51
|
Liu D, Pei D, Hu H, Gu G, Cui W. Effects and Mechanisms of Vitamin C Post-Conditioning on Platelet Activation after Hypoxia/Reoxygenation. Transfus Med Hemother 2019; 47:110-118. [PMID: 32355470 DOI: 10.1159/000500492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background Platelet activation occurs upon ischemia/reperfusion and is related to the generation of reactive oxygen species (ROS) during this process. Vitamin C (VC) is a powerful antioxidant. VC scavenges ROS, reduces platelet activation, and attenuates reperfusion injury. However, the effects of VC on platelets undergoing hypoxia/reoxygenation (H/R) remain unclear. Objectives Herein, we evaluated the effects of VC on platelets in vitro following H/R and the related mechanisms. Method Fresh platelets were collected from 67 volunteers at the Blood Center of Hebei Province. Platelets were diluted with saline to a concentration of 2.00 × 10<sup>11</sup>/L. Aggregation and the curve slope were evaluated within 4 h with a whole-blood impedance analyzer. To determine the optimal experimental time, platelets were treated with hypoxia or reoxygenation for different times, and impedance aggregometry was carried out by measuring changes in electrical impedance induced by arachidonic acid (0.5 mM) and adenosine diphosphate (10 µM), thereby establishing the H/R model. Three antioxidants (VC, melatonin, and probucol) were used to treat platelets after H/R, and impedance aggregometry was used to determine their effects on platelet aggregation. The influence of VC on apoptosis-related indicators was detected. ROS and the mitochondrial membrane potential were observed by inverted fluorescence microscopy and flow cytometry, respectively. Related protein levels were detected by Western blotting. Results ROS scavengers inhibited platelet activation and aggregation in a concentration-dependent manner. VC post-conditioning scavenged ROS, downregulated cytochrome C, Bax, and caspase-9 proteins, and upregulated Bcl-2 protein. These effects collectively blocked platelet apoptosis and inhibited platelet aggregation. Conclusions VC inhibited platelet aggregation by blocking apoptosis. Thus, VC may have applications in the treatment of platelet-related diseases.
Collapse
Affiliation(s)
- Demin Liu
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongguo Pei
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haijuan Hu
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guoqiang Gu
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Cui
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
52
|
Melatonin MT 1 and MT 2 Receptors Exhibit Distinct Effects in the Modulation of Body Temperature across the Light/Dark Cycle. Int J Mol Sci 2019; 20:ijms20102452. [PMID: 31108968 PMCID: PMC6566544 DOI: 10.3390/ijms20102452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Melatonin (MLT) is a neurohormone that regulates many physiological functions including sleep, pain, thermoregulation, and circadian rhythms. MLT acts mainly through two G-protein-coupled receptors named MT1 and MT2, but also through an MLT type-3 receptor (MT3). However, the role of MLT receptor subtypes in thermoregulation is still unknown. We have thus investigated the effects of selective and non-selective MLT receptor agonists/antagonists on body temperature (Tb) in rats across the 12/12-h light-dark cycle. Rectal temperature was measured every 15 min from 4:00 a.m. to 9:30 a.m. and from 4:00 p.m. to 9:30 p.m., following subcutaneous injection of each compound at either 5:00 a.m. or 5:00 p.m. MLT (40 mg/kg) had no effect when injected at 5 a.m., whereas it decreased Tb during the light phase only when injected at 5:00 p.m. This effect was blocked by the selective MT2 receptor antagonist 4P-PDOT and the non-selective MT1/MT2 receptor antagonist, luzindole, but not by the α1/MT3 receptors antagonist prazosin. However, unlike MLT, neither the selective MT1 receptor partial agonist UCM871 (14 mg/kg) nor the selective MT2 partial agonist UCM924 (40 mg/kg) altered Tb during the light phase. In contrast, UCM871 injected at 5:00 p.m. increased Tb at the beginning of the dark phase, whereas UCM924 injected at 5:00 a.m. decreased Tb at the end of the dark phase. These effects were blocked by luzindole and 4P-PDOT, respectively. The MT3 receptor agonist GR135531 (10 mg/kg) did not affect Tb. These data suggest that the simultaneous activation of both MT1 and MT2 receptors is necessary to regulate Tb during the light phase, whereas in a complex but yet unknown manner, they regulate Tb differently during the dark phase. Overall, MT1 and MT2 receptors display complementary but also distinct roles in modulating circadian fluctuations of Tb.
