51
|
Cao YW, Li WQ, Wan GX, Li YX, Du XM, Li YC, Li F. Correlation and prognostic value of SIRT1 and Notch1 signaling in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:97. [PMID: 25420528 PMCID: PMC4248440 DOI: 10.1186/s13046-014-0097-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/07/2014] [Indexed: 10/27/2023]
Abstract
BACKGROUND SIRT1 expression and Notch1 signaling have been implicated in tumorigenesis in many cancers, but their association with survival in breast cancer has not been determined. The purpose of this study was to assess the possible prognostic value of SIRT1, N1IC, and Snail expression in breast cancer patients. METHODS Immunohistochemistry was performed to examine the expression of SIRT1, N1IC, and Snail, and the combined expression of SIRT1 and N1IC, using tissue microarrays containing breast cancer tissue and matched adjacent normal breast tissue from 150 breast cancer patients. Survival analysis was carried out using the Kaplan-Meier method. Univariate and multivariate analysis were used to evaluate the prognostic value of SIRT1, N1IC, Snail and combined SIRT1/N1IC expression, in addition to other clinicopathological factors, including grade, lymph node status, disease stage, and estrogen, progesterone, and human epidermal growth factor receptor 2 receptor status in breast carcinoma patients. RESULTS SIRT1, N1IC, and Snail were all found to be highly expressed and an inverse correlation between SIRT1 and N1IC in breast cancer tissue. The three markers significantly correlated with lymph node status. Patients with low SIRT1 expression exhibited shorter overall survival (OS) and disease-free survival (DFS), and patients with combined low expression of SIRT1 and high expression of N1IC had the worse OS and DFS. Univariate and multivariate survival analysis revealed that low expression of SIRT1 and SIRT1-low/N1IC-high expression were independent prognostic factors for poor survival. CONCLUSIONS These results suggest that low expression of SIRT1 or the combined low expression of SIRT1 and high expression of N1IC could be used as indicators of poor prognosis, and may represent novel therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Yu-Wen Cao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Wen-Qin Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Guo-Xing Wan
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Yi-Xiao Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Xiao-Ming Du
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Yu-Cong Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Feng Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
52
|
Groeneweg JW, DiGloria CM, Yuan J, Richardson WS, Growdon WB, Sathyanarayanan S, Foster R, Rueda BR. Inhibition of notch signaling in combination with Paclitaxel reduces platinum-resistant ovarian tumor growth. Front Oncol 2014; 4:171. [PMID: 25072022 PMCID: PMC4083224 DOI: 10.3389/fonc.2014.00171] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/16/2014] [Indexed: 12/18/2022] Open
Abstract
Introduction: Ovarian cancer (OvCa) is the most lethal gynecologic malignancy in the United States because of chemoresistant recurrent disease. Our objective was to investigate the efficacy of inhibiting the Notch pathway with a γ-secretase inhibitor (GSI) in an OvCa patient-derived xenograft model as a single agent therapy and in combination with standard chemotherapy. Methods: Immunocompromised mice bearing xenografts derived from clinically platinum-sensitive human ovarian serous carcinomas were treated with vehicle, GSI (MRK-003) alone, paclitaxel and carboplatin (P/C) alone, or the combination of GSI and P/C. Mice bearing platinum-resistant xenografts were given GSI with or without paclitaxel. Gene transcript levels of the Notch pathway target Hes1 were analyzed using RT-PCR. Notch1 and Notch3 protein levels were evaluated. The Wilcoxon rank-sum test was used to assess significance between the different treatment groups. Results: Expression of Notch1 and 3 was variable. GSI alone decreased tumor growth in two of three platinum-sensitive ovarian tumors (p < 0.05), as well as in one of three platinum-sensitive tumors (p = 0.04). The combination of GSI and paclitaxel was significantly more effective than GSI alone and paclitaxel alone in all platinum-resistant ovarian tumors (all p < 0.05). The addition of GSI did not alter the effect of P/C in platinum-sensitive tumors. Interestingly, although the response of each tumor to chronic GSI exposure did not correlate with its endogenous level of Notch expression, GSI did negatively affect Notch signaling in an acute setting. Conclusion: Inhibiting the Notch signaling cascade with a GSI reduces primary human xenograft growth in vivo. GSI synergized with conventional cytotoxic chemotherapy only in the platinum-resistant OvCa models with single agent paclitaxel. These findings suggest inhibition of the Notch pathway in concert with taxane therapy may hold promise for treatment of platinum-resistant OvCa.
