51
|
Shepherd AJ. Tracking the Migraine Cycle Using Visual Tasks. Vision (Basel) 2020; 4:vision4020023. [PMID: 32365776 PMCID: PMC7355979 DOI: 10.3390/vision4020023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
There are a number of reports that perceptual, electrophysiological and imaging measures can track migraine periodicity. As the electrophysiological and imaging research requires specialist equipment, it has few practical applications. This study sought to track changes in performance on four visual tasks over the migraine cycle. Coherence thresholds were measured for two motion and two orientation tasks. The first part of the study confirmed that the data obtained from an online study produced comparable results to those obtained under controlled laboratory conditions. Thirteen migraine with aura, 12 without aura, and 12 healthy controls participated. The second part of the study showed that thresholds for discriminating vertical coherent motion varied with the migraine cycle for a majority of the participants who tested themselves multiple times (four with aura, seven without). Performance improved two days prior to a migraine attack and remained improved for two days afterwards. This outcome is as expected from an extrapolation of earlier electrophysiological research. This research points to the possibility of developing sensitive visual tests that patients can use at home to predict an impending migraine attack and so take steps to try to abort it or, if it is inevitable, to plan their lives around it.
Collapse
Affiliation(s)
- A J Shepherd
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| |
Collapse
|
52
|
Zhang D, Huang X, Su W, Chen Y, Wang P, Mao C, Miao Z, Liu C, Xu C, Yin X, Wu X. Altered lateral geniculate nucleus functional connectivity in migraine without aura: a resting-state functional MRI study. J Headache Pain 2020; 21:17. [PMID: 32066379 PMCID: PMC7025412 DOI: 10.1186/s10194-020-01086-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/07/2020] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES To investigate the structural and functional connectivity changes of lateral geniculate nucleus (LGN) and their relationships with clinical characteristics in patients without aura. METHODS Conventional MRI, 3D structure images and resting state functional MRI were performed in 30 migraine patients without aura (MwoA) and 22 healthy controls (HC). The lateral geniculate nucleus volumes and the functional connectivity (FC) of bilateral lateral geniculate nucleus were computed and compared between groups. RESULTS The lateral geniculate nucleus volumes in patient groups did not differ from the controls. The brain regions with increased FC of the left LGN mainly located in the left cerebellum and right lingual gyrus in MwoA compared with HC. The increased FC of right LGN located in left inferior frontal gyrus in MwoA compared with HC. The correlation analysis showed a positive correlation between VLSQ-8 score and the increased FC of left cerebellum and right lingual gyrus. CONCLUSIONS Photophobia in MwoA could be mediated by abnormal resting state functional connectivity in visual processing regions, the pain perception regulatory network and emotion regulation network. This result is valuable to further understanding about the clinical manifestation and pathogenesis of migraine.
Collapse
Affiliation(s)
- Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Xiaobin Huang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Wen Su
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Yuchen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Cunnan Mao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Zhengfei Miao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Chunmei Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Chenjie Xu
- Department of Pain Treatment, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China.
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China.
| |
Collapse
|
53
|
Pearl TA, Dumkrieger G, Chong CD, Dodick DW, Schwedt TJ. Sensory Hypersensitivity Symptoms in Migraine With vs Without Aura: Results From the American Registry for Migraine Research. Headache 2020; 60:506-514. [DOI: 10.1111/head.13745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Talia A. Pearl
- Washington University School of Medicine in St. Louis St. Louis MO USA
| | | | | | | | | |
Collapse
|
54
|
Planchuelo-Gómez Á, García-Azorín D, Guerrero ÁL, Aja-Fernández S, Rodríguez M, de Luis-García R. White matter changes in chronic and episodic migraine: a diffusion tensor imaging study. J Headache Pain 2020; 21:1. [PMID: 31898478 PMCID: PMC6941267 DOI: 10.1186/s10194-019-1071-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND White matter alterations have been observed in patients with migraine. However, no microstructural white matter alterations have been found particularly in episodic or chronic migraine patients, and there is limited research focused on the comparison between these two groups of migraine patients. METHODS Fifty-one healthy controls, 55 episodic migraine patients and 57 chronic migraine patients were recruited and underwent brain T1-weighted and diffusion-weighted MRI acquisition. Using Tract-Based Spatial Statistics (TBSS), fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity were compared between the different groups. On the one hand, all migraine patients were compared against healthy controls. On the other hand, patients from each migraine group were compared between them and also against healthy controls. Correlation analysis between clinical features (duration of migraine in years, time from onset of chronic migraine in months, where applicable, and headache and migraine frequency, where applicable) and Diffusion Tensor Imaging measures was performed. RESULTS Fifty healthy controls, 54 episodic migraine and 56 chronic migraine patients were finally included in the analysis. Significant decreased axial diffusivity (p < .05 false discovery rate and by number of contrasts corrected) was found in chronic migraine compared to episodic migraine in 38 white matter regions from the Johns Hopkins University ICBM-DTI-81 White-Matter Atlas. Significant positive correlation was found between time from onset of chronic migraine and mean fractional anisotropy in the bilateral external capsule, and negative correlation between time from onset of chronic migraine and mean radial diffusivity in the bilateral external capsule. CONCLUSIONS These findings suggest global white matter structural differences between episodic migraine and chronic migraine. Patients with chronic migraine could present axonal integrity impairment in the first months of chronic migraine with respect to episodic migraine patients. White matter changes after the onset of chronic migraine might reflect a set of maladaptive plastic changes.
Collapse
Affiliation(s)
| | - David García-Azorín
- Headache Unit, Department of Neurology, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal 3, 47005, Valladolid, Spain
| | - Ángel L Guerrero
- Headache Unit, Department of Neurology, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal 3, 47005, Valladolid, Spain.
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
- Department of Medicine, Universidad de Valladolid, Valladolid, Spain.
| | | | - Margarita Rodríguez
- Department of Radiology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | | |
Collapse
|
55
|
Wei HL, Zhou X, Chen YC, Yu YS, Guo X, Zhou GP, Zhou QQ, Qu LJ, Yin X, Li J, Zhang H. Impaired intrinsic functional connectivity between the thalamus and visual cortex in migraine without aura. J Headache Pain 2019; 20:116. [PMID: 31856703 PMCID: PMC6924083 DOI: 10.1186/s10194-019-1065-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging (fMRI) has confirmed disrupted visual network connectivity in migraine without aura (MwoA). The thalamus plays a pivotal role in a number of pain conditions, including migraine. However, the significance of altered thalamo-visual functional connectivity (FC) in migraine remains unknown. The goal of this study was to explore thalamo-visual FC integrity in patients with MwoA and investigate its clinical significance. METHODS Resting-state fMRI data were acquired from 33 patients with MwoA and 22 well-matched healthy controls. After identifying the visual network by independent component analysis, we compared neural activation in the visual network and thalamo-visual FC and assessed whether these changes were linked to clinical characteristics. We used voxel-based morphometry to determine whether functional differences were dependent on structural differences. RESULTS The visual network exhibited significant differences in regions (bilateral cunei, right lingual gyrus and left calcarine sulcus) by inter-group comparison. The patients with MwoA showed significantly increased FC between the left thalami and bilateral cunei and between the right thalamus and the contralateral calcarine sulcus and right cuneus. Furthermore, the neural activation of the left calcarine sulcus was positively correlated with visual analogue scale scores (r = 0.319, p = 0.043), and enhanced FC between the left thalamus and right cuneus in migraine patients was negatively correlated with Generalized Anxiety Disorder scores (r = - 0.617, p = 0.005). CONCLUSION Our data suggest that migraine distress is exacerbated by aberrant feedback projections to the visual network, playing a crucial role in migraine physiological mechanisms. The current study provides further insights into the complex scenario of migraine mechanisms.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Xin Zhou
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006 China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Xi Guo
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Gang-Ping Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Qing-Qing Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Li-Jie Qu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006 China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| |
Collapse
|
56
|
Munjal S, Singh P, Reed ML, Fanning K, Schwedt TJ, Dodick DW, Buse DC, Lipton RB. Most Bothersome Symptom in Persons With Migraine: Results From the Migraine in America Symptoms and Treatment (MAST) Study. Headache 2019; 60:416-429. [PMID: 31837007 PMCID: PMC7027490 DOI: 10.1111/head.13708] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
Abstract
