51
|
Comorbidity Among Chronic Physical Health Conditions and Neurodevelopmental Disorders in Childhood. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2019. [DOI: 10.1007/s40474-019-00173-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
52
|
Yao W, Huang J, He H. Over-expressed LOC101927196 suppressed oxidative stress levels and neuron cell proliferation in a rat model of autism through disrupting the Wnt signaling pathway by targeting FZD3. Cell Signal 2019; 62:109328. [PMID: 31145996 DOI: 10.1016/j.cellsig.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022]
Abstract
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play an important role in autism. Herein, we delineated the functions of LOC101927196 and its potential mitigation effect on a rat model of autism. We retrieved various bioinformatics databases and websites to screen differentially expressed lncRNAs associated with autism. Next, a rat model of autism was established with the neuron cells extracted for transfection of different plasmids. The regulatory effect of LOC101927196 on neuron cell proliferation, apoptosis as well as oxidative stress was also investigated. Firstly, microarray dataset GSE18123 revealed that LOC101927196 was poorly expressed in a rat model of autism. Poor development and growth and oxidative stress disorder were also observed in a rat model of autism. In addition, LOC101927196 targeting FZD3 played a vital role in a rat model of autism through the Wnt signaling pathway. Furthermore, we further demonstrated that over-expressed LOC101927196 blocked neuron cell proliferation and reduced oxidative stress levels, while promoting apoptosis by suppressing the activation of the Wnt signaling pathway. Our findings illustrate that up-regulated LOC101927196 attenuated oxidative stress disorder in a rat model of autism through suppressing the activation of Wnt signaling pathway by targeting FZD3.
Collapse
Affiliation(s)
- Wanxia Yao
- Medical School of Xi'an Peihua University, Xi'an 710125, PR China
| | - Junting Huang
- School of Nursing, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Hongling He
- Academic Journals Publishing Center of Education Department, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
53
|
Belardo A, Gevi F, Zolla L. The concomitant lower concentrations of vitamins B6, B9 and B12 may cause methylation deficiency in autistic children. J Nutr Biochem 2019; 70:38-46. [PMID: 31151052 DOI: 10.1016/j.jnutbio.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 02/20/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by severe and persistent difficulties in social communication and social interaction at multiple levels. Recently, metabolic disorders have been associated with most cases of patients with ASD. The aim of this study was to investigate, through a new and more sophisticated mass technique, such as UHPLC-mass spectrometry (Q-exactive analyzer), alteration in metabolisms analyzing ASD children urine samples from children showing simultaneous vitamin B6, B9 and B12 deficiencies. This in order to study how these concurrent deficiencies may influence some phenotypic aspects of autistic disorder. Thus, urinary metabolic patterns specific to ASD were explored at an early age in 60 children with ASD, showing lower three vitamins levels, and 60 corresponding controls (age group 3-8, M: F=42:18). The results showed significant block of cystathionine formation with consequent accumulation of homocysteine. A lower glutathione levels (GSH), with reduction of essential intracellular reducing environment required for normal immune function, detoxification capacity and redox-sensitive enzyme activity. Increased concentration of 5-methyltetrahydrofolate, which leads to a lower availability of methyl group and significant decrease in urinary methionine and S-adenosyl-L-methionine (SAM) concentrations, the major methyl donor. The latter justify the well-known reduction in protein and DNA methylation reported in autistic children. As a final consideration, the concomitant deficiencies of all three B vitamins, recorded in a significant number of autistic children, suggests that intestinal dysbiosis in these patients may be the main cause of a reduction in their absorption, in addition to the genetic mutation of a specific gene.