Collapse
Affiliation(s)
- Jolijn W Groeneweg
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital , Boston, MA , USA ; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School , Boston, MA , USA
| | - Celeste M DiGloria
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital , Boston, MA , USA
| | - Jing Yuan
- Merck Research Laboratories , Boston, MA , USA
| | - William S Richardson
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital , Boston, MA , USA
| | - Whitfield B Growdon
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital , Boston, MA , USA ; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School , Boston, MA , USA ; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital , Boston, MA , USA
| | | | - Rosemary Foster
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital , Boston, MA , USA ; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School , Boston, MA , USA ; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital , Boston, MA , USA
| | - Bo R Rueda
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital , Boston, MA , USA ; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School , Boston, MA , USA ; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital , Boston, MA , USA
| |
Collapse
|
53
|
Liu Y, Xing ZB, Wang SQ, Chen S, Liu YK, Li YH, Li YF, Wang YQ, Lu Y, Hu WN, Zhang JH. MDM2-MOF-H4K16ac axis contributes to tumorigenesis induced by Notch. FEBS J 2014; 281:3315-24. [PMID: 24898892 DOI: 10.1111/febs.12863] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Yan Liu
- College of Life Sciences; Hebei United University; Tangshan China
- Central Laboratory; Cancer Institute; Tangshan People's Hospital; China
| | - Zhao-Bin Xing
- College of Life Sciences; Hebei United University; Tangshan China
| | - Shu-Qing Wang
- Department of Nephrology; Kailuan General Hospital; Tangshan Hebei China
| | - Su Chen
- School of Life Sciences; Tongji University; Shanghai China
| | - Yan-Kun Liu
- Central Laboratory; Cancer Institute; Tangshan People's Hospital; China
| | - Yu-Hui Li
- Central Laboratory; Cancer Institute; Tangshan People's Hospital; China
| | - Yu-Feng Li
- Central Laboratory; Cancer Institute; Tangshan People's Hospital; China
| | - Ya-Qi Wang
- College of Life Sciences; Hebei United University; Tangshan China
- Central Laboratory; Cancer Institute; Tangshan People's Hospital; China
| | - Yang Lu
- First Hospital of Shi-Jia Zhuang City; China
| | - Wan-Ning Hu
- Central Laboratory; Cancer Institute; Tangshan People's Hospital; China
| | - Jing-Hua Zhang
- Central Laboratory; Cancer Institute; Tangshan People's Hospital; China
| |
Collapse
|
54
|
Kim SH, Singh SV. Mammary cancer chemoprevention by withaferin A is accompanied by in vivo suppression of self-renewal of cancer stem cells. Cancer Prev Res (Phila) 2014; 7:738-47. [PMID: 24824039 DOI: 10.1158/1940-6207.capr-13-0445] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Current dogma favors elimination of therapy-resistant cancer stem cells for chemoprevention of breast cancer. We showed recently that mammary cancer development in a transgenic mouse model (mouse mammary tumor virus-neu; MMTV-neu) was inhibited significantly upon treatment with withaferin A (WA), a steroidal lactone derived from a medicinal plant. Herein, we demonstrate that the mammary cancer prevention by WA is accompanied by in vivo suppression of breast cancer stem cells (bCSC). In vitro mammosphere formation was dose-dependently inhibited by WA treatment in MCF-7 and SUM159 human breast cancer cells. Other markers of bCSC, including aldehyde dehydrogenase 1 (ALDH1) activity and CD44(high)/CD24(low)/epithelial-specific antigen-positive (ESA+) fraction, were also decreased significantly in the presence of plasma achievable doses of WA. However, WA exposure resulted in cell line-specific changes in Oct4, SOX-2, and Nanog mRNA expression. WA administration to MMTV-neu mice (0.1 mg/mouse, 3 times/week for 28 weeks) resulted in inhibition of mammosphere number and ALDH1 activity in vivo. Mechanistic studies revealed that although urokinase-type plasminogen activator receptor overexpression conferred partial protection against bCSC inhibition by WA, Notch4 was largely dispensable for this response. WA treatment also resulted in sustained (MCF-7) or transient (SUM159) downregulation of Bmi-1 (B-cell-specific Moloney murine leukemia virus insertion region-1) protein. Ectopic expression of Bmi-1 conferred partial but significant protection against ALDH1 activity inhibition by WA. Interestingly, WA treatment caused induction of Kruppel-like factor 4 (KLF4) and its knockdown augmented bCSC inhibition by WA. In conclusion, this study shows in vivo effectiveness of WA against bCSC.