Objectives The objectives of this study were to determine the rates of nausea, phonophobia, and photophobia reported overall and as the most bothersome symptom (MBS) in individuals with migraine and to identify individual characteristics associated with each of the 3 candidate MBSs. Background The MBS has emerged as an important coprimary efficacy endpoint in clinical trials of acute treatments for migraine, as recommended by the Food and Drug Administration. The current understanding of how persons with migraine designate an associated symptom as the most bothersome has been assessed primarily in the context of randomized trials. Methods Respondents (n = 95,821) in the cross‐sectional, observational Migraine in America Symptoms and Treatment (MAST) study were adults (aged ≥18 years) recruited from a US nationwide online research panel. A validated diagnostic screener identified 15,133 individuals who met modified International Classification of Headache Disorders (ICHD)‐3 beta criteria for migraine and reported at least 1 monthly headache day (MHD) over the previous 3 months. The survey ascertained sociodemographic variables, headache‐related disability, MHDs, cutaneous allodynia, medication overuse, a migraine symptom severity score, pain interference, noncephalic pain, anxiety and depression symptoms, visual aura over the previous year, and acute treatment optimization. The current analysis is based on respondents who also completed a 6‐month follow‐up assessment that included questions about their most bothersome headache symptom. Results A total of 7518 respondents completed the 6‐month follow‐up, and 6045 met inclusion criteria and were included in the analysis. The mean age of respondents was 47 (SD 13.4) years, 76.0% (4596/6045) were women, and 84.8% (5103/6017) were white. Among all respondents, 64.9% reported all 3 migraine symptoms. The MBS was photophobia in 49.1% (2967/6045), nausea in 28.1% (1697/6045), and phonophobia in 22.8% (1381/6045). Respondents reporting photophobia as the MBS were more likely to be men, to be obese, and to report visual aura. Those reporting nausea as the MBS were more likely to be women, to have lower incomes, and to report lower levels of treatment optimization. Respondents reporting phonophobia as the MBS were more likely to have cutaneous allodynia and less likely to have visual aura. Conclusion Most people with migraine in the MAST observational study reported all 3 cardinal symptoms of nausea, photophobia, and phonophobia. As in clinical trials, the most common MBS was photophobia. Patient profiles differed among the groups defined by their MBS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dawn C Buse
- Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
57
|
Puledda F, Ffytche D, O'Daly O, Goadsby PJ. Imaging the Visual Network in the Migraine Spectrum. Front Neurol 2019; 10:1325. [PMID: 31920945 PMCID: PMC6923266 DOI: 10.3389/fneur.2019.01325] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/29/2019] [Indexed: 01/13/2023] Open
Abstract
The involvement of the visual network in migraine pathophysiology has been well-known for more than a century. Not only is the aura phenomenon linked to cortical alterations primarily localized in the visual cortex; but also migraine without aura has shown distinct dysfunction of visual processing in several studies in the past. Further, the study of photophobia, a hallmark migraine symptom, has allowed unraveling of distinct connections that link retinal pathways to the trigeminovascular system. Finally, visual snow, a recently recognized neurological disorder characterized by a continuous visual disturbance, is highly comorbid with migraine and possibly shares with it some common pathophysiological mechanisms. Here, we review the most relevant neuroimaging literature to date, considering studies that have either attempted to investigate the visual network or have indirectly shown visual processing dysfunctions in migraine. We do this by taking into account the broader spectrum of migrainous biology, thus analyzing migraine both with and without aura, focusing on light sensitivity as the most relevant visual symptom in migraine, and finally analyzing the visual snow syndrome. We also present possible hypotheses on the underlying pathophysiology of visual snow, for which very little is currently known.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, SLaM NIHR Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Dominic Ffytche
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Owen O'Daly
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Peter J. Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, SLaM NIHR Biomedical Research Centre, King's College Hospital, London, United Kingdom
| |
Collapse
|
58
|
Skorobogatykh K, van Hoogstraten WS, Degan D, Prischepa A, Savitskaya A, Ileen BM, Bentivegna E, Skiba I, D'Acunto L, Ferri L, Sacco S, Hansen JM, Amin FM. Functional connectivity studies in migraine: what have we learned? J Headache Pain 2019; 20:108. [PMID: 31747874 PMCID: PMC6868768 DOI: 10.1186/s10194-019-1047-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resting-state functional connectivity (FC) MRI has widely been used to understand migraine pathophysiology and to identify an imaging marker of the disorder. Here, we review what we have learned from FC studies. METHODS We performed a literature search on the PubMed website for original articles reporting data obtained from conventional resting-state FC recording in migraine patients compared with healthy controls or during and outside of migraine attacks in the same patients. RESULTS We found 219 articles and included 28 in this review after screening for inclusion and exclusion criteria. Twenty-five studies compared migraine patients with healthy controls, whereas three studies investigated migraine patients during and outside of attacks. In the studies of interictal migraine more alterations of more than 20 FC networks (including amygdala, caudate nucleus, central executive, cerebellum, cuneus, dorsal attention network, default mode, executive control, fronto-parietal, hypothalamus, insula, neostriatum, nucleus accumbens, occipital lobe, periaqueductal grey, prefrontal cortex, salience, somatosensory cortex I, thalamus and visual) were reported. We found a poor level of reproducibility and no migraine specific pattern across these studies. CONCLUSION Based on the findings in the present review, it seems very difficult to extract knowledge of migraine pathophysiology or to identify a biomarker of migraine. There is an unmet need of guidelines for resting-state FC studies in migraine, which promote the use of homogenous terminology, public availability of protocol and the a priori hypothesis in line with for instance randomized clinical trial guidelines.
Collapse
Affiliation(s)
| | | | - Diana Degan
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | | | | | | | - Enrico Bentivegna
- Internal Medicine Unit, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Iaroslav Skiba
- Neurology Department, Military Medical Academy, St. Petersburg, Russia
| | - Laura D'Acunto
- Clinical Unit of Neurology, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Livia Ferri
- Internal Medicine Unit, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Rome, Italy
| | - Simona Sacco
- Clinical Neurology Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark.
| |
Collapse
|
59
|
Dysregulation of multisensory processing stands out from an early stage of migraine: a study in pediatric patients. J Neurol 2019; 267:760-769. [DOI: 10.1007/s00415-019-09639-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022]
|
60
|
Chiang CC, Starling AJ, Buras MR, Golafshar MA, VanderPluym JH. A pilot exploratory study comparing the King-Devick test (KDT) during and between migraine attacks. Cephalalgia 2019; 40:307-312. [PMID: 31660762 DOI: 10.1177/0333102419885381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The King-Devick test is a timed rapid number naming task that involves complex cerebral functions. The objective of this pilot exploratory study is to determine whether there is a difference in the King-Devick test during a migraine attack compared to the interictal phase. METHODS We evaluated 29 adult subjects with migraine with aura or migraine without aura. For each participant, we performed King-Devick tests during migraine attacks and interictal phases. Subjects served as their own controls. RESULTS The King-Devick test was slower during the migraine attack compared to the interictal baseline (median 4.6 sec slower, p < 0.001). The slowing of the King-Devick test during migraine attack was more prominent in those with migraine with aura compared to subjects with migraine without aura (median 7.5 vs. 2.8 sec, p = 0.028). CONCLUSIONS This exploratory, observational study shows changes in the King-Devick test during migraine compared to the interictal phase. Future studies are required to determine if the King-Devick test may be used as a rapid and simple tool to objectively characterize migraine-associated disability.
Collapse
Affiliation(s)
| | | | - Matthew R Buras
- Division of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | | | | |
Collapse
|
61
|
Coppola G, Parisi V, Di Renzo A, Pierelli F. Cortical pain processing in migraine. J Neural Transm (Vienna) 2019; 127:551-566. [DOI: 10.1007/s00702-019-02089-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
|
62
|
Kincses ZT, Veréb D, Faragó P, Tóth E, Kocsis K, Kincses B, Király A, Bozsik B, Párdutz Á, Szok D, Tajti J, Vécsei L, Tuka B, Szabó N. Are Migraine With and Without Aura Really Different Entities? Front Neurol 2019; 10:982. [PMID: 31632329 PMCID: PMC6783501 DOI: 10.3389/fneur.2019.00982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/28/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Migraine research is booming with the rapidly developing neuroimaging tools. Structural and functional alterations of the migrainous brain were detected with MRI. The outcome of a research study largely depends on the working hypothesis, on the chosen measurement approach and also on the subject selection. Against all evidence from the literature that migraine subtypes are different, most of the studies handle migraine with and without aura as one disease. Methods: Publications from PubMed database were searched for terms of "migraine with aura," "migraine without aura," "interictal," "MRI," "diffusion weighted MRI," "functional MRI," "compared to," "atrophy" alone and in combination. Conclusion: Only a few imaging studies compared the two subforms of the disease, migraine with aura, and without aura, directly. Functional imaging investigations largely agree that there is an increased activity/activation of the brain in migraine with aura as compared to migraine without aura. We propose that this might be the signature of cortical hyperexcitability. However, structural investigations are not equivocal. We propose that variable contribution of parallel, competing mechanisms of maladaptive plasticity and neurodegeneration might be the reason behind the variable results.