Collapse
|
53
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
54
|
Xu Z, Wu Y, Zhang Y, Zhang H, Shi L. Melatonin activates BK Ca channels in cerebral artery myocytes via both direct and MT receptor/PKC-mediated pathway. Eur J Pharmacol 2018; 842:177-188. [PMID: 30391348 DOI: 10.1016/j.ejphar.2018.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 11/28/2022]
Abstract
The pineal hormone melatonin is a neuroendocrine hormone with high membrane permeability that is involved in regulation of circadian rhythm of several biological functions. Large-conductance Ca2+-activated K+ (BKCa) channels are abundantly expressed in vascular smooth muscle cells and play an important role in vascular tone regulation. We investigated the mechanisms through which myocyte BKCa channels mediate effects of melatonin on cerebral arteries (CAs). Arterial contractility measurements showed that melatonin alone did not change vascular tone in CAs; however, it induced concentration-dependent vasodilation of phenylephrine-induced contraction in CAs. In the presence of the potent endothelial oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester, melatonin-elicited relaxation was significantly inhibited by iberiotoxin (BKCa channel blocker). Melatonin significantly increased BKCa currents but not voltage-gated K+ (KV) currents in whole-cell recordings. Melatonin decreased the amplitude of Ca2+ sparks and spontaneous transient outward currents (STOCs), however, a significant increase in open probability of BKCa channels was observed in both inside-out and cell-attached patch-clamp recordings. This melatonin-induced enhancement of BKCa channel activity was significantly suppressed by luzindole (melatonin MT1/MT2 receptor inhibitor), U73122 (phospholipase C (PLC) inhibitor), and Ro31-8220 (protein kinase C (PKC) inhibitor). Melatonin had no significant effects on sarcoplasmic reticulum release of Ca2+. These findings indicate that melatonin-induced vasorelaxation of CAs is partially attributable to direct (passing through the cell membrane) and indirect (via melatonin MT1/MT2 receptors-PLC-PKC pathway) activation of BKCa channels on CA myocytes.
Collapse
Affiliation(s)
- Zhaoxia Xu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Ying Wu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Huirong Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
55
|
Zhong J, Liu Y. Melatonin and age-related cardiovascular diseases. Aging Med (Milton) 2018; 1:197-203. [PMID: 31942497 PMCID: PMC6880684 DOI: 10.1002/agm2.12036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
The pineal gland is a neuroendocrine gland closely related to human aging. Melatonin is a kind of indole neuroendocrine hormone secreted by the pineal gland, which is essential for maintaining physiological function. Many researches found that melatonin plays a key role in anti-aging-related cardiovascular diseases. In this paper, the latest advances in the study of melatonin and aging-related cardiovascular diseases are reviewed, and their related physiological functions and mechanisms are discussed.
Collapse
Affiliation(s)
- Jiayu Zhong
- Department of GeriatricsThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Youshuo Liu
- Department of GeriatricsThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
56
|
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What's new? A review. J Pineal Res 2018; 65:e12490. [PMID: 29570845 DOI: 10.1111/jpi.12490] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a pleiotropic hormone with several functions. It binds to specific receptors and to a number of cytosolic proteins, activating a vast array of signalling pathways. Its potential to protect the heart against ischaemia/reperfusion damage has attracted much attention, particularly in view of its possible clinical applications. This review will focus mainly on the possible signalling pathways involved in melatonin-induced cardioprotection. In particular, the role of the melatonin receptors and events downstream of receptor activation, for example, the reperfusion injury salvage kinase (RISK), survivor activating factor enhancement (SAFE) and Notch pathways, the sirtuins, nuclear factor E2-related factor 2 (Nrf2) and translocases in the outer membrane (TOM70) will be discussed. Particular attention is given to the role of the mitochondrion in melatonin-induced cardioprotection. In addition, a brief overview will be given regarding the status quo of the clinical application of melatonin in humans.
Collapse
Affiliation(s)
- Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Erna Marais
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Barbara Huisamen
- Biomedical Research and Innovation Platform, SA Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
57
|
Nduhirabandi F, Maarman GJ. Melatonin in Heart Failure: A Promising Therapeutic Strategy? Molecules 2018; 23:molecules23071819. [PMID: 30037127 PMCID: PMC6099639 DOI: 10.3390/molecules23071819] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a multifactorial clinical syndrome characterized by the inability of the heart to pump sufficient blood to the body. Despite recent advances in medical management, poor outcomes in patients with heart failure remain very high. This highlights a need for novel paradigms for effective, preventive and curative strategies. Substantial evidence supports the importance of endogenous melatonin in cardiovascular health and the benefits of melatonin supplementation in various cardiac pathologies and cardiometabolic disorders. Melatonin plays a crucial role in major pathological processes associated with heart failure including ischemic injury, oxidative stress, apoptosis, and cardiac remodeling. In this review, available evidence for the role of melatonin in heart failure is discussed. Current challenges and possible limitations of using melatonin in heart failure are also addressed. While few clinical studies have investigated the role of melatonin in the context of heart failure, current findings from experimental studies support the potential use of melatonin as preventive and adjunctive curative therapy in heart failure.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa.