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Authors' Affiliation: Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Authors' Affiliation: Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
55
|
Kristoffersen K, Nedergaard MK, Villingshøj M, Borup R, Broholm H, Kjær A, Poulsen HS, Stockhausen MT. Inhibition of Notch signaling alters the phenotype of orthotopic tumors formed from glioblastoma multiforme neurosphere cells but does not hamper intracranial tumor growth regardless of endogene Notch pathway signature. Cancer Biol Ther 2014; 15:862-77. [PMID: 24755988 DOI: 10.4161/cbt.28876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in the devastating brain tumor glioblastoma multiforme (GBM). bCSC are proposed a central role in tumor initiation, progression, treatment resistance and relapse and as such present a promising target in GBM research. The Notch signaling pathway is often deregulated in GBM and we have previously characterized GBM-derived bCSC cultures based on their expression of the Notch-1 receptor and found that it could be used as predictive marker for the effect of Notch inhibition. The aim of the present project was therefore to further elucidate the significance of Notch pathway activity for the tumorigenic properties of GBM-derived bCSC. METHODS Human-derived GBM xenograft cells previously established as NSC-like neurosphere cultures were used. Notch inhibition was accomplished by exposing the cells to the gamma-secretase inhibitor DAPT prior to gene expression analysis and intracranial injection into immunocompromised mice. RESULTS By analyzing the expression of several Notch pathway components, we found that the cultures indeed displayed different Notch pathway signatures. However, when DAPT-treated neurosphere cells were injected into the brain of immunocompromised mice, no increase in survival was obtained regardless of Notch pathway signature and Notch inhibition. We did however observe a decrease in the expression of the stem cell marker Nestin, an increase in the proliferative marker Ki-67 and an increased number of abnormal vessels in tumors formed from DAPT-treated, high Notch-1 expressing cultures, when compared with the control. CONCLUSION Based on the presented results we propose that Notch inhibition partly induces differentiation of bCSC, and selects for a cell type that more strongly induces angiogenesis if the treatment is not sustained. However, this more differentiated cell type might prove to be more sensitive to conventional therapies.
Collapse
Affiliation(s)
- Karina Kristoffersen
- Department of Radiation Biology; The Finsen Center; Copenhagen University Hospital; Copenhagen, Denmark
| | - Mette Kjølhede Nedergaard
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging; Copenhagen University Hospital and University of Copenhagen; Copenhagen, Denmark
| | - Mette Villingshøj
- Department of Radiation Biology; The Finsen Center; Copenhagen University Hospital; Copenhagen, Denmark
| | - Rehannah Borup
- Center for Genomic Medicine; Copenhagen University Hospital; Copenhagen, Denmark
| | - Helle Broholm
- Department of Neuropathology; The Diagnostic Center; Copenhagen University Hospital; Copenhagen, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging; Copenhagen University Hospital and University of Copenhagen; Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology; The Finsen Center; Copenhagen University Hospital; Copenhagen, Denmark
| | - Marie-Thérése Stockhausen
- Department of Radiation Biology; The Finsen Center; Copenhagen University Hospital; Copenhagen, Denmark
| |
Collapse
|
56
|