Collapse
Affiliation(s)
- Zsigmond Tamás Kincses
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
- Department of Radiology, University of Szeged, Szeged, Hungary
| | - Dániel Veréb
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Péter Faragó
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Eszter Tóth
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Krisztián Kocsis
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Bálint Kincses
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - András Király
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
- Brain and Mind Research, Central European Institute of Technology, Brno, Czechia
| | - Bence Bozsik
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Délia Szok
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE, Neuroscience Research Group, Szeged, Hungary
| | - Bernadett Tuka
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE, Neuroscience Research Group, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
- Brain and Mind Research, Central European Institute of Technology, Brno, Czechia
| |
Collapse
|
63
|
Faragó P, Tóth E, Kocsis K, Kincses B, Veréb D, Király A, Bozsik B, Tajti J, Párdutz Á, Szok D, Vécsei L, Szabó N, Kincses ZT. Altered Resting State Functional Activity and Microstructure of the White Matter in Migraine With Aura. Front Neurol 2019; 10:1039. [PMID: 31632336 PMCID: PMC6779833 DOI: 10.3389/fneur.2019.01039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/13/2019] [Indexed: 01/18/2023] Open
Abstract
Introduction: Brain structure and function were reported to be altered in migraine. Importantly our earlier results showed that white matter diffusion abnormalities and resting state functional activity were affected differently in the two subtypes of the disease, migraine with and without aura. Resting fluctuation of the BOLD signal in the white matter was reported recently. The question arising whether the white matter activity, that is strongly coupled with gray matter activity is also perturbed differentially in the two subtypes of the disease and if so, is it related to the microstructural alterations of the white matter. Methods: Resting state fMRI, 60 directional DTI images and high-resolution T1 images were obtained from 51 migraine patients and 32 healthy volunteers. The images were pre-processed and the white matter was extracted. Independent component analysis was performed to obtain white matter functional networks. The differential expression of the white matter functional networks in the two subtypes of the disease was investigated with dual-regression approach. The Fourier spectrum of the resting fMRI fluctuations were compared between groups. Voxel-wise correlation was calculated between the resting state functional activity fluctuations and white matter microstructural measures. Results: Three white matter networks were identified that were expressed differently in migraine with and without aura. Migraineurs with aura showed increased functional connectivity and amplitude of BOLD fluctuation. Fractional anisotropy and radial diffusivity showed strong correlation with the expression of the frontal white matter network in patients with aura. Discussion: Our study is the first to describe changes in white matter resting state functional activity in migraine with aura, showing correlation with the underlying microstructure. Functional and structural differences between disease subtypes suggest at least partially different pathomechanism, which may necessitate handling of these subtypes as separate entities in further studies.
Collapse
Affiliation(s)
- Péter Faragó
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary.,Central European Institute of Technology, Brno, Czechia
| | - Eszter Tóth
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Krisztián Kocsis
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Bálint Kincses
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Dániel Veréb
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - András Király
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary.,Central European Institute of Technology, Brno, Czechia
| | - Bence Bozsik
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Délia Szok
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE, Neuroscience Research Group, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary.,Central European Institute of Technology, Brno, Czechia
| | - Zsigmond Tamás Kincses
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary.,Department of Radiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
64
|
Haigh SM, Chamanzar A, Grover P, Behrmann M. Cortical Hyper‐Excitability in Migraine in Response to Chromatic Patterns. Headache 2019; 59:1773-1787. [DOI: 10.1111/head.13620] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Sarah M. Haigh
- Department of Psychology, Institute for Neuroscience University of Nevada Reno NV USA
- Department of Psychology, Center for the Neural Basis of Cognition Carnegie Mellon University Pittsburgh PA USA
| | - Alireza Chamanzar
- Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh PA USA
| | - Pulkit Grover
- Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh PA USA
| | - Marlene Behrmann
- Department of Psychology, Center for the Neural Basis of Cognition Carnegie Mellon University Pittsburgh PA USA
| |
Collapse
|
65
|
Russo A, Silvestro M, Tessitore A, Tedeschi G. Shedding light on migraine with aura: the clarifying role of advanced neuroimaging investigations. Expert Rev Neurother 2019; 19:739-750. [PMID: 31267785 DOI: 10.1080/14737175.2019.1638252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction: While migraine with aura is a complex neurological syndrome with a well-characterized clinical phenotype, its pathophysiology still has grey areas which could be partially clarified by microstructural and functional neuroimaging investigations. Areas covered: This article, summarizing the most significant findings from advanced neuroimaging studies, aims to achieve a unifying pathophysiological model of the migraine aura. A comprehensive review has been conducted of PubMed citations by entering the key word 'neuroimaging' combined with 'migraine with aura' AND/OR 'MRI.' Other keywords included 'grey matter' OR 'white matter', 'structural' OR 'functional'. Expert opinion: Converging evidence from advanced neuroimaging investigations underlined the critical role of the extrastriate visual cortex, and in particular the lingual gyrus, in the genesis of the aura phenomenon. However, the relationship between the aura and the headache phase of migraine attacks has not been completely clarified, to date, and underlying pathophysiological mechanisms need to be further elucidated.
Collapse
Affiliation(s)
- Antonio Russo
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,b MRI Research Center SUN-FISM , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Marcello Silvestro
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,b MRI Research Center SUN-FISM , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Alessandro Tessitore
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,b MRI Research Center SUN-FISM , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Gioacchino Tedeschi
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,c Institute for Diagnosis and Care ''Hermitage Capodimonte'' , Naples , Italy
| |
Collapse
|
66
|
Soheili-Nezhad S, Sedghi A, Schweser F, Eslami Shahr Babaki A, Jahanshad N, Thompson PM, Beckmann CF, Sprooten E, Toghae M. Structural and Functional Reorganization of the Brain in Migraine Without Aura. Front Neurol 2019; 10:442. [PMID: 31133962 PMCID: PMC6515892 DOI: 10.3389/fneur.2019.00442] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/10/2019] [Indexed: 01/27/2023] Open
Abstract
It remains unknown whether migraine headache has a progressive component in its pathophysiology. Quantitative MRI may provide valuable insight into abnormal changes in the migraine interictum and assist in identifying disrupted brain networks. We carried out a data-driven study of structural integrity and functional connectivity of the resting brain in migraine without aura. MRI scanning was performed in 36 patients suffering from episodic migraine without aura and 33 age-matched healthy subjects. Voxel-wise analysis of regional brain volume was performed by registration of the T1-weighted MRI scans into a common study brain template using the tensor-based morphometry (TBM) method. Changes in functional synchronicity of the brain networks were assessed using probabilistic independent component analysis (ICA). TBM revealed that migraine is associated with reduced volume of the medial prefrontal cortex (mPFC). Among 375 functional brain networks, resting-state connectivity was decreased between two components spanning the visual cortex, posterior insula, and parietal somatosensory cortex. Our study reveals structural and functional alterations of the brain in the migraine interictum that may stem from underlying disease risk factors and the "silent" aura phenomenon. Longitudinal studies will be needed to investigate whether interictal brain changes are progressive and associated with clinical disease trajectories.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Alireza Sedghi
- Medical Informatics Laboratory, Queen's University, Kingston, ON, Canada
| | - Ferdinand Schweser
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, Buffalo, NY, United States
- Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, Buffalo, NY, United States
| | | | - Neda Jahanshad
- Keck School of Medicine of USC, Imaging Genetics Center, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, United States
| | - Paul M. Thompson
- Keck School of Medicine of USC, Imaging Genetics Center, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, United States
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
- John Radcliffe Hospital, Oxford Centre for Functional MRI of the Brain, Oxford, United Kingdom
| | - Emma Sprooten
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Mansoureh Toghae
- Headache Department, Iranian Center of Neurological Research, Neuroscience Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
67
|
Russo A, Tessitore A, Silvestro M, Di Nardo F, Trojsi F, Del Santo T, De Micco R, Esposito F, Tedeschi G. Advanced visual network and cerebellar hyperresponsiveness to trigeminal nociception in migraine with aura. J Headache Pain 2019; 20:46. [PMID: 31053057 PMCID: PMC6734311 DOI: 10.1186/s10194-019-1002-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/18/2019] [Indexed: 01/03/2023] Open
Abstract
Background Despite the growing body of advanced studies investigating the neuronal correlates of pain processing in patients with migraine without aura (MwoA), only few similar studies have been conducted in patients with migraine with aura (MwA). Therefore, we aimed to explore the functional brain response to trigeminal noxious heat stimulation in patients with MwA. Methods Seventeen patients with MwA and 15 age- and sex-matched healthy controls (HC) underwent whole-brain blood oxygen level–dependent (BOLD) fMRI during trigeminal noxious heat stimulation. To examine the specificity of any observed differences between patients with MwA and HC, the functional response of neural pathways to trigeminal noxious heat stimulation in patients with MwA was compared with 18 patients with MwoA. Secondary analyses investigated the correlations between BOLD signal changes and clinical parameters of migraine severity. Results We observed a robust cortical and subcortical pattern of BOLD response to trigeminal noxious heat stimulation across all participants. Patients with MwA showed a significantly increased activity in higher cortical areas known to be part of a distributed network involved in advanced visual processing, including lingual gyrus, inferior parietal lobule, inferior frontal gyrus and medial frontal gyrus. Moreover, a significantly greater cerebellar activation was observed in patients with MwA when compared with both patients with MwA and HC. Interestingly, no correlations were found between migraine severity parameters and magnitude of BOLD response in patients with MwA. Conclusion Our findings, characterized by abnormal visual pathway response to trigeminal noxious heat stimulation, support the role of a functional integration between visual and trigeminal pain networks in the pathophysiological mechanisms underlying migraine with aura. Moreover, they expand the concept of “neurolimbic-pain network” as a model of MwoA including both limbic dysfunction and cortical dys-excitability. Indeed, we suggest a model of “neurolimbic-visual-pain network” in MwA patients, characterized by dysfunctional correlations between pain-modulating circuits not only with the cortical limbic areas but with advanced visual areas as well. Furthermore, the abnormal cerebellar response to trigeminal noxious heat stimulation may suggest a dysfunctional cerebellar inhibitory control on thalamic sensory gating, impinging on the advanced visual processing cortical areas in patients with MwA. Electronic supplementary material The online version of this article (10.1186/s10194-019-1002-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Russo
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, I-80138, Naples, Italy.,MRI Research Centre SUN-FISM, University of Campania, "Luigi Vanvitelli", Caserta, Italy
| | - Alessandro Tessitore
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, I-80138, Naples, Italy
| | - Marcello Silvestro
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, I-80138, Naples, Italy.,MRI Research Centre SUN-FISM, University of Campania, "Luigi Vanvitelli", Caserta, Italy
| | - Federica Di Nardo
- MRI Research Centre SUN-FISM, University of Campania, "Luigi Vanvitelli", Caserta, Italy
| | - Francesca Trojsi
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, I-80138, Naples, Italy.,MRI Research Centre SUN-FISM, University of Campania, "Luigi Vanvitelli", Caserta, Italy
| | - Teresa Del Santo
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, I-80138, Naples, Italy
| | - Rosa De Micco
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, I-80138, Naples, Italy.,MRI Research Centre SUN-FISM, University of Campania, "Luigi Vanvitelli", Caserta, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Fisciano, Italy
| | - Gioacchino Tedeschi
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, I-80138, Naples, Italy. .,MRI Research Centre SUN-FISM, University of Campania, "Luigi Vanvitelli", Caserta, Italy. .,Institute for Diagnosis and Care 'Hermitage-Capodimonte', Naples, Italy.