Collapse
Affiliation(s)
- Antonio Belardo
- University of Tuscia, Department of Ecological and Biological Sciences, 01110 Viterbo, Italy
| | - Federica Gevi
- University of Tuscia, Department of Science and Technology for Agriculture, Forestry, Nature and Energy, 01100 Viterbo, Italy
| | - Lello Zolla
- University of Tuscia, Department of Science and Technology for Agriculture, Forestry, Nature and Energy, 01100 Viterbo, Italy.
| |
Collapse
|
54
|
Sarkar T, Patro N, Patro IK. Cumulative multiple early life hits- a potent threat leading to neurological disorders. Brain Res Bull 2019; 147:58-68. [DOI: 10.1016/j.brainresbull.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
|
55
|
Wright CL, Hoffman JH, McCarthy MM. Evidence that inflammation promotes estradiol synthesis in human cerebellum during early childhood. Transl Psychiatry 2019; 9:58. [PMID: 30705253 PMCID: PMC6355799 DOI: 10.1038/s41398-018-0363-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023] Open
Abstract
Discovering and characterizing critical and sensitive periods in brain development is essential for unraveling the myriad variables that impact disease risk. In previous work, we identified a critical period in cerebellar development in the rat that depends upon an intrinsic gene expression program and links increased prostaglandin production to local estradiol synthesis by stimulating Cyp19a, the estradiol synthetic enzyme, aromatase. This intrinsic critical period is sensitive to disruption by either inflammation or administration of cyclooxygenase (COX) inhibitors, ultimately impacting Purkinje cell dendritic growth. In a first step towards determining if a similar sensitive period exists in humans, the same gene expression profile was characterized in post-mortem cerebellar tissue of 58 children aged 0 to 9 years. Subjects were categorized as experiencing inflammation or not at the time of death. In individuals experiencing inflammation and over 1 year of age, there was a significant increase in the messenger RNA (mRNA) of the COX-1 and COX-2 enzymes and this strongly correlated with mRNA levels of aromatase. A step-wise linear model accounted for 94% of the variance in aromatase mRNA levels by co-variance with the COX enzymes, prostaglandin E2 synthase and other inflammatory mediators (Toll-like receptor 4), and Purkinje cell markers (calbindin, estrogen receptor 2). The influence of inflammation on these measures was not seen in subjects younger than 1 year. These data suggest a sensitive period to inflammation in the human cerebellum begins at about 1 year of age and may provide insight into sources of vulnerability of very young children to either inflammation or drugs designed to treat it.
Collapse
Affiliation(s)
- Christopher L Wright
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jessica H Hoffman
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
56
|
Arony DA, Gazda S, Kitara DL. Could nodding syndrome in Northern Uganda be a form of autism spectrum disorder? an observational study design. Pan Afr Med J 2018; 30:115. [PMID: 30364427 PMCID: PMC6195236 DOI: 10.11604/pamj.2018.30.115.13634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/26/2018] [Indexed: 01/15/2023] Open
Abstract
Introduction Nodding syndrome (NS) is associated with high anion gap, biotinidase and acetyl carnitine deficiency, vitamin B6 and D deficiency and internal displacement. The objective of this study was to conduct a metabolic analysis on NS children and review literature on its similarities with ASD. Methods We conducted biochemical analysis on blood and urine of NS children at Hope for HumaNs (HfH) centre in 2014 and reviewed literature on its similarities with ASD. Ethical approval was obtained from an IRB. Data analysis was conducted using STATA version 12 and a p-value less than 0.05 was considered significant. Results We found biotinidase deficiency in NS with a mean 1.98 95% CI(1.61, 2.34; p < 0.001); Acetyl carnitine deficiency 16.92 95% CI(16.10,17.75; p<0.001); Low BMI-for-age 16.92 95% CI(16.10,17.75; p = 0.42); Age 14.08 95% CI(0.78,4.660; p = 0.007); IDP duration 4.82 95% CI(4.48, 5.21; p = 0.92); Age at NS onset 8.02 95% CI(7.03, 9.01; p = 0.001); NS associated with multiple nodding episodes (χ2)=22.15, p=0.005; NS siblings with NS (χ2) = 9.68, p = 0.004; NS were in IDPs (χ2) = 22.15, p = 0.005. Conclusion These findings are indicative that NS is associated with biotinidase and acetyl carnitine deficiency, IDPs, and environmental exposures. There are no new cases of NS reported by Ugandan MOH and WHO since 2012 when the IDP camps were disbanded and communities resettled in their own communities and feed on their own grown foods. Perhaps NS may be akin to Autism Spectrum Disorder (ASD). This finding will help support all efforts towards the treatment and rehabilitation of NS children.