Colbert LS, Wilson K, Kim S, Liu Y, Oprea-Ilies G, Gillespie C, Dickson T, Newman G, Gonzalez-Perez RR. NILCO biomarkers in breast cancer from Chinese patients. BMC Cancer 2014; 14:249. [PMID: 24716804 PMCID: PMC4101832 DOI: 10.1186/1471-2407-14-249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/02/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Notch, IL-1 and leptin are known pro-angiogenic factors linked to breast cancer development, tumor aggressiveness and poor prognosis. A complex crosstalk between these molecules (NILCO) has been reported in breast cancer cell lines. However, whether NILCO biomarkers are differentially expressed in estrogen responsive (ER+), unresponsive (ER-) and triple negative (TNBC) breast cancer tissues is unknown. METHODS Expression levels of nine NILCO and targets [Notch1, Notch4, JAG1, DLL4, VEGF, VEGFR2 (FLK-1), leptin, leptin receptor (OB-R) and interleukin-1 receptor type I (IL-1R tI)] were examined via immunohistochemistry in breast cancer tissue microarrays from Chinese patients (ER+, n=33; ER-, n=21; TNBC, n=13) and non-malignant breast tissue (n=5; Pantomics, Inc.) using a semi-quantitative analysis of intensity staining, HSCORE. RESULTS Categorical expression of NILCO and targets (+ or -) was similar among all cancer tissues. However, TNBC showed differential localization pattern of NILCO. TNBC showed fewer nuclei and cytoplasms positive for Notch4 and JAG1, but more cytoplasms positive for leptin. In addition, fewer TNBC stromas were positive for Notch1 and Notch4, but 100% of TNBC stromas were positive for VEGFR2. Moreover, TNBC had lower DLL4 and IL-1R tI expression. TNBC and ER- showed higher expression of EGFR, but lower expression of AR. Leptin and OB-R were detected in more than 61% of samples. Leptin positively correlated to OB-R, JAG1, VEGF, and marginally to IL-1R tI. Notch1 positively correlated to IL-1R tI. EGFR and Ki67 were positively associated to Notch1, but no associations of NILCO and targets with p53 were found. CONCLUSIONS Present data suggest that NILCO components are differentially expressed in breast cancer. TNBC showed distinctive patterns for NILCO expression and localization. The complex crosstalk between leptin, IL-1 and Notch could differentially drive breast cancer growth and angiogenesis. Furthermore, the analysis of NILCO and targets using Pathway Studio9 software (Ariadine Genomics) showed multiple molecular relationships that suggest NILCO has potential prognostic biomarker value in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ruben Rene Gonzalez-Perez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| |
Collapse
|
57
|
Chen J, Wang FL, Chen WD. Modulation of apoptosis-related cell signalling pathways by curcumin as a strategy to inhibit tumor progression. Mol Biol Rep 2014; 41:4583-94. [PMID: 24604727 DOI: 10.1007/s11033-014-3329-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
A hallmark of cancer is resistance to apoptosis, with both the loss of proapoptotic signals and the gain of anti-apoptotic mechanisms contributing to tumorigenesis. As inducing apoptosis in malignant cells is one of the most challenging tasks regarding cancer, researchers increasingly focus on natural products to regulate apoptotic signaling pathways. Curcumin, a polyphenolic derivative of turmeric, is a natural compound derived from Curcuma longa, has attracted great interest in the research of cancer during the last half century. Extensive studies revealed that curcumin has chemopreventive properties, which are mainly due to its ability to arrest cell cycle and to induce apoptosis in cancer cells either alone or in combination with chemotherapeutic agents or radiation. The underlying action mechanisms of curcumin are diverse and has not been elucidated so far. By regulating multiple important cellular signalling pathways including NF-κB, TRAIL, PI3 K/Akt, JAK/STAT, Notch-1, JNK, etc., curcumin are known to activate cell death signals and induce apoptosis in pre-cancerous or cancer cells without affecting normal cells, thereby inhibiting tumor progression. Several phase I and phase II clinical trials indicate that curcumin is quite safe and may exhibit therapeutic efficacy. This article reviews the main effects of curcumin on the different apoptotic signaling pathways involved in curcumin induced apoptosis in cancer cells via cellular transduction pathways and provides an in depth assessment of its pharmacological activity in the management of tumor progression.