| |
Collapse
|
68
|
Dumkrieger G, Chong CD, Ross K, Berisha V, Schwedt TJ. Static and dynamic functional connectivity differences between migraine and persistent post-traumatic headache: A resting-state magnetic resonance imaging study. Cephalalgia 2019; 39:1366-1381. [PMID: 31042064 DOI: 10.1177/0333102419847728] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Although migraine and persistent post-traumatic headache often share phenotypic characteristics, few studies have interrogated the pathophysiological differences underlying these headache types. While there is now some indication of differences in brain structure between migraine and persistent post-traumatic headache, differences in brain function have not been adequately investigated. The objective of this study was to compare static and dynamic functional connectivity patterns in migraine versus persistent post-traumatic headache using resting-state magnetic resonance imaging. METHODS This case-control study interrogated the static functional connectivity and dynamic functional connectivity patterns of 59 a priori selected regions of interest involved in pain processing. Pairwise connectivity (region of interest to region of interest) differences between migraine (n = 33) and persistent post-traumatic headache (n = 44) were determined and compared to healthy controls (n = 36) with ANOVA and subsequent t-tests. Pearson partial correlations were used to explore the relationship between headache burden (headache frequency; years lived with headache) and functional connectivity and between pain intensity at the time of imaging and functional connectivity for migraine and persistent post-traumatic headache groups, separately. RESULTS Significant differences in static functional connectivity between migraine and persistent post-traumatic headache were found for 17 region pairs that included the following regions of interest: Primary somatosensory, secondary somatosensory, posterior insula, hypothalamus, anterior cingulate, middle cingulate, temporal pole, supramarginal gyrus, superior parietal, middle occipital, lingual gyrus, pulvinar, precuneus, cuneus, somatomotor, ventromedial prefrontal cortex, and dorsolateral prefrontal cortex. Significant differences in dynamic functional connectivity between migraine and persistent post-traumatic headache were found for 10 region pairs that included the following regions of interest: Secondary somatosensory, hypothalamus, middle cingulate, temporal pole, supramarginal gyrus, superior parietal, lingual gyrus, somatomotor, precentral, posterior cingulate, middle frontal, fusiform gyrus, parieto-occiptal, and amygdala. Although there was overlap among the regions demonstrating static functional connectivity differences and those showing dynamic functional connectivity differences between persistent post-traumatic headache and migraine, there was no overlap in the region pair functional connections. After controlling for sex and age, there were significant correlations between years lived with headache with static functional connectivity of the right dorsolateral prefrontal cortex with the right ventromedial prefrontal cortex in the migraine group and with static functional connectivity of right primary somatosensory with left supramarginal gyrus in the persistent post-traumatic headache group. There were significant correlations between headache frequency with static functional connectivity of left secondary somatosensory with right cuneus in the migraine group and with static functional connectivity of left middle cingulate with right pulvinar and right posterior insula with left hypothalamus in the persistent post-traumatic headache group. Dynamic functional connectivity was significantly correlated with headache frequency, after controlling for sex and age, in the persistent post-traumatic headache group for one region pair (right middle cingulate with right supramarginal gyrus). Dynamic functional connectivity was correlated with pain intensity at the time of imaging for the migraine cohort for one region pair (right posterior cingulate with right amygdala). CONCLUSIONS Resting-state functional imaging revealed static functional connectivity and dynamic functional connectivity differences between migraine and persistent post-traumatic headache for regions involved in pain processing. These differences in functional connectivity might be indicative of distinctive pathophysiology associated with migraine versus persistent post-traumatic headache.
Collapse
|
69
|
Coppola G, Di Lorenzo C, Parisi V, Lisicki M, Serrao M, Pierelli F. Clinical neurophysiology of migraine with aura. J Headache Pain 2019; 20:42. [PMID: 31035929 PMCID: PMC6734510 DOI: 10.1186/s10194-019-0997-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/16/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The purpose of this review is to provide a comprehensive overview of the findings of clinical electrophysiology studies aimed to investigate changes in information processing of migraine with aura patients. MAIN BODY Abnormalities in alpha rhythm power and symmetry, the presence of slowing, and increased information flow in a wide range of frequency bands often characterize the spontaneous EEG activity of MA. Higher grand-average cortical response amplitudes, an increased interhemispheric response asymmetry, and lack of amplitude habituation were less consistently demonstrated in response to any kind of sensory stimulation in MA patients. Studies with single-pulse and repetitive transcranial magnetic stimulation (TMS) have reported abnormal cortical responsivity manifesting as greater motor evoked potential (MEP) amplitude, lower threshold for phosphenes production, and paradoxical effects in response to both depressing or enhancing repetitive TMS methodologies. Studies of the trigeminal system in MA are sparse and the few available showed lack of blink reflex habituation and abnormal findings on SFEMG reflecting subclinical, probably inherited, dysfunctions of neuromuscular transmission. The limited studies that were able to investigate patients during the aura revealed suppression of evoked potentials, desynchronization in extrastriate areas and in the temporal lobe, and large variations in direct current potentials with magnetoelectroencephalography. Contrary to what has been observed in the most common forms of migraine, patients with familial hemiplegic migraine show greater habituation in response to visual and trigeminal stimuli, as well as a higher motor threshold and a lower MEP amplitude than healthy subjects. CONCLUSION Since most of the electrophysiological abnormalities mentioned above were more frequently present and had a greater amplitude in migraine with aura than in migraine without aura, neurophysiological techniques have been shown to be of great help in the search for the pathophysiological basis of migraine aura.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79–04100 Latina, Italy
| | | | | | - Marco Lisicki
- Headache Research Unit, University of Liège, Department of Neurology-Citadelle Hospital, Boulevard du Douzième de Ligne, 1-400 Liège, Belgium
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79–04100 Latina, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79–04100 Latina, Italy
- IRCCS – Neuromed, Via Atinense, 18-86077 Pozzilli, (IS) Italy
| |
Collapse
|
70
|
Recent Insights in Migraine With Aura: A Narrative Review of Advanced Neuroimaging. Headache 2019; 59:637-649. [DOI: 10.1111/head.13512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
|
71
|
Chong CD, Schwedt TJ, Hougaard A. Brain functional connectivity in headache disorders: A narrative review of MRI investigations. J Cereb Blood Flow Metab 2019; 39:650-669. [PMID: 29154684 PMCID: PMC6446420 DOI: 10.1177/0271678x17740794] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is used to interrogate the functional connectivity and network organization amongst brain regions. Functional connectivity is determined by measuring the extent of synchronization in the spontaneous fluctuations of blood oxygenation level dependent (BOLD) signal. Here, we review current rs-fMRI studies in headache disorders including migraine, trigeminal autonomic cephalalgias, and medication overuse headache. We discuss (1) brain network alterations that are shared amongst the different headache disorders and (2) network abnormalities distinct to each headache disorder. In order to focus the section on migraine, the headache disorder that has been most extensively studied, we chose to include articles that interrogated functional connectivity: (i) during the attack phase; (ii) in migraine patients with aura compared to migraine patients without aura; and (iii) of regions within limbic, sensory, motor, executive and default mode networks and those which participate in multisensory integration. The results of this review show that headache disorders are associated with atypical functional connectivity of regions associated with pain processing as well as atypical functional connectivity of multiple core resting state networks such as the salience, sensorimotor, executive, attention, limbic, visual, and default mode networks.