Collapse
Affiliation(s)
- Denis Anywar Arony
- Gulu University, Faculty of Medicine, Department of Biochemistry, Gulu, Uganda
| | - Suzanne Gazda
- Founding President for Hope for HumaNs (HfH), Neurologist at the St Antonio, Texas, USA
| | - David Lagoro Kitara
- Gulu University, Faculty of Medicine, Department of Biochemistry, Gulu, Uganda.,Gulu University, Faculty of Medicine, Department of Surgery, Gulu, Uganda
| |
Collapse
|
57
|
Bittker SS, Bell KR. Acetaminophen, antibiotics, ear infection, breastfeeding, vitamin D drops, and autism: an epidemiological study. Neuropsychiatr Dis Treat 2018; 14:1399-1414. [PMID: 29910617 PMCID: PMC5987866 DOI: 10.2147/ndt.s158811] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND While many studies have examined environmental risk factors for autism spectrum disorder (ASD), much of the research focus has been on prenatal or perinatal factors. Yet, the postnatal environment may affect the risk of ASD as well. OBJECTIVE To determine whether a set of five postnatal variables are associated with ASD. These variables are: acetaminophen exposure, antibiotic exposure, incidence of ear infection, decreased duration of breastfeeding, and decreased consumption of oral vitamin D drops. MATERIALS AND METHODS An Internet-based survey was conducted. Participants were parents living in the USA with at least one biological child between 3 and 12 years of age. Potential participants were informed about the survey via postings on social media, websites, and listservs and were offered an opportunity to participate in a raffle as well. Participants were also recruited through the Interactive Autism Network. RESULTS There were 1,741 completed survey responses. After exclusions, there remained 1,001 responses associated with children with ASD (cases) and 514 responses associated with children who do not have ASD (controls). In this data set, doses of postnatal acetaminophen (adjusted odds ratio [aOR] 1.016, CI: 1.003-1.032, p=0.026), courses of postnatal antibiotics (aOR 1.103, CI: 1.046-1.168, p<0.001), incidence of postnatal ear infection (aOR 1.137, CI: 1.046-1.236, p=0.003), and decreased duration of breastfeeding (aOR 0.948, CI: 0.932-0.965, p<0.001) are all associated with ASD when adjusted for eight demographic variables. A weak association between oral vitamin D drop exposure and ASD was also found when adjusted for breastfeeding and demographics (aOR 1.025, CI: 0.995-1.056, p=0.102). CONCLUSION This study adds to evidence that postnatal acetaminophen use, postnatal antibiotic use, incidence of ear infection, and early weaning are associated with an increased risk of ASD. It also finds that postnatal oral vitamin D drops are weakly associated with ASD when adjusted for breastfeeding and demographics.