Collapse
Affiliation(s)
- Jin Chen
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, People's Republic of China,
| | | | | |
Collapse
|
58
|
Zhang S, Chung WC, Miele L, Xu K. Targeting Met and Notch in the Lfng-deficient, Met-amplified triple-negative breast cancer. Cancer Biol Ther 2014; 15:633-42. [PMID: 24556651 DOI: 10.4161/cbt.28180] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) accounts for 15-20% of breast carcinomas and represents one of the most aggressive forms of this disease. Basal and claudin-low are the two main molecular subtypes among TNBCs. We previously reported that deletion of Lfng in mouse mammary gland caused deregulated Notch activation and induced basal-like and claudin-low tumors with co-selection for Met amplification. In human breast cancers, the vast majority of basal tumors and a subset of claudin-low tumors show reduced Lfng expression. Elevated Met expression and activation is associated with basal as well as claudin-low subtypes. To examine roles of Met and Notch in TNBC cells, we established two cell lines that harbor Met amplification as well as Lfng deletion, and possess features of basal and claudin-low breast cancer subtypes. Pharmacological inhibition of Met not only suppressed cell growth, tumorsphere and colony formation, but also reversed epithelial-to-mesenchymal transition and inhibited cell migration in both cell lines. In contrast, inhibition of Notch signaling using a γ-secretase inhibitor (GSI) only suppressed colony formation. Interestingly, GSI had no effect as single agent, but exerted a synergistic effect with Met inhibitor, on cell growth in 2D culture. We found that inhibition of Met resulted in downregulation of Dll ligands and upregulation of Jagged ligands, leading to differential modulation of Notch signaling. Our results suggest that combination targeting of Met and Notch may prove beneficial for TNBC patients with Met overexpression and Notch hyperactivation.
Collapse
Affiliation(s)
- Shubing Zhang
- Cancer Institute; University of Mississippi Medical Center; Jackson, MS USA
| | - Wen-cheng Chung
- Cancer Institute; University of Mississippi Medical Center; Jackson, MS USA
| | - Lucio Miele
- Cancer Institute; University of Mississippi Medical Center; Jackson, MS USA; Department of Pharmacology and Toxicology; University of Mississippi Medical Center; Jackson, MS USA
| | - Keli Xu
- Cancer Institute; University of Mississippi Medical Center; Jackson, MS USA; Department of Neurobiology and Anatomical Sciences; University of Mississippi Medical Center; Jackson, MS USA
| |
Collapse
|
59
|
Aktas B, Sun H, Yao H, Shi W, Hubbard R, Zhang Y, Jiang T, Ononye SN, Wali VB, Pusztai L, Symmans WF, Hatzis C. Global gene expression changes induced by prolonged cold ischemic stress and preservation method of breast cancer tissue. Mol Oncol 2014; 8:717-27. [PMID: 24602449 DOI: 10.1016/j.molonc.2014.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/17/2014] [Accepted: 02/05/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tissue handling can alter global gene expression potentially affecting the analytical performance of genomic signatures, but such effects have not been systematically evaluated. METHODS Tissue samples from 11 previously untreated breast tumors were minced and aliquots were either snap frozen or placed in RNAlater immediately or after 20, 40, 60, 120 or 180 min at room temperature. RNA was profiled on Affymetrix HG-U133A arrays. We used probe-set-wise hierarchical models to evaluate the effect of preservation method on transcript expression and linear mixed effects models to assess the effect of cold ischemic delay on the expression of individual probe sets. Gene set enrichment analysis identified pathways overrepresented in the affected transcripts. We combined the levels of 41 most sensitive transcripts to develop an index of ischemic stress. RESULTS Concordance in global gene expression between the baseline and 40 min delay was higher for samples preserved in RNAlater (average concordance correlation coefficient CCC = 0.92 compared to 0.88 for snap frozen). Overall, 481 transcripts (3%) were significantly affected by the preservation method, most of them involved in processes important in cancer. Prolonged cold ischemic delay of up to 3 h induced marginal global gene expression changes (average CCC = 0.90 between baseline and 3 h delay). However 41 transcripts were significantly affected by cold ischemic delay. Among the induced transcripts were stress response genes, apoptotic response genes; among the downregulated were genes involved in metabolism, protein processing and cell cycle regulation. An index combining the expression levels of these genes was proportional to the cold ischemic delay. CONCLUSIONS Prolonged cold ischemia induces significant transcriptional changes in a small subset of transcripts in the tissue. Furthermore, the expression level of about 3% of the transcripts is affected by the preservation method. These sensitive transcripts should not be included in genomic signatures for more reliable analytical performance.