Collapse
Affiliation(s)
| | - Todd J Schwedt
- 1 Department of Neurology, Mayo Clinic, Arizona, AZ, USA
| | - Anders Hougaard
- 2 Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
72
|
Does the migraine attack start in the cortex and is the cortex critical in the migraine process? Neurol Sci 2019; 40:31-37. [DOI: 10.1007/s10072-019-03838-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
73
|
Colon E, Ludwick A, Wilcox SL, Youssef AM, Danehy A, Fair DA, Lebel AA, Burstein R, Becerra L, Borsook D. Migraine in the Young Brain: Adolescents vs. Young Adults. Front Hum Neurosci 2019; 13:87. [PMID: 30967767 PMCID: PMC6438928 DOI: 10.3389/fnhum.2019.00087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Migraine is a disease that peaks in late adolescence and early adulthood. The aim of this study was to evaluate age-related brain changes in resting state functional connectivity (rs-FC) in migraineurs vs. age-sex matched healthy controls at two developmental stages: adolescence vs. young adulthood. The effect of the disease was assessed within each developmental group and age- and sex-matched healthy controls and between developmental groups (migraine-related age effects). Globally the within group comparisons indicated more widespread abnormal rs-FC in the adolescents than in the young adults and more abnormal rs-FC associated with sensory networks in the young adults. Direct comparison of the two groups showed a number of significant changes: (1) more connectivity changes in the default mode network in the adolescents than in the young adults; (2) stronger rs-FC in the cerebellum network in the adolescents in comparison to young adults; and (3) stronger rs-FC in the executive and sensorimotor network in the young adults. The duration and frequency of the disease were differently associated with baseline intrinsic connectivity in the two groups. fMRI resting state networks demonstrate significant changes in brain function at critical time point of brain development and that potentially different treatment responsivity for the disease may result.
Collapse
Affiliation(s)
- Elisabeth Colon
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Allison Ludwick
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sophie L Wilcox
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrew M Youssef
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Amy Danehy
- Department of Radiology, Boston Children's Hospital, Boston, MA, United States
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Alyssa A Lebel
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Pediatric Headache Program, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Waltham, MA, United States.,Department of Neurology, Boston Children's Hospital, Waltham, MA, United States
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lino Becerra
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Pediatric Headache Program, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Waltham, MA, United States.,Department of Neurology, Boston Children's Hospital, Waltham, MA, United States
| |
Collapse
|
74
|
Hayne DP, Martin PR. Relating Photophobia, Visual Aura, and Visual Triggers of Headache and Migraine. Headache 2019; 59:430-442. [PMID: 30737782 DOI: 10.1111/head.13486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study investigated a potential association between visual factors and symptoms related to migraine. It was predicted that photophobia and visual aura would be positively associated with interictal light sensitivity and visual headache triggers (flicker, glare, and eyestrain), and that these 2 visual symptoms would also be associated. BACKGROUND Previous studies have found independent neurophysiological associations between several visual factors and symptoms related to headache disorders. Many of these connections appear to be associated with increased cortical hypersensitivity, a phenomenon that might be in part due to repeated avoidance and reduced tolerance to triggers. If true, and if associations between visual factors and symptoms can be established, this may have implications for an exposure-based treatment for migraine symptoms. METHODS Four hundred and ninety-one participants (411 female, 80 male) were recruited through Griffith University (AUS), Headache Australia, Pain Australia, and through social media. Participants were grouped based on the presence of headache disorder symptoms and the presence or absence of photophobia and/or visual aura. A cross-sectional online survey design was utilized to gather information pertaining to interictal light sensitivity, visual triggers, and visual symptoms. RESULTS With respect to interictal light sensitivity and photophobia, a significant difference (P < .001, eta squared [η2 ] = 0.084) was found between the 3 groups, where headache disorder participants with photophobia (group A1; mean [M] = 2.5, standard deviation [SD] = 0.97) reported significantly greater light sensitivity than participants with headache disorder and no photophobia (A2; M = 1.68, SD = 0.62) and control group participants (A3; M = 1.82, SD = 0.85). This pattern was repeated for participants reporting flicker as a headache trigger (P < .001, η2 = 0.061), with group A1 (M = 2.45, SD = 1.24) significantly higher than groups A2 (M = 1.68, SD = 0.83) and A3 (M = 1.68, SD = 0.89), and was also seen for glare as a headache trigger (P < .001, η2 = 0.092), with group A1 (M = 2.92, SD = 0.96) significantly higher than A2 (M = 2.31, SD = 0.89) and A3 (M = 2.09, SD = 0.93). This pattern of results was not replicated for headache disorder participants with and without visual aura. A significant association (P < .001) was found between photophobia and visual aura in headache disorder participants based on a chi-square test of independence, with 86/136 participants reporting either both or neither visual symptom. CONCLUSIONS This study supports a link between certain visual phenomena in headache disorder populations, and supports future research into exposure-based treatments for migraine symptoms.
Collapse
Affiliation(s)
- Daniel P Hayne
- School of Psychology, University of New England, Armidale, Australia.,School of Applied Psychology, Griffith University, Mt Gravatt, Australia
| | - Paul R Martin
- Research School of Psychology, The Australian National University, Canberra, Australia
| |
Collapse
|
75
|
O'Hare L. Temporal Integration of Motion Streaks in Migraine. Vision (Basel) 2018; 2:E27. [PMID: 31735890 PMCID: PMC6836222 DOI: 10.3390/vision2030027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022] Open
Abstract
Migraine is associated with differences in visual perception, specifically, deficits in the perception of motion. Migraine groups commonly show poorer performance (higher thresholds) on global motion tasks compared to control groups. Successful performance on a global motion task depends on several factors, including integrating signals over time. A "motion streak" task was used to investigate specifically integration over time in migraine and control groups. The motion streak effect depends on the integration of a moving point over time to create the illusion of a line, or "streak". There was evidence of a slower optimum speed for eliciting the motion streak effect in migraine compared to control groups, suggesting temporal integration is different in migraine. In addition, performance on the motion streak task showed a relationship with headache frequency.
Collapse
Affiliation(s)
- Louise O'Hare
- School of Psychology, University of Lincoln, Lincoln LN6 7TS, UK
| |
Collapse
|
76
|
Russo A, Silvestro M, Tessitore A, Tedeschi G. Advances in migraine neuroimaging and clinical utility: from the MRI to the bedside. Expert Rev Neurother 2018; 18:533-544. [PMID: 29883214 DOI: 10.1080/14737175.2018.1486708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION In current migraine clinical practice, no specific diagnostic investigations are available and therefore the diagnosis is an eminently clinical process where instrumental examinations may have a part to exclude possible causes of secondary headaches. While migraine clinical phenotype has been widely characterized, migraine pathophysiology has still a gap that might be partly bridged by structural and functional neuroimaging investigations. Areas covered: This article aims to review the recent advances in functional neuroimaging, the consequent progress in the knowledge of migraine pathophysiology and their putative application and impact in the clinical setting. A comprehensive review was conducted of PubMed citations by entering the key word 'MRI' combined with 'migraine' AND/OR 'headache.' Other key words included 'gray matter' OR 'white matter,' 'structural' OR 'functional.' The only restriction was English-language publication. The abstracts of all articles meeting these criteria were reviewed, and full texts were examined for relevant references. Expert commentary: Advanced magnetic resonance imaging (MRI) techniques are tremendously improving our knowledge about brain abnormalities in migraine patients. However, advanced MRI could nowadays overcome the limits linked to the clinicians' judgment through the identification of objectively measurable neuroimaging findings (quantitative biomarkers) concerning the diagnosis, the prognosis and 'tailored' therapeutic-care pathways.
Collapse
Affiliation(s)
- Antonio Russo
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,b MRI Research Center SUN-FISM , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Marcello Silvestro
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Alessandro Tessitore
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,b MRI Research Center SUN-FISM , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Gioacchino Tedeschi
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,b MRI Research Center SUN-FISM , University of Campania "Luigi Vanvitelli" , Naples , Italy.,c Institute for Diagnosis and Care ''Hermitage Capodimonte'', Neurology Department , Naples , Italy
| |
Collapse
|
77
|
The conundrum of relationship between pain and visual pathway in migraine with aura. Neurol Sci 2018; 39:75-76. [DOI: 10.1007/s10072-018-3347-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
78
|
Russo A, Silvestro M, Tessitore A, Tedeschi G. Functional Neuroimaging Biomarkers in Migraine: Diagnostic, Prognostic and Therapeutic Implications. Curr Med Chem 2018; 26:6236-6252. [PMID: 29623825 DOI: 10.2174/0929867325666180406115427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND In current migraine clinical practice, conventional neuroimaging examinations are often sought to exclude possible causes of secondary headaches or migraineassociated disorders. Contrariwise, although advanced Magnetic Resonance Imaging (MRI) has improved tremendously our understanding of human brain processes in migraine patients, to the state of the art they have not superseded the conventional neuroimaging techniques in the migraine clinical setting. METHODS A comprehensive review was conducted of PubMed citations by entering the keyword "marker" and/or "biomarker" combined with "migraine" and/or "headache". Other keywords included "imaging" or "neuroimaging", "structural" or "functional". The only restriction was English-language publication. The abstracts of all articles meeting these criteria were reviewed, and the full text was retrieved and examined for relevant references. RESULTS Several authors tried to identify imaging biomarkers able to identify different migraine phenotypes or, even better, to follow-up the same migraine patients during the course of the disease, to predict the evolution into more severe phenotypes and, finally, the response to specific treatment. CONCLUSION The identification of diagnostic, prognostic and therapeutic advanced neuroimaging biomarkers in the migraine clinical setting, in order to approach to patients in a more and more rational and "tailored" way, is extremely intriguing and futuristic. Unfortunately, reliable and robust neuroimaging biomarkers are still lacking for migraine, probably due to both not completely understood pathogenesis and clinical and neuroimaging heterogeneity. Although further longitudinal advanced neuroimaging studies, aimed to identify effective neuroimaging biomarkers, are needed, this review aims to collect the main and most recent works on this topic.