| | - Gerald J Maarman
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa.
| |
Collapse
|
58
|
Roohbakhsh A, Shamsizadeh A, Hayes A, Reiter RJ, Karimi G. Melatonin as an endogenous regulator of diseases: The role of autophagy. Pharmacol Res 2018; 133:265-276. [DOI: 10.1016/j.phrs.2018.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
|
59
|
Jiki Z, Lecour S, Nduhirabandi F. Cardiovascular Benefits of Dietary Melatonin: A Myth or a Reality? Front Physiol 2018; 9:528. [PMID: 29867569 PMCID: PMC5967231 DOI: 10.3389/fphys.2018.00528] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
The role of the diet as well as the impact of the dietary habits on human health and disease is well established. Apart from its sleep regulatory effect, the indoleamine melatonin is a well-established antioxidant molecule with multiple health benefits. Convincing evidence supports the presence of melatonin in plants and foods with the intake of such foods affecting circulating melatonin levels in humans. While numerous actions of both endogenous melatonin and melatonin supplementation are well described, little is known about the influence of the dietary melatonin intake on human health. In the present review, evidence for the cardiovascular health benefits of melatonin supplementation and dietary melatonin is discussed. Current knowledge on the biological significance as well as the underlying physiological mechanism of action of the dietary melatonin is also summarized. Whether dietary melatonin constitutes an alternative preventive treatment for cardiovascular disease is addressed.
Collapse
Affiliation(s)
- Zukiswa Jiki
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
60
|
Prado NJ, Ferder L, Manucha W, Diez ER. Anti-Inflammatory Effects of Melatonin in Obesity and Hypertension. Curr Hypertens Rep 2018; 20:45. [PMID: 29744660 DOI: 10.1007/s11906-018-0842-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Here, we review the known relations between hypertension and obesity to inflammation and postulate the endogenous protective effect of melatonin and its potential as a therapeutic agent. We will describe the multiple effects of melatonin on blood pressure, adiposity, body weight, and focus on mitochondrial-related anti-inflammatory and antioxidant protective effects. RECENT FINDINGS Hypertension and obesity are usually associated with systemic and tissular inflammation. The progressive affection of target-organs involves multiple mediators of inflammation, most of them redundant, which make anti-inflammatory strategies ineffective. Melatonin reduces blood pressure, body weight, and inflammation. The mechanisms of action of this ancient molecule of protection involve multiple levels of action, from subcellular to intercellular. Mitochondria is a key inflammatory element in vascular and adipose tissue and a potential pharmacological target. Melatonin protects against mitochondrial dysfunction. Melatonin reduces blood pressure and adipose tissue dysfunction by multiple anti-inflammatory/antioxidant actions and provides potent protection against mitochondria-mediated injury in hypertension and obesity. This inexpensive and multitarget molecule has great therapeutic potential against both epidemic diseases.
Collapse
Affiliation(s)
- Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Pediatric Department Nephrology Division, Miller School of Medicine, University of Miami, Florida, USA
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Emiliano Raúl Diez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina. .,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP 5500, Mendoza, Argentina.
| |
Collapse
|
61
|
Zhang H, Liu X, Chen T, Ji Y, Shi K, Wang L, Zheng X, Kong J. Melatonin in Apples and Juice: Inhibition of Browning and Microorganism Growth in Apple Juice. Molecules 2018; 23:E521. [PMID: 29495435 PMCID: PMC6017754 DOI: 10.3390/molecules23030521] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/08/2023] Open
Abstract
Synthetic melatonin (N-acetyl-5-methoxytryptamine, MT) is popular in the US and Asian markets as a health supplement. Here, we identified a naturally occurring melatonin source in apple juice. Melatonin was present in all 18 apple cultivars tested. The highest melatonin level of the edible part of apple was detected in the apple peel. The melatonin content in 'Fuji' apple juice is comparable to the level of its flesh. Melatonin was consumed during the process of juicing due to its interaction with the oxidants. Melatonin addition significantly reduced the juice color change to brown (browning). The mechanism is that melatonin scavenges the free radicals, which was indicated by the ASBT analysis; therefore, inhibiting the conversion of o-diphenolic compounds into quinones. Most importantly, melatonin exhibited powerful anti-microorganism activity in juice. The exact mechanisms of this action are currently unknown. These effects of melatonin can preserve the quality and prolong the shelf life of apple juice. The results provide valuable information regarding commerciall apple juice processing and storage.