Collapse
Affiliation(s)
- Bilge Aktas
- Section of Medical Oncology, Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Hongxia Sun
- Department of Pathology, UT M.D. Anderson Cancer Center, P.O. Box 85, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, UT M.D. Anderson Cancer Center, P.O. Box 301402, Houston, TX 77230, USA
| | - Weiwei Shi
- Section of Medical Oncology, Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Rebekah Hubbard
- Department of Pathology, UT M.D. Anderson Cancer Center, P.O. Box 85, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Ya Zhang
- Department of Pathology, UT M.D. Anderson Cancer Center, P.O. Box 85, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Tingting Jiang
- Section of Medical Oncology, Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Sophia N Ononye
- Section of Medical Oncology, Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Vikram B Wali
- Section of Medical Oncology, Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Lajos Pusztai
- Section of Medical Oncology, Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - W Fraser Symmans
- Department of Pathology, UT M.D. Anderson Cancer Center, P.O. Box 85, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Christos Hatzis
- Section of Medical Oncology, Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
60
|
Bae YH, Ryu JH, Park HJ, Kim KR, Wee HJ, Lee OH, Jang HO, Bae MK, Kim KW, Bae SK. Mutant p53-Notch1 Signaling Axis Is Involved in Curcumin-Induced Apoptosis of Breast Cancer Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:291-7. [PMID: 23946688 PMCID: PMC3741485 DOI: 10.4196/kjpp.2013.17.4.291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/15/2013] [Accepted: 05/28/2013] [Indexed: 01/30/2023]
Abstract
Notch1 has been reported to be highly expressed in triple-negative and other subtypes of breast cancer. Mutant p53 (R280K) is overexpressed in MDA-MB-231 triple-negative human breast cancer cells. The present study aimed to determine whether the mutant p53 can be a potent transcriptional activator of the Notch1 in MDA-MB-231 cells, and explore the role of this mutant p53-Notch1 axis in curcumin-induced apoptosis. We found that curcumin treatment resulted in an induction of apoptosis in MDA-MB-231 cells, together with downregulation of Notch1 and its downstream target, Hes1. This reduction in Notch1 expression was determined to be due to the decreased activity of endogenous mutant p53. We confirmed the suppressive effect of curcumin on Notch1 transcription by performing a Notch1 promoter-driven reporter assay and identified a putative p53-binding site in the Notch1 promoter by EMSA and chromatin immunoprecipitation analysis. Overexpression of mutant p53 increased Notch1 promoter activity, whereas knockdown of mutant p53 by small interfering RNA suppressed Notch1 expression, leading to the induction of cellular apoptosis. Moreover, curcumin-induced apoptosis was further enhanced by the knockdown of Notch1 or mutant p53, but it was decreased by the overexpression of active Notch1. Taken together, our results demonstrate, for the first time, that Notch1 is a transcriptional target of mutant p53 in breast cancer cells and suggest that the targeting of mutant p53 and/or Notch1 may be combined with a chemotherapeutic strategy to improve the response of breast cancer cells to curcumin.
Collapse
Affiliation(s)
- Yun-Hee Bae
- Department of Dental Pharmacology, School of Dentistry, Yangsan Campus of Pusan National University, Yangsan 626-870, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Costa MJ, Wu X, Cuervo H, Srinivasan R, Bechis SK, Cheang E, Marjanovic O, Gridley T, Cvetic CA, Wang RA. Notch4 is required for tumor onset and perfusion. Vasc Cell 2013; 5:7. [PMID: 23601498 PMCID: PMC3644271 DOI: 10.1186/2045-824x-5-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/05/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Notch4 is a member of the Notch family of receptors that is primarily expressed in the vascular endothelial cells. Genetic deletion of Notch4 does not result in an overt phenotype in mice, thus the function of Notch4 remains poorly understood. METHODS We examined the requirement for Notch4 in the development of breast cancer vasculature. Orthotopic transplantation of mouse mammary tumor cells wild type for Notch4 into Notch4 deficient hosts enabled us to delineate the contribution of host Notch4 independent of its function in the tumor cell compartment. RESULTS Here, we show that Notch4 expression is required for tumor onset and early tumor perfusion in a mouse model of breast cancer. We found that Notch4 expression is upregulated in mouse and human mammary tumor vasculature. Moreover, host Notch4 deficiency delayed the onset of MMTV-PyMT tumors, wild type for Notch4, after transplantation. Vessel perfusion was decreased in tumors established in Notch4-deficient hosts. Unlike in inhibition of Notch1 or Dll4, vessel density and branching in tumors developed in Notch4-deficient mice were unchanged. However, final tumor size was similar between tumors grown in wild type and Notch4 null hosts. CONCLUSION Our results suggest a novel role for Notch4 in the establishment of tumor colonies and vessel perfusion of transplanted mammary tumors.
