterials, and signaling molecules, recent advances in stem cell therapy, and updated experimental results. This review brings useful and timely clinical evidence for practitioners to understand the challenges faced for a successful cell-based RET and the importance of preserving or reestablishing tooth vitality. The clinical translation of these current bioengineering approaches will undoubtedly be beneficial to the future practice of endodontics.
Collapse
|
54
|
Minic S, Vital S, Chaussain C, Boukpessi T, Mangione F. Tissue Characteristics in Endodontic Regeneration: A Systematic Review. Int J Mol Sci 2022; 23:ijms231810534. [PMID: 36142446 PMCID: PMC9504778 DOI: 10.3390/ijms231810534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
The regenerative endodontic procedure (REP) represents a treatment option for immature necrotic teeth with a periapical lesion. Currently, this therapy has a wide field of pre-clinical and clinical applications, but no standardization exists regarding successful criteria. Thus, by analysis of animal and human studies, the aim of this systematic review was to highlight the main characteristics of the tissue generated by REP. A customized search of PubMed, EMBASE, Scopus, and Web of Science databases from January 2000 to January 2022 was conducted. Seventy-five human and forty-nine animal studies were selected. In humans, the evaluation criteria were clinical 2D and 3D radiographic examinations. Most of the studies identified a successful REP with an asymptomatic tooth, apical lesion healing, and increased root thickness and length. In animals, histological and radiological criteria were considered. Newly formed tissues in the canals were fibrous, cementum, or bone-like tissues along the dentine walls depending on the area of the root. REP assured tooth development and viability. However, further studies are needed to identify procedures to successfully reproduce the physiological structure and function of the dentin–pulp complex.
Collapse
Affiliation(s)
- Sandra Minic
- URP 2496 Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), Laboratoire d’excellence INFLAMEX, UFR Odontology, Université Paris Cité, 92120 Montrouge, France
| | - Sibylle Vital
- URP 2496 Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), Laboratoire d’excellence INFLAMEX, UFR Odontology, Université Paris Cité, 92120 Montrouge, France
- Louis Mourier Hospital, AP-HP, DMU ESPRIT, 92700 Colombes, France
| | - Catherine Chaussain
- URP 2496 Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), Laboratoire d’excellence INFLAMEX, UFR Odontology, Université Paris Cité, 92120 Montrouge, France
- Bretonneau Hospital Dental Department and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, AP-HP, 75018 Paris, France
| | - Tchilalo Boukpessi
- URP 2496 Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), Laboratoire d’excellence INFLAMEX, UFR Odontology, Université Paris Cité, 92120 Montrouge, France
- Pitié Salpétrière Hospital, DMU CHIR, AP-HP, 75013 Paris, France
| | - Francesca Mangione
- URP 2496 Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), Laboratoire d’excellence INFLAMEX, UFR Odontology, Université Paris Cité, 92120 Montrouge, France
- Henri Mondor Hospital, AP-HP, 94000 Créteil, France
- Correspondence:
| |
Collapse
|
55
|
Zeng Q, Zhang J, Guo J, Liu S, Yang M, Lin J. Preoperative factors analysis on root development after regenerative endodontic procedures: a retrospective study. BMC Oral Health 2022; 22:374. [PMID: 36058906 PMCID: PMC9442966 DOI: 10.1186/s12903-022-02412-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/26/2022] [Indexed: 12/22/2022] Open
Abstract
Background Regenerative endodontic procedures (REPs) have achieved clinical success on the immature permanent teeth with pulp necrosis, and can promote root development. However, preoperative factors and their effects on root development of REPs have not been definitely concluded. The aim of this study was to investigate the preoperative factors that may influence the root development of REPs. Methods A total of 116 teeth in 110 patients treated with REPs in the Paediatric Dentistry Department and Endodontics Department from 2013 to 2017 were included in this study. Preoperative factors including aetiology, age, diagnosis and initial root morphology were collected retrospectively, and the associations between these factors and root development after REPs were analysed by Fisher's exact test and multivariate logistic regression model. Results The overall rate of root development after REPs was 89.7%. The dens evaginatus group showed a higher rate (98.8%) in root development than the trauma group (67.6%) (P < 0.01). There was no significant difference among the different age groups (7–13 years old) or among different diagnoses groups (P > 0.05). And it showed in the trauma group that the teeth with apical foramen sizes larger than 3 mm significantly promoted root development than those smaller than 3 mm (P < 0.01). Multivariate logistic regression indicated that aetiology was significantly correlated with root development of REPs (OR: 0.07, 95% CI 0.007, 0.627, P < 0.05). Conclusions The REPs promoted more root developments in the dens evaginatus group than the trauma group, indicating that aetiology may be correlated with the root development of REPs. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02412-x.
Collapse
Affiliation(s)
- Qian Zeng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jianying Zhang
- Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Hunan Key Laboratory of Oral Health Research, Changsha, Hunan, China
| | - Jiang Guo
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shuya Liu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Maobin Yang
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA.