Collapse
Affiliation(s)
- Antonio Russo
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcello Silvestro
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute for Diagnosis and Care "Hermitage Capodimonte", Naples, Italy
| |
Collapse
|
79
|
Abstract
The visual system is involved in different ways in migraine. Visual auras are the most common form of migraine aura. It may consist of positive or negative visual symptoms and cortical spreading depression is felt to be the phenomenon that underlies it. Even in migraine without aura, vision it is not totally excluded given that one of the major criteria for the diagnosis of migraine is photophobia. In persistent visual aura, patients refer symptoms defined as visual snow and television static. In retinal migraine unilateral decreased vision or complete visual loss occurs. Ophthalmoplegic migraine is characterized by palsy of one among the three ocular motor nerves. Migraine visual aura, particularly when occurring without headache, is a diagnosis of exclusion. Imaging studies and laboratory tests should exclude neurologic disease, included seizures and central nervous system tumor, ocular pathologies, carotid or cardiac disease, thrombosis and connective tissue disease.
Collapse
Affiliation(s)
- Stefania Bianchi Marzoli
- Neuro-ophthalmology Service and Ocular Electrophysiology Laboratory, Scientific Institute Capitanio Hospital, IRCCS Istituto Auxologico Italiano, via Mercalli, 28, 20122, Milan, Italy.
| | - Alessandra Criscuoli
- Neuro-ophthalmology Service and Ocular Electrophysiology Laboratory, Scientific Institute Capitanio Hospital, IRCCS Istituto Auxologico Italiano, via Mercalli, 28, 20122, Milan, Italy
| |
Collapse
|
80
|
The pathophysiology of migraine: implications for clinical management. Lancet Neurol 2018; 17:174-182. [DOI: 10.1016/s1474-4422(17)30435-0] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022]
|
81
|
Szabó N, Faragó P, Király A, Veréb D, Csete G, Tóth E, Kocsis K, Kincses B, Tuka B, Párdutz Á, Szok D, Tajti J, Vécsei L, Kincses ZT. Evidence for Plastic Processes in Migraine with Aura: A Diffusion Weighted MRI Study. Front Neuroanat 2018; 11:138. [PMID: 29387002 PMCID: PMC5776127 DOI: 10.3389/fnana.2017.00138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/26/2017] [Indexed: 01/03/2023] Open
Abstract
Background: Formerly white matter abnormalities in a mixed group of migraine patients with and without aura were shown. Here, we aimed to explore white matter alterations in a homogeneous group of migraineurs with aura and to delineate possible relationships between white matter changes and clinical variables. Methods: Eighteen patients with aura, 25 migraine patients without aura and 28 controls were scanned on a 1.5T MRI scanner. Diffusivity parameters of the white matter were estimated and compared between patients’ groups and controls using whole-brain tract-based spatial statistics. Results: Decreased radial diffusivity (p < 0.036) was found bilaterally in the parieto-occipital white matter, the corpus callosum, and the cingular white matter of migraine with aura (MwA) patients compared to controls. Migraine without aura (MwoA) patients showed no alteration compared to controls. MwA compared to MwoA showed increased fractional anisotropy (p < 0.048) in the left parieto-occipital white matter. In MwA a negative correlation was found between axial diffusivity and disease duration in the left superior longitudinal fascicle (left parieto-occipital region) and in the left corticospinal tract (p < 0.036) and with the number of the attacks in the right superior longitudinal fascicle (p < 0.048). Conclusion: We showed for the first time that there are white matter microstructural differences between these two subgroups of migraine and hence it is important to handle the two groups separately in further researches. We propose that degenerative and maladaptive plastic changes coexist in the disease and the diffusion profile is a result of these processes.
Collapse
Affiliation(s)
- Nikoletta Szabó
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,Central European Institute of Technology, Brno, Czechia
| | - Péter Faragó
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,Central European Institute of Technology, Brno, Czechia
| | - András Király
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,Central European Institute of Technology, Brno, Czechia
| | - Dániel Veréb
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gergő Csete
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Eszter Tóth
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Krisztián Kocsis
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Bálint Kincses
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | | | - Árpád Párdutz
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Délia Szok
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - János Tajti
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Zsigmond T Kincses
- Neuroimaging Research Group, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| |
Collapse
|
82
|
Zhang J, Su J, Wang M, Zhao Y, Zhang QT, Yao Q, Lu H, Zhang H, Li GF, Wu YL, Liu YS, Liu FD, Zhuang MT, Shi YH, Hou TY, Zhao R, Qiao Y, Li J, Liu JR, Du X. The Posterior Insula Shows Disrupted Brain Functional Connectivity in Female Migraineurs Without Aura Based on Brainnetome Atlas. Sci Rep 2017; 7:16868. [PMID: 29203874 PMCID: PMC5715029 DOI: 10.1038/s41598-017-17069-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Long-term headache attacks may cause human brain network reorganization in patients with migraine. In the current study, we calculated the topologic properties of functional networks based on the Brainnetome atlas using graph theory analysis in 29 female migraineurs without aura (MWoA) and in 29 female age-matched healthy controls. Compared with controls, female MWoA exhibited that the network properties altered, and the nodal centralities decreased/increased in some brain areas. In particular, the right posterior insula and the left medial superior occipital gyrus of patients exhibited significantly decreased nodal centrality compared with healthy controls. Furthermore, female MWoA exhibited a disrupted functional network, and notably, the two sub-regions of the right posterior insula exhibited decreased functional connectivity with many other brain regions. The topological metrics of functional networks in female MWoA included alterations in the nodal centrality of brain regions and disrupted connections between pair regions primarily involved in the discrimination of sensory features of pain, pain modulation or processing and sensory integration processing. In addition, the posterior insula decreased the nodal centrality, and exhibited disrupted connectivity with many other brain areas in female migraineurs, which suggests that the posterior insula plays an important role in female migraine pathology.
Collapse
Affiliation(s)
- Jilei Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Jingjing Su
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Mengxing Wang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Ying Zhao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qi-Ting Zhang
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qian Yao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haifeng Lu
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Hui Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Ge-Fei Li
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Lan Wu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Sheng Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Feng-Di Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Mei-Ting Zhuang
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan-Hui Shi
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tian-Yu Hou
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rong Zhao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuan Qiao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Jian-Ren Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
83
|
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of the most recent and significant functional neuroimaging studies which have clarified the complex mechanisms underlying migraine pathophysiology. RECENT FINDINGS The recent data allow us to overcome the concept of a migraine generator suggesting that functional networks abnormalities may lead to changes in different brain area activities and consequent reduced migraine thresholds susceptibility, likely associated with higher migraine severity and burden. Although functional magnetic resonance imaging studies have allowed recognition of several migraine mechanisms, its pathophysiology is not completely understood and is still a matter of research. Nevertheless, in recent years, functional magnetic resonance imaging studies have allowed us to implement our knowledge of migraine pathophysiology. The pivotal role of both the brainstem and the hippocampus in the first phase of a migraine attack, the involvement of limbic pathway in the constitution of a migrainous pain network, the disrupted functional connectivity in cognitive brain networks, as well as the abnormal function of the visual network in patients with migraine with aura are the main milestones in migraine imaging achieved through functional imaging advances. We believe that further studies based on combined functional and structural techniques and the investigation of the different phases of migraine cycle may represent an efficient methodological approach for comprehensively looking into the migrainous brain secrets.