Collapse
Affiliation(s)
- Maria José Costa
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, USA.,Present address: Department of Pediatrics and Program in Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xiaoqing Wu
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, USA.,Present address: Tech Data Services, LLC, King of Prussia, PA19406, USA
| | - Henar Cuervo
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Ruchika Srinivasan
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, USA.,Present address: Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - Seth K Bechis
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, USA.,Present address: Department of Urology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ellen Cheang
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, USA.,Present address: Department of Radiology, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Olivera Marjanovic
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, USA.,Present address: School of Public; Division of Infectious Diseases and Vaccinology, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Thomas Gridley
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Christin A Cvetic
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Rong A Wang
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
62
|
Speiser JJ, Erşahin C, Osipo C. The functional role of Notch signaling in triple-negative breast cancer. VITAMINS AND HORMONES 2013; 93:277-306. [PMID: 23810012 DOI: 10.1016/b978-0-12-416673-8.00013-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The term "triple-negative breast cancer" (TNBC) is a heterogeneous subtype of breast cancer. Unfortunately, due to the lack of expression of hormone receptors and human epidermal growth factor receptor-2, therefore the lack of US Food and Drug Administration-approved targeted therapies, TNBC has the worst prognosis of all subtypes of breast cancer. Notch signaling has emerged as a pro-oncogene in several human malignancies and has particularly been associated with the triple-negative subtype of breast cancer. This chapter explores the role of Notch signaling in triple negative and other subtypes of breast cancer, the relationship of Notch with other breast cancer biomarkers, prognostic indicators associated with Notch, and potential therapeutic strategies targeting Notch inhibition. Hopefully, better understanding of this signaling pathway in the future will lead to optimal molecular therapeutic treatments for TNBC patients, improving their quality of life and outcome.
Collapse
Affiliation(s)
- Jodi J Speiser
- Department of Pathology, Loyola University Chicago Division of Health Sciences, Maywood, Illinois, USA
| | | | | |
Collapse
|
63
|
Karamboulas C, Ailles L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta Gen Subj 2012. [PMID: 23196196 DOI: 10.1016/j.bbagen.2012.11.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The intricate regulation of several signaling pathways is essential for embryonic development and adult tissue homeostasis. Cancers commonly display aberrant activity within these pathways. A population of cells identified in several cancers, termed cancer stem cells (CSCs) show similar properties to normal stem cells and evidence suggests that altered developmental signaling pathways play an important role in maintaining CSCs and thereby the tumor itself. SCOPE OF REVIEW This review will focus on the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon cancers. We describe the roles these pathways play in normal tissue homeostasis through the regulation of stem cell fate in these three tissues, and the experimental evidence indicating that the role of these pathways in cancers of these is directly linked to CSCs. MAJOR CONCLUSIONS A large body of evidence is accumulating to indicate that the deregulation of Notch, Wnt and Hedgehog pathways play important roles in both normal and cancer stem cells. We are only beginning to understand how these pathways interact, how they are coordinated during normal development and adult tissue homeostasis, and how they are deregulated during cancer. However, it is becoming increasingly clear that if we are to target CSCs therapeutically, it will likely be necessary to develop combination therapies. GENERAL SIGNIFICANCE If CSCs are the driving force behind tumor maintenance and growth then understanding the molecular mechanisms regulating CSCs is essential. Such knowledge will contribute to better targeted therapies that could significantly enhance cancer treatments and patient survival. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Christina Karamboulas
- Ontario Cancer Institute, Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | | |
Collapse
|
64
|
Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKα/IKKβ. Oncogene 2012. [PMID: 23178494 PMCID: PMC3795477 DOI: 10.1038/onc.2012.517] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Notch signaling is frequently hyperactivated in breast cancer, but how the enhanced signaling contributes to the tumor process is less well understood. In this report, we identify the proinflammatory cytokine interleukin-6 (IL-6) as a novel Notch target in breast tumor cells. Enhanced Notch signaling upregulated IL-6 expression, leading to activation of autocrine and paracrine Janus kinase/signal transducers and activators of transcription signaling. IL-6 upregulation was mediated by non-canonical Notch signaling, as it could be effectuated by a cytoplasmically localized Notch intracellular domain and was independent of the DNA-binding protein CSL. Instead, Notch-mediated IL-6 upregulation was controlled by two proteins in the nuclear factor (NF)-κB signaling cascade, IKKα and IKKβ (inhibitor of nuclear factor kappa-B kinase subunit alpha and beta, respectively), as well as by p53. Activation of IL-6 by Notch required IKKα/IKKβ function, but interestingly, did not engage canonical NF-κB signaling, in contrast to IL-6 activation by inflammatory agents such as lipopolysaccharide. With regard to p53 status, IL-6 expression was upregulated by Notch when p53 was mutated or lost, and restoring wild-type p53 into p53-mutated or -deficient cells abrogated the IL-6 upregulation. Furthermore, Notch-induced transcriptomes from p53 wild-type and -mutated breast tumor cell lines differed extensively, and for a subset of genes upregulated by Notch in a p53-mutant cell line, this upregulation was reduced by wild-type p53. In conclusion, we identify IL-6 as a novel non-canonical Notch target gene, and reveal roles for p53 and IKKα/IKKβ in non-canonical Notch signaling in breast cancer and in the generation of cell context-dependent diversity in the Notch signaling output.
Collapse
|
65
|
Xia J, Li Y, Yang Q, Mei C, Chen Z, Bao B, Ahmad A, Miele L, Sarkar FH, Wang Z. Arsenic trioxide inhibits cell growth and induces apoptosis through inactivation of notch signaling pathway in breast cancer. Int J Mol Sci 2012; 13:9627-9641. [PMID: 22949821 PMCID: PMC3431819 DOI: 10.3390/ijms13089627] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/15/2012] [Accepted: 07/25/2012] [Indexed: 01/09/2023] Open
Abstract
Arsenic trioxide has been reported to inhibit cell growth and induce apoptotic cell death in many human cancer cells including breast cancer. However, the precise molecular mechanisms underlying the anti-tumor activity of arsenic trioxide are still largely unknown. In the present study, we assessed the effects of arsenic trioxide on cell viability and apoptosis in breast cancer cells. For mechanistic studies, we used multiple cellular and molecular approaches such as MTT assay, apoptosis ELISA assay, gene transfection, RT-PCR, Western blotting, and invasion assays. For the first time, we found a significant reduction in cell viability in arsenic trioxide-treated cells in a dose-dependent manner, which was consistent with induction of apoptosis and also associated with down-regulation of Notch-1 and its target genes. Taken together, our findings provide evidence showing that the down-regulation of Notch-1 by arsenic trioxide could be an effective approach, to cause down-regulation of Bcl-2, and NF-κB, resulting in the inhibition of cell growth and invasion as well as induction of apoptosis. These results suggest that the anti-tumor activity of arsenic trioxide is in part mediated through a novel mechanism involving inactivation of Notch-1 and its target genes. We also suggest that arsenic trioxide could be further developed as a potential therapeutic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jun Xia
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China; E-Mails: (J.X.); (C.M.); (Z.C.)
| | - Youjian Li
- Laboratory Medicine, Taixing People’s Hospital, Taizhou 225400, China; E-Mail:
| | - Qingling Yang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu 233030, China; E-Mail:
| | - Chuanzhong Mei
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China; E-Mails: (J.X.); (C.M.); (Z.C.)
| | - Zhiwen Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China; E-Mails: (J.X.); (C.M.); (Z.C.)
| | - Bin Bao
- Department of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; E-Mails: (B.B.); (A.A.); (F.H.S.)
| | - Aamir Ahmad
- Department of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; E-Mails: (B.B.); (A.A.); (F.H.S.)
| | - Lucio Miele
- University of Mississippi Cancer Institute, 2500 N State St, Jackson, MS 39216, USA; E-Mail:
| | - Fazlul H Sarkar
- Department of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; E-Mails: (B.B.); (A.A.); (F.H.S.)
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China; E-Mails: (J.X.); (C.M.); (Z.C.)
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-617-735-2474; Fax: +1-617-735-2480
| |
Collapse
|