| | - Jiacheng Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| |
Collapse
|
56
|
Pulp Regenerative Cell Therapy for Mature Molars: A Report of 2 Cases. J Endod 2022; 48:1334-1340.e1. [DOI: 10.1016/j.joen.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 01/24/2023]
|
57
|
Danilkowicz R, Murawski C, Pellegrini M, Walther M, Valderrabano V, Angthong C, Adams S. Nonoperative and Operative Soft-Tissue and Cartilage Regeneration and Orthopaedic Biologics of the Foot and Ankle: An Orthoregeneration Network Foundation Review. Arthroscopy 2022; 38:2350-2358. [PMID: 35605840 DOI: 10.1016/j.arthro.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/02/2023]
Abstract
Orthoregeneration is defined as a solution for orthopaedic conditions that harnesses the benefits of biology to improve healing, reduce pain, improve function, and optimally, provide an environment for tissue regeneration. Options include drugs, surgical intervention, scaffolds, biologics as a product of cells, and physical and electromagnetic stimuli. The goal of regenerative medicine is to enhance the healing of tissue after musculoskeletal injuries as both isolated treatment and adjunct to surgical management, using novel therapies to improve recovery and outcomes. Various orthopaedic biologics (orthobiologics) have been investigated for the treatment of pathology involving the foot and ankle (including acute traumatic injuries and fractures, tumor, infection, osteochondral lesions, arthritis, and tendinopathy) and procedures, including osteotomy or fusion. Promising and established treatment modalities include 1) bone-based therapies (such as cancellous or cortical autograft from the iliac crest, proximal tibia, and/or calcaneus, fresh-frozen or freeze-dried cortical or cancellous allograft, including demineralized bone matrix putty or powder combined with growth factors, and synthetic bone graft substitutes, such as calcium sulfate, calcium phosphate, tricalcium phosphate, bioactive glasses (often in combination with bone marrow aspirate), and polymers; proteins such as bone morphogenic proteins; and platelet-derived growth factors; 2) cartilage-based therapies such as debridement, bone marrow stimulation (such as microfracture or drilling), scaffold-based techniques (such as autologous chondrocyte implantation [ACI] and matrix-induced ACI, autologous matrix-induced chondrogenesis, matrix-associated stem cell transplantation, particulated juvenile cartilage allograft transplantation, and minced local cartilage cells mixed with fibrin and platelet rich plasma [PRP]); and 3) blood, cell-based, and injectable therapies such as PRP, platelet-poor plasma biomatrix loaded with mesenchymal stromal cells, concentrated bone marrow aspirate, hyaluronic acid, and stem or stromal cell therapy, including mesenchymal stem cell allografts, and adipose tissue-derived stem cells, and micronized adipose tissue injections. LEVEL OF EVIDENCE: Level V, expert opinion.
Collapse
Affiliation(s)
- Richard Danilkowicz
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Christopher Murawski
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Manuel Pellegrini
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Markus Walther
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Victor Valderrabano
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Chayanin Angthong
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Samuel Adams
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, U.S.A.
| |
Collapse
|
58
|
Liu H, Lu J, Jiang Q, Haapasalo M, Qian J, Tay FR, Shen Y. Biomaterial scaffolds for clinical procedures in endodontic regeneration. Bioact Mater 2022; 12:257-277. [PMID: 35310382 PMCID: PMC8897058 DOI: 10.1016/j.bioactmat.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Regenerative endodontic procedures have been rapidly evolving over the past two decades and are employed extensively in clinical endodontics. These procedures have been perceived as valuable adjuvants to conventional strategies in the treatment of necrotic immature permanent teeth that were deemed to have poor prognosis. As a component biological triad of tissue engineering (i.e., stem cells, growth factors and scaffolds), biomaterial scaffolds have demonstrated clinical potential as an armamentarium in regenerative endodontic procedures and achieved remarkable advancements. The aim of the present review is to provide a broad overview of biomaterials employed for scaffolding in regenerative endodontics. The favorable properties and limitations of biomaterials organized in naturally derived, host-derived and synthetic material categories were discussed. Preclinical and clinical studies published over the past five years on the performance of biomaterial scaffolds, as well as current challenges and future perspectives for the application of biomaterials for scaffolding and clinical evaluation of biomaterial scaffolds in regenerative endodontic procedures were addressed in depth. Overview of biomaterials for scaffolding in regenerative endodontics are presented. Findings of preclinical and clinical studies on the performance of biomaterial scaffolds are summarized. Challenges and future prospects in biomaterial scaffolds are discussed.
Collapse
|
59
|
Abstract
There have been published regenerative endodontic protocols for treating immature teeth in young patients, but there are no clinical considerations for the adult teeth. The goal of the present review is to propose a specific clinical protocol for both mature and immature adult teeth with necrotic pulps. Research was performed from January to April of 2021. From the 539 studies identified through the initial search, 23 studies were qualified for the final analysis (3 randomized controlled trials and 20 case reports). The results in mature adult teeth indicate a success rate of 96.35 and 100% in bone healing through the randomized controlled trials and case reports, respectively; 100% in absence of clinical symptoms, and 58 and 62.5% in positive response to sensibility tests. The success rate in the case reports in teeth with open apex reported a 61.5% of root development, 100% of bone healing, 96.15% of absence of clinical symptoms, and 43.7% of positive response to sensibility tests. The current evidence is scarce but emerging, so REPs may be a promising alternative for treating adult necrotic teeth. The clinical protocol proposed is based on the evidence available and age considerations, and should be updated in the future.
Collapse
|
60
|
Dental pulp regeneration induced by allogenic mesenchymal stromal cells transplantation in a mature tooth: A case report. J Endod 2022; 48:736-740. [DOI: 10.1016/j.joen.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
|
61
|
Paul K, Islam A, Volponi AA. Future horizons: embedding the evolving science of regenerative dentistry in a modern, sustainable dental curriculum. Br Dent J 2022; 232:207-210. [PMID: 35217737 DOI: 10.1038/s41415-022-3981-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022]
Abstract
Regenerative dentistry is an emerging field promising to revolutionise the way we approach and perform clinical therapies. This multidisciplinary field, integrating cellular biology, material science and tissue engineering, aims to restore and maintain biological vitality unlike conventional dental therapies, providing a new approach in achieving sustainability within dentistry. Although this emerging field in dentistry seems futuristic and a distant reality, it is closer than we perceive it, as rapid scientific advances contribute to novel technologies. In this opinion piece we share our views on the emerging field and the need of embedding the scientific knowledge and sustainability within the dental curriculum. We critically discuss challenges and quests ahead of our dental profession facing the future.