Collapse
|
84
|
Wang J, Zhang B, Shen C, Zhang J, Wang W. Headache symptoms from migraine patients with and without aura through structure-validated self-reports. BMC Neurol 2017; 17:193. [PMID: 29025401 PMCID: PMC5639773 DOI: 10.1186/s12883-017-0973-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/09/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Headache symptoms self-reported by migraine patients are largely congruent with the clinician-used diagnostic criteria, but not always so. Patients' self-reports of headache symptoms might offer additional clues to characterize migraine with (MA) and without (MO) aura more precisely. METHODS Firstly, we invited 324 participants with a life-long headache attack to answer an item-matrix measuring symptoms of primary headaches, then we performed both exploratory and confirmatory factor analyses to their answers and refined a headache symptom questionnaire. Secondly, we applied this questionnaire to 28 MA and 52 MO patients. RESULTS In participants with a life-long headache, we refined a 27-item, structure-validated headache symptom questionnaire, with four factors (scales) namely the Somatic /Aura Symptoms, Gastrointestinal and Autonomic Symptoms, Tightness and Location Features, and Prodromal/Aggravating Symptoms. Further, we found that MA patients reported higher than did MO patients on the Somatic/Aura Symptoms and Tightness and Location Features scales. CONCLUSIONS Compared to MO, MA was conferred with more prominent tightness and location features besides its higher somatic or aura symptoms. Patients' self-reports of headache symptoms might offer more clues to distinguish two types of migraine besides their clinician-defined criteria.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Clinical Psychology and Psychiatry/School of Public Health, Zhejiang University College of Medicine, Hangzhou, China
| | - Bingren Zhang
- Department of Clinical Psychology and Psychiatry/School of Public Health, Zhejiang University College of Medicine, Hangzhou, China
| | - Chanchan Shen
- Department of Clinical Psychology and Psychiatry/School of Public Health, Zhejiang University College of Medicine, Hangzhou, China
| | - Jinhua Zhang
- Department of Neurology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Wei Wang
- Department of Clinical Psychology and Psychiatry/School of Public Health, Zhejiang University College of Medicine, Hangzhou, China
| |
Collapse
|
85
|
de Tommaso M, Trotta G, Vecchio E, Ricci K, Siugzdaite R, Stramaglia S. Brain networking analysis in migraine with and without aura. J Headache Pain 2017; 18:98. [PMID: 28963615 PMCID: PMC5622013 DOI: 10.1186/s10194-017-0803-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/21/2017] [Indexed: 01/03/2023] Open
Abstract
Background To apply effective connectivity by means of nonlinear Granger Causality (GC) and brain networking analysis to basal EEG and under visual stimulation by checkerboard gratings with 0.5 and 2.0 cpd as spatial frequency in migraine with aura (MA) and without aura (MO), and to compare these findings with Blood Oxygen Level Dependent (BOLD) signal changes. Methods Nineteen asymptomatic MA and MO patients and 11 age and sex matched controls (C) were recorded by 65 EEG channels. The same visual stimulation was employed to evaluate BOLD signal changes in a subgroup of MA and MO. The GC and brain networking were applied to EEG signals. Results A different pattern of reduced vs increased GC respectively in MO and MA patients, emerged in resting state. During visual stimulation, both MA and MO showed increased information transfer toward the fronto-central regions, while MA patients showed a segregated cluster of connections in the posterior regions, and an increased bold signal in the visual cortex, more evident at 2 cpd spatial frequency. Conclusions The wealth of information exchange in the parietal-occipital regions indicates a peculiar excitability of the visual cortex, a pivotal condition for the manifestation of typical aura symptoms. Electronic supplementary material The online version of this article (10.1186/s10194-017-0803-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina de Tommaso
- Applied Neurophysiology and Pain Unit, Basic Medical, Neuroscience and Sensory System -SMBNOS- Department, Bari Aldo Moro University, Giovanni XXIII Building, Policlinico General Hospital, Via Amendola 207 A, 70124, Bari, Italy.
| | | | - Eleonora Vecchio
- Applied Neurophysiology and Pain Unit, Basic Medical, Neuroscience and Sensory System -SMBNOS- Department, Bari Aldo Moro University, Giovanni XXIII Building, Policlinico General Hospital, Via Amendola 207 A, 70124, Bari, Italy
| | - Katia Ricci
- Applied Neurophysiology and Pain Unit, Basic Medical, Neuroscience and Sensory System -SMBNOS- Department, Bari Aldo Moro University, Giovanni XXIII Building, Policlinico General Hospital, Via Amendola 207 A, 70124, Bari, Italy
| | - R Siugzdaite
- Data Analysis Department, Faculty of Psychological and Pedagogical Sciences 1, Ghent University, Ghent, Belgium
| | | |
Collapse
|
86
|
Russo A, Tessitore A, Bruno A, Siciliano M, Marcuccio L, Silvestro M, Tedeschi G. Migraine Does Not Affect Pain Intensity Perception: A Cross-Sectional Study. PAIN MEDICINE 2017; 19:1657-1666. [DOI: 10.1093/pm/pnx174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Antonio Russo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
- MRI Research Center SUN-FISM, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
- MRI Research Center SUN-FISM, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Antonio Bruno
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
| | - Mattia Siciliano
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
| | - Laura Marcuccio
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
- MRI Research Center SUN-FISM, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Marcello Silvestro
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
- MRI Research Center SUN-FISM, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Institute for Diagnosis and Care “Hermitage Capodimonte,” Naples, Italy
| |
Collapse
|
87
|
Assessment of gray and white matter structural alterations in migraineurs without aura. J Headache Pain 2017; 18:74. [PMID: 28733941 PMCID: PMC5520823 DOI: 10.1186/s10194-017-0783-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/13/2017] [Indexed: 01/03/2023] Open
Abstract
Background Migraine constitute a disorder characterized by recurrent headaches, and have a high prevalence, a high socio-economic burden and severe effects on quality of life. Our previous fMRI study demonstrated that some brain regions are functional alterations in migraineurs. As the function of the human brain is related to its structure, we further investigated white and gray matter structural alterations in migraineurs. Methods In current study, we used surface-based morphometry, voxel-based morphometry and diffusion tensor imaging analyses to detect structural alterations of the white matter and gray matter in 32 migraineurs without aura compared with 32 age- and gender-matched healthy controls. Results We found that migraineurs without aura exhibited significantly increased gray matter volume in the bilateral cerebellar culmen, increased cortical thickness in the lateral occipital-temporal cortex, decreased cortical thickness in the right insula, increased gyrification index in left postcentral gyrus, superior parietal lobule and right lateral occipital cortex, and decreased gyrification index in the left rostral middle frontal gyrus compared with controls. No significant change in white matter microstructure was found in DTI analyses. Conclusion The significantly altered gray matter brain regions were known to be associated with sensory discrimination of pain, multi-sensory integration and nociceptive information processing and were consistent with our previous fMRI study, and may be involved in the pathological mechanism of migraine without aura.
Collapse
|
88
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1141] [Impact Index Per Article: 142.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
89
|
Abnormal dynamics of cortical resting state functional connectivity in chronic headache patients. Magn Reson Imaging 2017; 36:56-67. [DOI: 10.1016/j.mri.2016.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 01/07/2023]
|
90
|
Russo A, Conte F, Marcuccio L, Corbo D, Caiazzo G, Giordano A, Conforti R, Esposito F, Tessitore A, Tedeschi G. P020. No evidence of microstructural changes in visual network in patients with migraine with aura: a diffusion tensor tract-based spatial statistic (TBSS) study. J Headache Pain 2017; 16:A163. [PMID: 28132225 PMCID: PMC4715149 DOI: 10.1186/1129-2377-16-s1-a163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Antonio Russo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy. .,MRI Research Center SUN-FISM, Second University of Naples, Naples, Italy. .,Institute for Diagnosis and Care "Hermitage Capodimonte", Naples, Italy.
| | - Francesca Conte
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Laura Marcuccio
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Daniele Corbo
- MRI Research Center SUN-FISM, Second University of Naples, Naples, Italy
| | - Giuseppina Caiazzo
- MRI Research Center SUN-FISM, Second University of Naples, Naples, Italy
| | - Alfonso Giordano
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy.,MRI Research Center SUN-FISM, Second University of Naples, Naples, Italy
| | - Renata Conforti
- Neuroradiology Unit, Department of Clinical and Experimental Medicine and Surgery, Second University of Naples, Naples, Italy
| | - Fabrizio Esposito
- Department of Medicine and Surgery, University of Salerno, Baronissi, SA, Italy
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy.,MRI Research Center SUN-FISM, Second University of Naples, Naples, Italy.,Institute for Diagnosis and Care "Hermitage Capodimonte", Naples, Italy
| |
Collapse
|
91
|
Faragó P, Tuka B, Tóth E, Szabó N, Király A, Csete G, Szok D, Tajti J, Párdutz Á, Vécsei L, Kincses ZT. Interictal brain activity differs in migraine with and without aura: resting state fMRI study. J Headache Pain 2017; 18:8. [PMID: 28124204 PMCID: PMC5267588 DOI: 10.1186/s10194-016-0716-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/20/2016] [Indexed: 01/03/2023] Open
Abstract
Background Migraine is one of the most severe primary headache disorders. The nature of the headache and the associated symptoms during the attack suggest underlying functional alterations in the brain. In this study, we examined amplitude, the resting state fMRI fluctuation in migraineurs with and without aura (MWA, MWoA respectively) and healthy controls. Methods Resting state functional MRI images and T1 high-resolution images were acquired from all participants. For data analysis we compared the groups (MWA-Control, MWA-MWoA, MWoA-Control). The resting state networks were identified by MELODIC. The mean time courses of the networks were identified for each participant for all networks. The time-courses were decomposed into five frequency bands by discrete wavelet decomposition. The amplitude of the frequency-specific activity was compared between groups. Furthermore, the preprocessed resting state images were decomposed by wavelet analysis into five specific frequency bands voxel-wise. The voxel-wise amplitudes were compared between groups by non-parametric permutation test. Results In the MWA-Control comparison the discrete wavelet decomposition found alterations in the lateral visual network. Higher activity was measured in the MWA group in the highest frequency band (0.16–0.08 Hz). In case of the MWA-MWoA comparison all networks showed higher activity in the 0.08–0.04 Hz frequency range in MWA, and the lateral visual network in in higher frequencies. In MWoA-Control comparison only the default mode network revealed decreased activity in MWoA group in the 0.08–0.04 Hz band. The voxel-wise frequency specific analysis of the amplitudes found higher amplitudes in MWA as compared to MWoA in the in fronto-parietal regions, anterior cingulate cortex and cerebellum. Discussion The amplitude of the resting state fMRI activity fluctuation is higher in MWA than in MWoA. These results are in concordance with former studies, which found cortical hyperexcitability in MWA.