Collapse
Affiliation(s)
- Seth Scott Bittker
- Interdisciplinary Center for Innovative Theory and Empirics (INCITE), Columbia University, New York, NY, USA
| | | |
Collapse
|
58
|
Bauer AZ, Kriebel D, Herbert MR, Bornehag CG, Swan SH. Prenatal paracetamol exposure and child neurodevelopment: A review. Horm Behav 2018; 101:125-147. [PMID: 29341895 DOI: 10.1016/j.yhbeh.2018.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/09/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The non-prescription medication paracetamol (acetaminophen, APAP) is currently recommended as a safe pain and fever treatment during pregnancy. However, recent studies suggest a possible association between APAP use in pregnancy and offspring neurodevelopment. OBJECTIVES To conduct a review of publications reporting associations between prenatal APAP use and offspring neurodevelopmental outcomes. METHODS Relevant sources were identified through a key word search of multiple databases (Medline, CINAHL, OVID and TOXNET) in September 2016. All English language observational studies of pregnancy APAP and three classes of neurodevelopmental outcomes (autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and intelligence quotient (IQ)) were included. One reviewer (AZB) independently screened all titles and abstracts, extracted and analyzed the data. RESULTS 64 studies were retrieved and 55 were ineligible. Nine prospective cohort studies fulfilled all inclusion criteria. Data pooling was not appropriate due to heterogeneity in outcomes. All included studies suggested an association between prenatal APAP exposure and the neurodevelopmental outcomes; ADHD, ASD, or lower IQ. Longer duration of APAP use was associated with increased risk. Associations were strongest for hyperactivity and attention-related outcomes. Little modification of associations by indication for use was reported. CONCLUSIONS Together, these nine studies suggest an increased risk of adverse neurodevelopmental outcomes following prenatal APAP exposure. Further studies are urgently needed with; precise indication of use and exposure assessment of use both in utero and in early life. Given the current findings, pregnant women should be cautioned against indiscriminate use of APAP. These results have substantial public health implications.
Collapse
Affiliation(s)
- Ann Z Bauer
- Department of Public Health, University of Massachusetts, 1 University Avenue, Lowell, MA, 01854, USA.
| | - David Kriebel
- Department of Public Health, University of Massachusetts, 1 University Avenue, Lowell, MA, 01854, USA.
| | - Martha R Herbert
- Department of Neurology, MGH, Harvard Medical School, A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard 149 Thirteenth Street, Charlestown, MA 02129, USA
| | - Carl-Gustaf Bornehag
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Department of Health Sciences, Karlstad University, Karlstad, Sweden.
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| |
Collapse
|
59
|
Kennon-McGill S, McGill MR. Extrahepatic toxicity of acetaminophen: critical evaluation of the evidence and proposed mechanisms. J Clin Transl Res 2018. [PMID: 30895271 PMCID: PMC5815839 DOI: 10.18053/jctres.03.201703.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Research on acetaminophen (APAP) toxicity over the last several decades has focused on the pathophysiology of liver injury, but increasingly attention is paid to other known and possible adverse effects. It has been known for decades that APAP causes acute kidney injury, but confusion exists regarding prevalence, and the mechanisms have not been well investigated. More recently, evidence for pulmonary, endocrine, neurological, and neurodevelopmental toxicity has been reported in a number of published experimental, clinical, and epidemiological studies, but the quality of those studies has varied. It is important to view those data critically due to implications for regulation and clinical practice. Here, we review evidence and proposed mechanisms for extrahepatic adverse effects of APAP and weigh weaknesses and strengths in the available data.
Collapse
Affiliation(s)
- Stefanie Kennon-McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States.,Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
60
|
Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation Link between Inflammatory State and Neuro-Immune Alterations. Int J Mol Sci 2017; 18:ijms18071425. [PMID: 28671614 PMCID: PMC5535916 DOI: 10.3390/ijms18071425] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022] Open
Abstract
Several studies highlight a key involvement of endocannabinoid (EC) system in autism pathophysiology. The EC system is a complex network of lipid signaling pathways comprised of arachidonic acid-derived compounds (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. In addition to autism, the EC system is also involved in several other psychiatric disorders (i.e., anxiety, major depression, bipolar disorder and schizophrenia). This system is a key regulator of metabolic and cellular pathways involved in autism, such as food intake, energy metabolism and immune system control. Early studies in autism animal models have demonstrated alterations in the brain's EC system. Autism is also characterized by immune system dysregulation. This alteration includes differential monocyte and macrophage responses, and abnormal cytokine and T cell levels. EC system dysfunction in a monocyte and macrophagic cellular model of autism has been demonstrated by showing that the mRNA and protein for CB2 receptor and EC enzymes were significantly dysregulated, further indicating the involvement of the EC system in autism-associated immunological disruptions. Taken together, these new findings offer a novel perspective in autism research and indicate that the EC system could represent a novel target option for autism pharmacotherapy.
Collapse
|