Collapse
Affiliation(s)
- Kiri Paul
- Centre for Dental Education, Faculty of Dentistry, Oral and Craniofacial Sciences, King´s College University of London, Guy´s Hospital Tower, Floor 27, London, SE1 9RT, UK
| | - Abida Islam
- Centre for Dental Education, Faculty of Dentistry, Oral and Craniofacial Sciences, King´s College University of London, Guy´s Hospital Tower, Floor 27, London, SE1 9RT, UK
| | - Ana Angelova Volponi
- Centre for Dental Education, Faculty of Dentistry, Oral and Craniofacial Sciences, King´s College University of London, Guy´s Hospital Tower, Floor 27, London, SE1 9RT, UK; Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King´s College University of London, Guy´s Hospital Tower, Floor 27, London, SE1 9RT, UK.
| |
Collapse
|
62
|
Zhou C, Yuan Z, Xu H, Wu L, Xie C, Liu J. Regenerative Endodontic Procedures in Immature Permanent Teeth With Dental Trauma: Current Approaches and Challenges. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2021.767226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After dental trauma to immature permanent teeth (IPT), there can be pulpitis, necrotic, and periapical periodontitis, which will halt further root development. Traditional endodontic root canal treatments and apexification cannot revitalize the necrotic pulp to revitalize the tooth to promote further root development. As a consequence, IPT with thin dentinal walls can be prone to fracture and if a fracture occurs, the patient will likely suffer the loss of the tooth. In an attempt to save IPT, there has been a growing interest among dentists to use regenerative endodontic procedures (REPs) to revitalize a replace dental pulp to continue root development and strengthen the dentinal walls to help prevent a subsequent loss of the tooth. However, the effectiveness of REPs and the precise methods to successfully accomplish REPs are controversial. Therefore, the objective of this review is to compare the different approaches to REPs in case reports by highlighting their advantages and limitations.
Collapse
|
63
|
Widbiller M, Rosendahl A, Wölflick M, Linnebank M, Welzenbach B, Hiller KA, Buchalla W, Galler KM. Isolation of Endogenous TGF-β1 from Root Canals for Pulp Tissue Engineering: A Translational Study. BIOLOGY 2022; 11:biology11020227. [PMID: 35205093 PMCID: PMC8869556 DOI: 10.3390/biology11020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022]
Abstract
Simple Summary Tissue engineering of the dental pulp has been a goal of dental research for years. In this translational study, a chairside protocol is designed using endogenous dentin matrix proteins as signaling molecules for pulp regeneration. These bioactive molecules can be isolated from root canals by ultrasonic-activated irrigation, further processed chairside, and mixed with a hydrogel. The scaffold material is to be injected into the root canal and effect cell homing, i.e., allowing stem cells from the periapical space to migrate into the root canal. The aim of this innovative approach is the formation of an innervated and vascularized connective tissue that resembles the pulp in form and function. Abstract Cell homing for dental pulp tissue engineering has been advocated as a feasible approach to regenerate dental pulp in a clinical setting. In order to develop a translational protocol for clinical application, we wanted to determine the effects of disinfectants on the availability of growth factors from the root canal, the amount that can be obtained in this context, and whether they can be processed for use in tissue engineering procedures. The extraction of growth factors should also be confirmed in a clinical setting. Root canals were prepared in 36 extracted mature teeth, and the amount of TGF-β1 in solution was quantified after different irrigation protocols (sodium hypochlorite, chlorhexidine) and after intracanal medication (calcium hydroxide). Centrifugal filters with a cut-off of 10,000 Da and 3000 Da were used for efficient concentration, and volumes and amounts of retained TGF-β1 were measured at different time points. During conventional endodontic treatment, ethylenediaminotetraacetic acid (EDTA) solution was collected after ultrasonic activation from the root canals of mature teeth of 38 patients, and growth factor content was quantified via enzyme-linked immunosorbent assay (ELISA). Irrigation with sodium hypochlorite reduced TGF-β1 release into EDTA. This effect was partially reversed by canal enlargement after the use of sodium hypochlorite and by subsequent use of calcium hydroxide. A few minutes of centrifugation with a cut-off of 10,000 Da reduced the initial volume of the irrigant by 90% and led to a continuous increase in concentration to the same extent. Furthermore, TGF-β1 was obtained from root canals of mature teeth during endodontic treatment in quantities that have been shown to elicit desirable cellular responses in a subsequent clinical application. A mixture with a suitable scaffold material and injection into the root canal has the potential to promote dental pulp regeneration.
Collapse
Affiliation(s)
- Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (A.R.); (M.W.); (M.L.); (K.-A.H.); (W.B.)
- Correspondence:
| | - Andreas Rosendahl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (A.R.); (M.W.); (M.L.); (K.-A.H.); (W.B.)
| | - Melanie Wölflick
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (A.R.); (M.W.); (M.L.); (K.-A.H.); (W.B.)
| | - Moritz Linnebank
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (A.R.); (M.W.); (M.L.); (K.-A.H.); (W.B.)
| | | | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (A.R.); (M.W.); (M.L.); (K.-A.H.); (W.B.)
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (A.R.); (M.W.); (M.L.); (K.-A.H.); (W.B.)