Collapse
Affiliation(s)
- Péter Faragó
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Bernadett Tuka
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Eszter Tóth
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - András Király
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Gergő Csete
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Délia Szok
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - János Tajti
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Árpád Párdutz
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Zsigmond Tamás Kincses
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary. .,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
92
|
Zhang J, Su J, Wang M, Zhao Y, Yao Q, Zhang Q, Lu H, Zhang H, Wang S, Li GF, Wu YL, Liu FD, Shi YH, Li J, Liu JR, Du X. Increased default mode network connectivity and increased regional homogeneity in migraineurs without aura. J Headache Pain 2016; 17:98. [PMID: 27771875 PMCID: PMC5075323 DOI: 10.1186/s10194-016-0692-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/15/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The precuneus/posterior cingulate cortex, which has been associated with pain sensitivity, plays a pivotal role in the default mode network. However, information regarding migraine-related alterations in resting-state brain functional connectivity in the default mode network and in local regional spontaneous neuronal activity is not adequate. METHODS This study used functional magnetic resonance imaging to acquire resting-state scans in 22 migraineurs without aura and in 22 healthy matched controls. Independent component analysis, a data-driven method, was used to calculate the resting-state functional connectivity of the default mode network in the patient and healthy control groups. Regional homogeneity (ReHo) was used to analyse the local features of spontaneous resting-state brain activity in the migraineurs without aura. RESULTS Compared with the healthy controls, migraineurs without aura showed increased functional connectivity in the left precuneus/posterior cingulate cortex within the default mode network and significant increase in ReHo values in the bilateral precuneus/posterior cingulate cortex, left pons and trigeminal nerve entry zone. In addition, functional connectivity was decreased between the areas with abnormal ReHo (using the peaks in the precuneus/posterior cingulate cortex) and other brain areas. CONCLUSIONS The abnormalities in the precuneus/posterior cingulate cortex suggest that migraineurs without aura may exhibit information transfer and multimodal integration dysfunction and that pain sensitivity and pian processing may also be affected.
Collapse
Affiliation(s)
- Jilei Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, People's Republic of China
| | - Jingjing Su
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Mengxing Wang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, People's Republic of China
| | - Ying Zhao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Qian Yao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Qiting Zhang
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Haifeng Lu
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, People's Republic of China
| | - Hui Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, People's Republic of China
| | - Shuo Wang
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Ge-Fei Li
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yi-Lan Wu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Feng-Di Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yan-Hui Shi
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, People's Republic of China
| | - Jian-Ren Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
93
|
Mathur VA, Moayedi M, Keaser ML, Khan SA, Hubbard CS, Goyal M, Seminowicz DA. High Frequency Migraine Is Associated with Lower Acute Pain Sensitivity and Abnormal Insula Activity Related to Migraine Pain Intensity, Attack Frequency, and Pain Catastrophizing. Front Hum Neurosci 2016; 10:489. [PMID: 27746728 PMCID: PMC5040752 DOI: 10.3389/fnhum.2016.00489] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022] Open
Abstract
Migraine is a pain disorder associated with abnormal brain structure and function, yet the effect of migraine on acute pain processing remains unclear. It also remains unclear whether altered pain-related brain responses and related structural changes are associated with clinical migraine characteristics. Using fMRI and three levels of thermal stimuli (non-painful, mildly painful, and moderately painful), we compared whole-brain activity between 14 migraine patients and 14 matched controls. Although, there were no significant differences in pain thresholds nor in pre-scan pain ratings to mildly painful thermal stimuli, patients did have aberrant suprathreshold nociceptive processing. Brain imaging showed that, compared to controls, patients had reduced activity in pain modulatory regions including left dorsolateral prefrontal, posterior parietal, and middle temporal cortices and, at a lower-threshold, greater activation in the right mid-insula to moderate pain vs. mild pain. We also found that pain-related activity in the insula was associated with clinical variables in patients, including associations between: bilateral anterior insula and pain catastrophizing (PCS); bilateral anterior insula and contralateral posterior insula and migraine pain intensity; and bilateral posterior insula and migraine frequency at a lower-threshold. PCS and migraine pain intensity were also negatively associated with activity in midline regions including posterior cingulate and medial prefrontal cortices. Diffusion tensor imaging revealed a negative correlation between fractional anisotropy (a measure of white matter integrity; FA) and migraine duration in the right mid-insula and a positive correlation between left mid-insula FA and PCS. In sum, while patients showed lower sensitivity to acute noxious stimuli, the neuroimaging findings suggest enhanced nociceptive processing and significantly disrupted modulatory networks, particularly involving the insula, associated with indices of disease severity in migraine.
Collapse
Affiliation(s)
- Vani A Mathur
- Department of Neural and Pain Sciences, University of Maryland School of DentistryBaltimore, MD, USA; Department of Psychology, Texas A&M UniversityCollege Station, TX, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Massieh Moayedi
- Faculty of Dentistry, University of Toronto Toronto, ON, Canada
| | - Michael L Keaser
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry Baltimore, MD, USA
| | - Shariq A Khan
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry Baltimore, MD, USA
| | - Catherine S Hubbard
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry Baltimore, MD, USA
| | - Madhav Goyal
- Faculty of Dentistry, University of TorontoToronto, ON, Canada; Department of Medicine at Johns Hopkins, Division of General Internal Medicine, Johns Hopkins School of MedicineBaltimore, MD, USA
| | - David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of DentistryBaltimore, MD, USA; Center to Advance Chronic Pain Research, University of Maryland BaltimoreBaltimore, MD, USA
| |
Collapse
|
94
|
Schulte LH, May A. Functional Neuroimaging in Migraine: Chances and Challenges. Headache 2016; 56:1474-1481. [DOI: 10.1111/head.12944] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Laura H. Schulte
- Department of Systems Neuroscience and Headache Outpatient Department; University Medical Center Eppendorf; Hamburg Germany
| | - Arne May
- Department of Systems Neuroscience and Headache Outpatient Department; University Medical Center Eppendorf; Hamburg Germany
| |
Collapse
|
95
|
Lovati C, Giani L, Mele F, Sinelli A, Tien TT, Preziosa G, Mariani C. Brain plasticity and migraine transformation: fMRI evidences. Expert Rev Neurother 2016; 16:1413-1425. [PMID: 27388277 DOI: 10.1080/14737175.2016.1208565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Chronification transforms episodic migraine into the pathologic chronic form. Biological characteristics of the migrainous brain progressively change, in predisposed subjects, under the repetition of external and internal stimuli. Modifications involve neurons, synapses, neurotransmitters, receptors, connectivity and pain control. f-MRI is a promising way to explore the still unclear biology of this progression. Areas covered: Data included were obtained from the most relevant and updated works available on PubMed about this topic. We summarized the pathophysiology of migraine chronification and of brain plasticity, and we described the different fMRI techniques and their main evidences about migraine transformation. Expert commentary: Functional-MRI has revealed many aspects regarding the peculiarity of the migrainous brain and its tendency toward chronicity but a series of questions are still open: What are the hallmarks of the predisposition to chronification? Which elements are the cause and which the consequence of this process?
Collapse
Affiliation(s)
- Carlo Lovati
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | - Luca Giani
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | - Francesco Mele
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | | | | | - Giulia Preziosa
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | - Claudio Mariani
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| |
Collapse
|
96
|
|
97
|
Wu D, Zhou Y, Xiang J, Tang L, Liu H, Huang S, Wu T, Chen Q, Wang X. Multi-frequency analysis of brain connectivity networks in migraineurs: a magnetoencephalography study. J Headache Pain 2016; 17:38. [PMID: 27090418 PMCID: PMC4835413 DOI: 10.1186/s10194-016-0636-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/12/2016] [Indexed: 12/26/2022] Open
Abstract
Background Although alterations in resting-state neural network have been previously reported in migraine using functional MRI, whether this atypical neural network is frequency dependent remains unknown. The aim of this study was to investigate the alterations of the functional connectivity of neural network and their frequency specificity in migraineurs as compared with healthy controls by using magnetoencephalography (MEG) and concepts from graph theory. Methods Twenty-three episodic migraine patients with and without aura, during the interictal period, and 23 age- and gender-matched healthy controls at resting state with eye-closed were studied with MEG. Functional connectivity of neural network from low (0.1–1 Hz) to high (80–250 Hz) frequency ranges was analyzed with topographic patterns and quantified with graph theory. Results The topographic patterns of neural network showed that the migraineurs had significantly increased functional connectivity in the slow wave (0.1–1 Hz) band in the frontal area as compared with controls. Compared with the migraineurs without aura (MwoA), the migraineurs with aura (MwA) had significantly increased functional connectivity in the theta (4–8 Hz) band in the occipital area. Graph theory analysis revealed that the migraineurs had significantly increased connection strength in the slow wave (0.1–1 Hz) band, increased path length in the theta (4–8 Hz) and ripple (80–250 Hz) bands, and increased clustering coefficient in the slow wave (0.1–1 Hz) and theta (4–8 Hz) bands. The clinical characteristics had no significant correlation with interictal MEG parameters. Conclusions Results indicate that functional connectivity of neural network in migraine is significantly impaired in both low- and high-frequency ranges. The alteration of neural network may imply that migraine is associated with functional brain reorganization.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yuchen Zhou
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45220, USA
| | - Lu Tang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Hongxing Liu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Shuyang Huang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Ting Wu
- MEG Center, Nanjing Brain Hospital, Nanjing, Jiangsu, 210029, China
| | - Qiqi Chen
- MEG Center, Nanjing Brain Hospital, Nanjing, Jiangsu, 210029, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|