Collapse
Affiliation(s)
- Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xuan Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ting Chen
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Yazhen Ji
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
62
|
Zhao T, Zhang H, Jin C, Qiu F, Wu Y, Shi L. Melatonin mediates vasodilation through both direct and indirect activation of BK Ca channels. J Mol Endocrinol 2017; 59:219-233. [PMID: 28676563 DOI: 10.1530/jme-17-0028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/03/2017] [Indexed: 01/14/2023]
Abstract
Melatonin, synthesized primarily by the pineal gland, is a neuroendocrine hormone with high membrane permeability. The vascular effects of melatonin, including vasoconstriction and vasodilation, have been demonstrated in numerous studies. However, the mechanisms underlying these effects are not fully understood. Large-conductance Ca2+-activated K+ (BKCa) channels are expressed broadly on smooth muscle cells and play an important role in vascular tone regulation. This study explored the mechanisms of myocyte BKCa channels and endothelial factors underlying the action of melatonin on the mesenteric arteries (MAs). Vascular contractility and patch-clamp studies were performed on myocytes of MAs from Wistar rats. Melatonin induced significant vasodilation on MAs. In the presence of Nω-nitro-l-arginine methyl ester (l-NAME), a potent endothelial oxide synthase (eNOS) inhibitor, melatonin elicited concentration-dependent relaxation, with lowered pIC50 The effect of melatonin was significantly attenuated in the presence of BKCa channel blocker iberiotoxin or MT1/MT2 receptor antagonist luzindole in both (+) l-NAME and (-) l-NAME groups. In the (+) l-NAME group, iberiotoxin caused a parallel rightward shift of the melatonin concentration-relaxation curve, with pIC50 lower than that of luzindole. Both inside-out and cell-attached patch-clamp recordings showed that melatonin significantly increased the open probability, mean open time and voltage sensitivity of BKCa channels. In a cell-attached patch-clamp configuration, the melatonin-induced enhancement of BKCa channel activity was significantly suppressed by luzindole. These findings indicate that in addition to the activation of eNOS, melatonin-induced vasorelaxation of MAs is partially attributable to its direct (passing through the cell membrane) and indirect (via MT1/MT2 receptors) activation of the BKCa channels on mesenteric arterial myocytes.
Collapse
MESH Headings
- Animals
- Gene Expression
- Ion Channel Gating/drug effects
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/agonists
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism
- Male
- Melatonin/metabolism
- Melatonin/pharmacology
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Vasodilation/drug effects
- Vasodilation/genetics
Collapse
Affiliation(s)
- T Zhao
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - H Zhang
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - C Jin
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - F Qiu
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - Y Wu
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - L Shi
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| |
Collapse
|
63
|
Tain YL, Huang LT, Hsu CN. Developmental Programming of Adult Disease: Reprogramming by Melatonin? Int J Mol Sci 2017; 18:ijms18020426. [PMID: 28212315 PMCID: PMC5343960 DOI: 10.3390/ijms18020426] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
Adult-onset chronic non-communicable diseases (NCDs) can originate from early life through so-called the "developmental origins of health and disease" (DOHaD) or "developmental programming". The DOHaD concept offers the "reprogramming" strategy to shift the treatment from adulthood to early life, before clinical disease is apparent. Melatonin, an endogenous indoleamine produced by the pineal gland, has pleiotropic bioactivities those are beneficial in a variety of human diseases. Emerging evidence support that melatonin is closely inter-related to other proposed mechanisms contributing to the developmental programming of a variety of chronic NCDs. Recent animal studies have begun to unravel the multifunctional roles of melatonin in many experimental models of developmental programming. Even though some progress has been made in research on melatonin as a reprogramming strategy to prevent DOHaD-related NCDs, future human studies should aim at filling the translational gap between animal models and clinical trials. Here, we review several key themes on the reprogramming effects of melatonin in DOHaD research. We have particularly focused on the following areas: mechanisms of developmental programming; the interrelationship between melatonin and mechanisms underlying developmental programming; pathophysiological roles of melatonin in pregnancy and fetal development; and insight provided by animal models to support melatonin as a reprogramming therapy. Rates of NCDs are increasing faster than anticipated all over the world. Hence, there is an urgent need to understand reprogramming mechanisms of melatonin and to translate experimental research into clinical practice for halting a growing list of DOHaD-related NCDs.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Department of Traditional Chinese Medicine, Chang Gung University, Linkow 244, Taiwan.
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
64
|
Melatonin as an Agent for Cardioprotection in Patients with ST-Elevation Myocardial Infarction and Short Ischaemic Time. Cardiovasc Drugs Ther 2017; 31:227-228. [DOI: 10.1007/s10557-016-6708-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|