| | - Kerstin M. Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
64
|
Youssef A, Ali M, ElBolok A, Hassan R. Regenerative Endodontic Procedures for the Treatment of Necrotic Mature Teeth: A Preliminary Randomised Clinical Trial. Int Endod J 2022; 55:334-346. [PMID: 35030270 DOI: 10.1111/iej.13681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
AIM This preliminary randomised, prospective, controlled trial aimed to compare the clinical and radiographic outcomes of two regenerative endodontic procedures (REPs), revitalisation and a platelet-rich fibrin (PRF)-based technique, in the treatment of mature permanent teeth with necrotic pulps. METHODOLOGY The trial has been reported according to the Preferred Reporting Items for Randomised Trials in Endodontics 2020 guidelines. The study protocol was registered at the clinical trial registry (ClinicalTrials.gov) with identifier number NCT04158232. Twenty patients with mature necrotic anterior teeth with large periapical lesions were randomly allocated into two groups (n=10): group I, treated with revitalisation with the blood clot (BC) technique, and Group II, treated with a PRF-based technique. The follow-up was for 12 months. Periradicular healing was assessed using standardised radiographs taken at baseline, and at 6 and 12 months after treatment. An electric pulp tester was used to assess whether pulp sensibility had been regained during the follow-up period. Statistical analysis was conducted using Mann-Whitney test and Wilcoxon test for non-parametric data. For parametric data, repeated measures analysis of variance was used. The significance level was set at P≤0.05. RESULTS There was a significant increase in periradicular healing in both groups at 6 and 12 months, compared to that at baseline, with no significant difference between the studied groups after 12 months (P=0.143). There was a significant difference between the tooth sensibility readings at baseline, 6-month, and 12-month follow-up timepoints (P<0.001). CONCLUSIONS The findings of this preliminary trial indicate the potential for using REPs, such as revitalisation or PRF-based techniques, as treatment options for mature teeth with necrotic pulps. A higher level of evidence obtained through adequately powered clinical trials and longer follow-up periods are required to conclusively validate the different outcomes of REPs.
Collapse
Affiliation(s)
- Ahmed Youssef
- Assistant Lecturer, Department of Endodontic, Faculty of Dentistry, Minia University
| | - Magdy Ali
- Professor of Endodontics, Faculty of Dentistry, Beni Suif University, 2
| | - Amr ElBolok
- Professor of Oral Pathology, Faculty of Dentistry, 3
| | - Reham Hassan
- Associate Professor of Endodontics, Faculty of Dentistry.,Head of Endodontic Department, Faculty of Dentistry, The Egyptian Russian University
| |
Collapse
|
65
|
Angelopoulos I, Trigo C, Ortuzar MI, Cuenca J, Brizuela C, Khoury M. Delivery of affordable and scalable encapsulated allogenic/autologous mesenchymal stem cells in coagulated platelet poor plasma for dental pulp regeneration. Sci Rep 2022; 12:435. [PMID: 35013332 PMCID: PMC8748942 DOI: 10.1038/s41598-021-02118-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
The main goal of regenerative endodontics procedures (REPs) is to revitalize teeth by the regeneration of healthy dental pulp. In this study, we evaluated the potential of combining a natural and accessible biomaterial based on Platelet Poor Plasma (PPP) as a support for dental pulp stem cells (DPSC) and umbilical cord mesenchymal stem cells (UC-MSC). A comparison study between the two cell sources revealed compatibility with the PPP based scaffold with differences noted in the proliferation and angiogenic properties in vitro. Additionally, the release of growth factors including VEGF, HGF and DMP-1, was detected in the media of cultured PPP and was enhanced by the presence of the encapsulated MSCs. Dentin-Discs from human molars were filled with PPP alone or with MSCs and implanted subcutaneously for 4 weeks in mice. Histological analysis of the MSC-PPP implants revealed a newly formed dentin-like structure evidenced by the expression of Dentin sialophosphoprotein (DSPP). Finally, DPSC induced more vessel formation around the dental discs. This study provides evidence of a cost-effective, xenofree scaffold that is compatible with either autologous or allogenic strategy for dental pulp regeneration. This attempt if successfully implemented, could make REPs treatment widely accessible, contributing in improving global health conditions.
Collapse
Affiliation(s)
- Ioannis Angelopoulos
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Cesar Trigo
- Centro de Investigacion en Biologia y Regeneracion Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Maria-Ignacia Ortuzar
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Claudia Brizuela
- Centro de Investigacion en Biologia y Regeneracion Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
66
|
Shaik I, Gaddam B, Patel A, Deshmukh R, Bhavana M, M. Sunku M, Minnikanti A. Success rate of growth factors for existing periapical lesions in failed endodontically treated teeth in adult population: A systematic review and meta-analysis. J Pharm Bioallied Sci 2022; 14:S200-S202. [PMID: 36110583 PMCID: PMC9469373 DOI: 10.4103/jpbs.jpbs_139_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction: In this study, we investigated the success rate of growth factors for existing periapical lesions in failed endodontically treated teeth in an adult population by systematic review and meta-analysis. Materials and Methods: We conducted an online data search based on preferred reporting items for systematic reviews and meta analyses (PRISMA), from databases PUBMED, MEDLINE, and EMBASE, for the application of various types of growth factors in endodontically failed teeth with periapical lesions in adults. These included the “platelet-rich plasma (PRP) and platelet-rich fibrin (PRF),” blood, etc. The data were meta-analyzed using MetaXL 5.3, and GRADE was used to assess the certainty. Results: We observed that success of 0.95 was achieved by the end of a year's follow-up with the application of growth factors for periodontal lesions. We also observed that the teeth responded to thermal tests, indicating regeneration; however, studies were with bias and lower sensitivity. Discussion: \ Similar to regeneration in immature teeth, growth factors also showed greater success in the treatment of periapical lesions in the failed endodontic teeth in adults.
Collapse
|
67
|
Zhang SY, Ren JY, Yang B. Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration. World J Stem Cells 2021; 13:1625-1646. [PMID: 34909115 PMCID: PMC8641023 DOI: 10.4252/wjsc.v13.i11.1625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/14/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted intense interest in the field of dental tissue regeneration. Dental tissue is a popular source of MSCs because MSCs can be obtained with minimally invasive procedures. MSCs possess distinct inherent properties of self-renewal, immunomodulation, proangiogenic potential, and multilineage potency, as well as being readily available and easy to culture. However, major issues, including poor engraftment and low survival rates in vivo, remain to be resolved before large-scale application is feasible in clinical treatments. Thus, some recent investigations have sought ways to optimize MSC functions in vitro and in vivo. Currently, priming culture conditions, pretreatment with mechanical and physical stimuli, preconditioning with cytokines and growth factors, and genetic modification of MSCs are considered to be the main strategies; all of which could contribute to improving MSC efficacy in dental regenerative medicine. Research in this field has made tremendous progress and continues to gather interest and stimulate innovation. In this review, we summarize the priming approaches for enhancing the intrinsic biological properties of MSCs such as migration, antiapoptotic effect, proangiogenic potential, and regenerative properties. Challenges in current approaches associated with MSC modification and possible future solutions are also indicated. We aim to outline the present understanding of priming approaches to improve the therapeutic effects of MSCs on dental tissue regeneration.
Collapse
Affiliation(s)
- Si-Yuan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yin Ren
- Department of Oral Radiology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
68
|
Foo JB, Looi QH, Chong PP, Hassan NH, Yeo GEC, Ng CY, Koh B, How CW, Lee SH, Law JX. Comparing the Therapeutic Potential of Stem Cells and their Secretory Products in Regenerative Medicine. Stem Cells Int 2021; 2021:2616807. [PMID: 34422061 PMCID: PMC8378970 DOI: 10.1155/2021/2616807] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cell therapy involves the transplantation of human cells to replace or repair the damaged tissues and modulate the mechanisms underlying disease initiation and progression in the body. Nowadays, many different types of cell-based therapy are developed and used to treat a variety of diseases. In the past decade, cell-free therapy has emerged as a novel approach in regenerative medicine after the discovery that the transplanted cells exerted their therapeutic effect mainly through the secretion of paracrine factors. More and more evidence showed that stem cell-derived secretome, i.e., growth factors, cytokines, and extracellular vesicles, can repair the injured tissues as effectively as the cells. This finding has spurred a new idea to employ secretome in regenerative medicine. Despite that, will cell-free therapy slowly replace cell therapy in the future? Or are these two modes of treatment still needed to address different diseases and conditions? This review provides an indepth discussion about the values of stem cells and secretome in regenerative medicine. In addition, the safety, efficacy, advantages, and disadvantages of using these two modes of treatment in regenerative medicine are also critically reviewed.
Collapse
Affiliation(s)
- Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Qi Hao Looi
- My Cytohealth Sdn Bhd, Bandar Seri Petaling, 57000 Kuala Lumpur, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Hidayah Hassan
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Medical Science Technology, Universiti Kuala Lumpur, 43000 Kajang, Selangor, Malaysia
| | - Genieve Ee Chia Yeo
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sau Har Lee
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
69
|
Scelza P, Gonçalves F, Caldas I, Nunes F, Lourenço ES, Tavares S, Magno M, Pintor A, Montemezzi P, Edoardo ED, Mourão CFDAB, Alves G, Scelza MZ. Prognosis of Regenerative Endodontic Procedures in Mature Teeth: A Systematic Review and Meta-Analysis of Clinical and Radiographic Parameters. MATERIALS 2021; 14:ma14164418. [PMID: 34442940 PMCID: PMC8398537 DOI: 10.3390/ma14164418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022]
Abstract
This work aimed to investigate the use of Regenerative Endodontic Procedures (REP) on the treatment of pulp necrosis in mature teeth through systematic review and meta-analysis of evidence on clinical and radiographic parameters before and after REP. A search was performed in different databases on 9 September 2020, including seven clinical studies and randomized controlled trials (RCT). The methodological quality was assessed using Revised Cochrane risk-of-bias (RoB 2) and Before-and-After tools. Meta-analyses were performed to evaluate the success incidences regarding the reduction of periapical lesion and recovery of sensitivity. The certainty of the evidence was assessed using GRADE. Meta-analysis showed a high overall success of 0.95 (0.92, 0.98) I2 = 6%, with high periapical lesion reduction at 12 months (0.93 (0.86, 0.96) I2 = 37%) and by the end of follow-up (0.91 (0.83, 0.96) I2 = 13%). Lower incidences of positive sensitivity response were identified for the electrical (0.58 (0.46, 0.70) I2 = 51%) and cold tests (0.70 (0.54, 0.84) I2 = 68%). The calculated levels of REP success were similar to those reported for immature teeth. With a very low certainty of evidence, the meta-analysis showed a high incidence of REP’s success for mature teeth with necrotic pulp evidenced by periapical lesion reduction and moderate positive responses to sensitivity tests.
Collapse
Affiliation(s)
- Pantaleo Scelza
- Geriatric Dentistry Department, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil; (P.S.); (I.C.); (F.N.)
| | - Fabiano Gonçalves
- Post-Graduate Program in Dentistry, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil; (F.G.); (E.S.L.); (S.T.)
| | - Isleine Caldas
- Geriatric Dentistry Department, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil; (P.S.); (I.C.); (F.N.)
| | - Fernanda Nunes
- Geriatric Dentistry Department, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil; (P.S.); (I.C.); (F.N.)
| | - Emanuelle Stellet Lourenço
- Post-Graduate Program in Dentistry, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil; (F.G.); (E.S.L.); (S.T.)
| | - Sandro Tavares
- Post-Graduate Program in Dentistry, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil; (F.G.); (E.S.L.); (S.T.)
| | - Marcela Magno
- Department of Pediatric Dentistry and Orthodontics, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (A.P.)
| | - Andrea Pintor
- Department of Pediatric Dentistry and Orthodontics, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (A.P.)
| | | | | | - Carlos Fernando de Almeida Barros Mourão
- Clinical Research Unit of the Antonio Pedro Hospital, Universidade Federal Fluminense, Niterói 24033-900, RJ, Brazil;
- Correspondence: (C.F.d.A.B.M.); (M.Z.S.); Tel.: +1-941-(830)-1302 (C.F.d.A.B.M.); +55-21-99984-0270 (M.Z.S.)
| | - Gutemberg Alves
- Clinical Research Unit of the Antonio Pedro Hospital, Universidade Federal Fluminense, Niterói 24033-900, RJ, Brazil;
| | - Miriam Zaccaro Scelza
- Laboratory of Experimental Culture Cell (LECCel), Department of Endodontics, Faculty of Dentistry, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil
- Correspondence: (C.F.d.A.B.M.); (M.Z.S.); Tel.: +1-941-(830)-1302 (C.F.d.A.B.M.); +55-21-99984-0270 (M.Z.S.)
| |
Collapse
|
70
|
Wu M, Liu X, Li Z, Huang X, Guo H, Guo X, Yang X, Li B, Xuan K, Jin Y. SHED aggregate exosomes shuttled miR-26a promote angiogenesis in pulp regeneration via TGF-β/SMAD2/3 signalling. Cell Prolif 2021; 54:e13074. [PMID: 34101281 PMCID: PMC8249784 DOI: 10.1111/cpr.13074] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Pulp regeneration brings big challenges for clinicians, and vascularization is considered as its determining factor. We previously accomplished pulp regeneration with autologous stem cells from deciduous teeth (SHED) aggregates implantation in teenager patients, however, the underlying mechanism needs to be clarified for regenerating pulp in adults. Serving as an important effector of mesenchymal stem cells (MSCs), exosomes have been reported to promote angiogenesis and tissue regeneration effectively. Here, we aimed to investigate the role of SHED aggregate-derived exosomes (SA-Exo) in the angiogenesis of pulp regeneration. MATERIALS AND METHODS We extracted exosomes from SHED aggregates and utilized them in the pulp regeneration animal model. The pro-angiogenetic effects of SA-Exo on SHED and human umbilical vein endothelial cells (HUVECs) were evaluated. The related mechanisms were further investigated. RESULTS We firstly found that SA-Exo significantly improved pulp tissue regeneration and angiogenesis in vivo. Next, we found that SA-Exo promoted SHED endothelial differentiation and enhanced the angiogenic ability of HUVECs, as indicated by the in vitro tube formation assay. Mechanistically, miR-26a, which is enriched in SA-Exo, improved angiogenesis both in SHED and HUVECs via regulating TGF-β/SMAD2/3 signalling. CONCLUSIONS In summary, these data reveal that SA-Exo shuttled miR-26a promotes angiogenesis via TGF-β/SMAD2/3 signalling contributing to SHED aggregate-based pulp tissue regeneration. These novel insights into SA-Exo may facilitate the development of new strategies for pulp regeneration.
Collapse
Affiliation(s)
- Meiling Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- Liaoning Provincial Key Laboratory of Oral DiseasesDepartment of Pediatric DentistrySchool and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Zihan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Xiaoyao Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Hao Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Xiaohe Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
71
|
Cui D, Yu S, Zhou X, Liu Y, Gan L, Pan Y, Zheng L, Wan M. Roles of Dental Mesenchymal Stem Cells in the Management of Immature Necrotic Permanent Teeth. Front Cell Dev Biol 2021; 9:666186. [PMID: 34095133 PMCID: PMC8170050 DOI: 10.3389/fcell.2021.666186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Dental caries and trauma always lead to pulp necrosis and subsequent root development arrest of young permanent teeth. The traditional treatment, apexification, with the absence of further root formation, results in abnormal root morphology and compromises long-term prognosis. Regeneration endodontics procedures (REPs) have been developed and considered as an alternative strategy for management of immature permanent teeth with pulpal necrosis, including cell-free and cell-based REPs. Cell-free REPs, including revascularization and cell homing with molecules recruiting endogenous mesenchymal stem cells (MSCs), have been widely applied in clinical treatment, showing optimistic periapical lesion healing and continued root development. However, the regenerated pulp-dentin complex is still absent in these cases. Dental MSCs, as one of the essentials of tissue engineering, are vital seed cells in regenerative medicine. Dental MSC-based REPs have presented promising potential with pulp-dentin regeneration in large animal studies and clinical trials via cell transplantation. In the present review, we summarize current understanding of the biological basis of clinical treatments for immature necrotic permanent teeth and the roles of dental MSCs during this process and update the progress of MSC-based REPs in the administration of immature necrotic permanent teeth.
Collapse
Affiliation(s)
- Dixin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sihan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
72
|
Glynis A, Foschi F, Kefalou I, Koletsi D, Tzanetakis GN. Regenerative Endodontic Procedures for the Treatment of Necrotic Mature Teeth with Apical Periodontitis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J Endod 2021; 47:873-882. [PMID: 33811981 DOI: 10.1016/j.joen.2021.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Regenerative endodontic procedures (REPs) are intended to repair and regenerate part of the pulp-dentin complex. The aim of this study was to systematically appraise the existing evidence on the effectiveness of REPs on mature teeth with pulp necrosis and apical periodontitis. METHODS Electronic database and hand searches were performed on 8 databases of published and unpublished literature from inception to January 3, 2021, for the identification of randomized controlled trials (RCTs) or prospective clinical trials. The related key words included "regenerative," "pulp revascularization," "revitalization procedure," and "necrotic mature teeth." A random effects meta-analysis was conducted assessing success as the main outcome treatment. Risk of bias was assessed through the Cochrane Risk of Bias 2.0 tool, and the quality of the evidence was assessed with the Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS Of the 337 initial hits, 4 RCTs were eligible for inclusion, whereas 3 were included in the quantitative synthesis. Overall, there was no difference in the relative risk for a successful/unsuccessful treatment outcome between REPs or conventional treatment (3 studies, relative risk = 1.03; 95% confidence interval, 0.92-1.15; P = .61; heterogeneity I2 = 0.0%, P = .53; prediction interval = 0.51-2.09). Risk of bias ranged from low to raising some concerns, whereas the quality of the evidence was graded as moderate. CONCLUSIONS Based on moderate-quality evidence, REPs appear as a viable treatment alternative for mature necrotic teeth with periapical lesions at present. Furthermore, well-designed RCTs might also provide confirmatory evidence in this respect while also framing a backbone for standardization of the therapeutic protocol of REPs.
Collapse
Affiliation(s)
| | - Federico Foschi
- Department of Endodontics, Faculty of Dentistry, Oral and Craniofacial Sciences, Guy's Dental Hospital, London, United Kingdom; Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Despina Koletsi
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Giorgos N Tzanetakis
- Department of Endodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
73
|
Birjandi AA, Neves VC, Sharpe P. Advances in regenerative dentistry; building with biology. Regen Med 2021; 16:343-345. [PMID: 33759554 DOI: 10.2217/rme-2021-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Anahid A Birjandi
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, SE1 9RT, UK
| | - Vitor Cm Neves
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, SE1 9RT, UK.,Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, SE1 9RT, UK
| | - Paul Sharpe
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, SE1 9RT, UK
| |
Collapse
|
74
|
Lin LM, Huang GTJ, Sigurdsson A, Kahler B. Clinical cell-based versus cell-free regenerative endodontics: clarification of concept and term. Int Endod J 2021; 54:887-901. [PMID: 33389773 DOI: 10.1111/iej.13471] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
There is no consensus on the true meaning of clinical regenerative endodontics, and there is confusion over the concept and the term. Commonly used terms include revitalization and revascularization. The clinical methods for endodontic revitalization procedures and the tissue engineering concept differ depending on whether there is exogenous delivery of cells - called cell therapy, or not. Here, in this review, the difference is clarified by emphasizing the correct terminology: cell-free versus cell-based regenerative endodontic therapy (CF-RET versus CB-RET). The revitalization procedures practised clinically do not fit into the modern tissue engineering concepts of pulp regeneration but can be categorized as CF-RET. The modern tissue engineering concept in pulp regeneration is a CB-RET, which so far is at the clinical trial stage. However, histological examination of teeth following regenerative endodontic treatments reveals healing with repair derived from stem cells that originate from the periodontal, bone and other tissues. The aim of regenerative endodontics is regeneration of the pulp-dentine complex. This review discusses why CF-RET is unlikely to regenerate a pulp-dentine complex with current protocols. The American Association of Endodontists and the European Society of Endodontology have not yet recommended autologous stem cell transplantation (CB-RERT) which aspires for regeneration. Therefore, an understanding of the concept, term, difficulties and differences in current protocols is important for the clinician. However, rather than being discouraged that ideal regeneration has not been achieved to date, repair can be an acceptable outcome in clinical regenerative endodontics as it has also been accepted in medicine. Repair should also be considered in the context that resolution of the clinical signs/symptoms of pulp necrosis/apical periodontitis is generally reliably obtained in clinical regenerative endodontics.
Collapse
Affiliation(s)
- L M Lin
- College of Dentistry, New York University, New York, NY, USA
| | - G T-J Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - A Sigurdsson
- College of Dentistry, New York University, New York, NY, USA
| | - B Kahler
- School of Dentistry, University of Queensland, Brisbane, Australia
| |
Collapse
|
75
|
Sharma S, Nangia D, Saini A, Kumar V, Chawla A, Perumal V, Logani A. Treatment outcome of regenerative endodontic procedures in mature permanent teeth compared to nonsurgical endodontic treatment: A systematic review and meta-analysis. J Conserv Dent 2021; 24:530-538. [PMID: 35558674 PMCID: PMC9089762 DOI: 10.4103/jcd.jcd_535_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022] Open
Abstract
Background: Regenerative endodontic procedures (REP) have the advantage of restoring root canal's native defense ability by re-establishing vital pulp-like tissue. This review aims to determine the overall clinical and/or radiographic success rate (O) of REP (I) in mature permanent teeth (P) and to compare it (C) with nonsurgical endodontic treatment (NSET). Materials and Methods: Sources: PubMed, Web of Science, Embase, EBSCO, Cochrane Central Register of Controlled trials, ClinicalTrials.gov, Clinical Trials Registry-India and OpenGrey. Inclusion: Randomized clinical trials and single-arm prospective studies evaluating the treatment outcomes of REP in mature permanent teeth. Exclusion: Incomplete trials/studies, in vitro studies, animal studies, case reports/series, conference proceedings. Cochrane ROB2.0 and ROBINS-I tools were used to assess the risk of bias. Risk difference (R.D.) between NSET and REP was determined by meta-analysis of the randomized clinical trials. The overall success rate of REP was calculated using data from both randomized clinical trials and single-arm prospective studies. Sensitivity analysis and subgroup analysis were performed. Results: Ten studies (n = 552) were included. R.D between REP and NSET was 0.032 (95% C.I: 0.023–0.087; P = 0.258). Overall success rate of REP was 96.0% (95% confidence interval: 94%–98%). No significant difference was found in sensitivity analysis (P = 0.551), or any of the subgroup analysis (P > 0.05). Discussion: A limited number of randomized clinical trials were available, and only two of them had a low risk of bias. Consistent results were obtained in both types of included studies. Conclusion: Based on a limited number of comparative studies, REP has a similar success rate to NSET in mature permanent teeth. Other: Funding: Nil. Registration: PROSPERO (CRD42020204882).
Collapse
|
76
|
Sismanoglu S, Ercal P. Dentin-Pulp Tissue Regeneration Approaches in Dentistry: An Overview and Current Trends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:79-103. [PMID: 32902726 DOI: 10.1007/5584_2020_578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional treatment approaches in irreversible pulpitis and apical periodontitis include the disinfection of the pulp space followed by filling with various materials, which is commonly known as the root canal treatment. Disadvantages including the loss of tooth vitality and defense mechanism against carious lesions, susceptibility to fractures, discoloration and microleakage led to the development of regenerative therapies for the dentin pulp-complex. The goal of dentin-pulp tissue regeneration is to reestablish the physiological pulp function such as pulp sensibility, pulp repair capability by mineralization and pulp immunity. Recent dentin-pulp tissue regeneration approaches can be divided into cell homing and cell transplantation. Cell based approaches include a suitable scaffold for the delivery of potent stem cells with or without bioactive molecules into the root canal system while cell homing is based on the recruitment of host endogenous stem cells from the resident tissue including periapical region or dental pulp. This review discusses the recent treatment modalities in dentin-pulp tissue regeneration through tissue engineering and current challenges and trends in this field of research.
Collapse
Affiliation(s)
- Soner Sismanoglu
- Department of Restorative Dentistry, Faculty of Dentistry, Altinbas University, Istanbul, Turkey
| | - Pınar Ercal
- Department of Oral Surgery, Faculty of Dentistry, Altinbas University, Istanbul, Turkey.
| |
Collapse
|
77
|
Fischer NG, Münchow EA, Tamerler C, Bottino MC, Aparicio C. Harnessing biomolecules for bioinspired dental biomaterials. J Mater Chem B 2020; 8:8713-8747. [PMID: 32747882 PMCID: PMC7544669 DOI: 10.1039/d0tb01456g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental clinicians have relied for centuries on traditional dental materials (polymers, ceramics, metals, and composites) to restore oral health and function to patients. Clinical outcomes for many crucial dental therapies remain poor despite many decades of intense research on these materials. Recent attention has been paid to biomolecules as a chassis for engineered preventive, restorative, and regenerative approaches in dentistry. Indeed, biomolecules represent a uniquely versatile and precise tool to enable the design and development of bioinspired multifunctional dental materials to spur advancements in dentistry. In this review, we survey the range of biomolecules that have been used across dental biomaterials. Our particular focus is on the key biological activity imparted by each biomolecule toward prevention of dental and oral diseases as well as restoration of oral health. Additional emphasis is placed on the structure-function relationships between biomolecules and their biological activity, the unique challenges of each clinical condition, limitations of conventional therapies, and the advantages of each class of biomolecule for said challenge. Biomaterials for bone regeneration are not reviewed as numerous existing reviews on the topic have been recently published. We conclude our narrative review with an outlook on the future of biomolecules in dental biomaterials and potential avenues of innovation for biomaterial-based patient oral care.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
78
|
Bakopoulou A. Prospects of Advanced Therapy Medicinal Products-Based Therapies in Regenerative Dentistry: Current Status, Comparison with Global Trends in Medicine, and Future Perspectives. J Endod 2020; 46:S175-S188. [PMID: 32950189 DOI: 10.1016/j.joen.2020.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Regenerative medicine offers innovative approaches to restore damaged tissues on the basis of tissue engineering (TE). Although research on advanced therapy medicinal products (ATMPs) has been very active in recent years, the number of licensed products remains surprisingly low and restricted to the treatment of severe, incurable diseases. METHODS This paper provides a critical review of current literature on the regulatory, clinical, and commercial status of ATMP-based therapies in the EU and worldwide and the hurdles to overcome for their broader application in Regenerative Dentistry. RESULTS Competent authorities have focused on developing regulatory pathways to address unmet patient needs. Oncology represents the dominating field, followed by cardiovascular, musculoskeletal, neurodegenerative, immunologic, and inherited diseases. Yet, the status remains in early development, and scientific, regulatory, and cost-effectiveness issues impose considerable hurdles toward marketing authorization, technology adoption, and patient accessibility. In this context, although regenerative dentistry has achieved breakthrough innovations in TE of several dental/oral tissues in preclinical models, it has hardly harnessed research progress to integrate innovative regenerative treatments into clinical practice. CONCLUSION Global demographic changes, which demonstrate a steady increase of the aging population, highlight the societal need for the application of ATMP-based therapies in the treatment of noncommunicable diseases (NCDs). Although oral diseases, as an integral part of NCDs, are not life-threatening and largely preventable, they sustain high prevalence, with severe burden on economy and quality of life. In this perspective, the urgent request to ultimately translate draining research in dental TE conducted during the last decades into innovative treatments brought safely and cost-effectively into society at large still holds the stage. This review provides an overview of the regulatory, clinical, and commercial status of ATMP-based therapies in the European Union and worldwide and the hurdles to overcome for their broader application in regenerative dentistry.
Collapse
Affiliation(s)
- Athina Bakopoulou
- Faculty of Health Sciences, Department of Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece.
| |
Collapse
|
79
|
Allogeneic Cellular Therapy in a Mature Tooth with Apical Periodontitis and Accidental Root Perforation: A Case Report. J Endod 2020; 46:1920-1927.e1. [PMID: 32532626 DOI: 10.1016/j.joen.2020.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Cell therapy in regenerative endodontics introduces an alternative option to classic treatment strategies for complex endodontic cases. The aim of this case report was to describe cell-based therapy using allogeneic umbilical cord mesenchymal stem cells (UC-MSCs) encapsulated in a bioscaffold for a complex case of a mature permanent tooth with apical periodontitis and accidental root perforation. METHODS A healthy 19-year-old man undergoing orthodontic treatment was referred for endodontic treatment in tooth #7; he was diagnosed with apical periodontitis during a previously initiated treatment associated with accidental perforation of the radicular cervical third. The root perforation was sealed with glass ionomer and composite resin, and the root canal was instrumented, disinfected, and dressed with calcium hydroxide. After 3 weeks, allogeneic UC-MSCs were encapsulated in platelet-poor plasma and then implanted into the root canal, and Biodentine (Septodont, Saint-Maur-des-Fosses, France) was placed below the cementoenamel junction. Finally, the tooth was restored with composite resin. RESULTS Follow-up examinations were performed 6 months and 1 year later. The examinations included periapical radiography, cone-beam computed tomographic imaging, and sensitivity and vitality tests. Radiographic and cone-beam computed tomographic images indicated remission of the apical lesion. Clinical evaluations revealed normal responses to percussion and palpation tests; the tooth was responsive to the electric pulp test, and the vitality test indicated low blood perfusion units. CONCLUSIONS This case report reveals the potential use of allogeneic cellular therapy using encapsulated UC-MSCS in a platelet-poor plasma scaffold for a complex case of a permanent tooth with apical periodontitis and root perforation.
Collapse
|