51
|
Sundaramurthy A, Kote VB, Pearson N, Boiczyk GM, McNeil EM, Nelson AJ, Subramaniam DR, Rubio JE, Monson K, Hardy WN, VandeVord PJ, Unnikrishnan G, Reifman J. A 3-D Finite-Element Minipig Model to Assess Brain Biomechanical Responses to Blast Exposure. Front Bioeng Biotechnol 2022; 9:757755. [PMID: 34976963 PMCID: PMC8719465 DOI: 10.3389/fbioe.2021.757755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/17/2021] [Indexed: 12/05/2022] Open
Abstract
Despite years of research, it is still unknown whether the interaction of explosion-induced blast waves with the head causes injury to the human brain. One way to fill this gap is to use animal models to establish “scaling laws” that project observed brain injuries in animals to humans. This requires laboratory experiments and high-fidelity mathematical models of the animal head to establish correlates between experimentally observed blast-induced brain injuries and model-predicted biomechanical responses. To this end, we performed laboratory experiments on Göttingen minipigs to develop and validate a three-dimensional (3-D) high-fidelity finite-element (FE) model of the minipig head. First, we performed laboratory experiments on Göttingen minipigs to obtain the geometry of the cerebral vasculature network and to characterize brain-tissue and vasculature material properties in response to high strain rates typical of blast exposures. Next, we used the detailed cerebral vasculature information and species-specific brain tissue and vasculature material properties to develop the 3-D high-fidelity FE model of the minipig head. Then, to validate the model predictions, we performed laboratory shock-tube experiments, where we exposed Göttingen minipigs to a blast overpressure of 210 kPa in a laboratory shock tube and compared brain pressures at two locations. We observed a good agreement between the model-predicted pressures and the experimental measurements, with differences in maximum pressure of less than 6%. Finally, to evaluate the influence of the cerebral vascular network on the biomechanical predictions, we performed simulations where we compared results of FE models with and without the vasculature. As expected, incorporation of the vasculature decreased brain strain but did not affect the predictions of brain pressure. However, we observed that inclusion of the cerebral vasculature in the model changed the strain distribution by as much as 100% in regions near the interface between the vasculature and the brain tissue, suggesting that the vasculature does not merely decrease the strain but causes drastic redistributions. This work will help establish correlates between observed brain injuries and predicted biomechanical responses in minipigs and facilitate the creation of scaling laws to infer potential injuries in the human brain due to exposure to blast waves.
Collapse
Affiliation(s)
- Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Vivek Bhaskar Kote
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Noah Pearson
- Department of Mechanical Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Gregory M Boiczyk
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Elizabeth M McNeil
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Allison J Nelson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States.,Center for Injury Biomechanics, Virginia Tech, Blacksburg, VA, United States
| | - Dhananjay Radhakrishnan Subramaniam
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jose E Rubio
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Kenneth Monson
- Department of Mechanical Engineering, The University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Warren N Hardy
- Center for Injury Biomechanics, Virginia Tech, Blacksburg, VA, United States
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States.,Center for Injury Biomechanics, Virginia Tech, Blacksburg, VA, United States
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
52
|
Ma J, Wang J, Deng K, Gao Y, Xiao W, Hou J, Jiang C, Li J, Yu B. The Effect of MaxiK Channel on Regulating the Activation of NLRP3 Inflammasome in Rats of Blast-induced Traumatic Brain Injury. Neuroscience 2021; 482:132-142. [PMID: 34923036 DOI: 10.1016/j.neuroscience.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Abundant findings including our previous work proved that the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome exerts a key role in the process of neuroinflammation following blast-induced traumatic brain injury (bTBI). The opening of potassium channels leads to low K+ environment in cells, which appears to be an essential requirement for NLRP3 inflammasome activation. Notably, MaxiK (BK) channel is significant for K+ transport. The present study is aim to investigate the potential role of MaxiK in the activation of NLRP3 and to evaluate whether MaxiK channel blocker paxilline could confer beneficial effects on attenuating the severity of bTBI in rats. Rats were randomly assigned into five groups (n = 8). MaxiK channel expression was measured in bTBI rats. The effect of paxilline on the expression of NLRP3 inflammasome, the level of inflammatory cytokines, brain injury biomarkers in serum and brain edema were also evaluated in bTBI rats. The results showed that the expression of MaxiK was elevated significantly in the cerebral cortex of bTBI rats. The treatment of MaxiK channel blocker paxilline suppressed the NLRP3 inflammasome expression substantially. In addition, paxilline could also decrease the level of pro-inflammatory cytokines and the biomarkers of brain injury and alleviate brain edema of bTBI rats. Our findings have revealed that MaxiK channel might be involved in the process of neuroinflammation of bTBI. Paxilline could depress neuro-inflammation response and alleviate brain injury by blocking MaxiK channel and subsequently inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China.
| | - Junrui Wang
- Department of Orthopaedics, Chengdu Second People's Hospital, Chengdu, Sichuan, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Kaiwen Deng
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Yu Gao
- Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Jun Hou
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Changqing Jiang
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Jing Li
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Botao Yu
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China.
| |
Collapse
|
53
|
Priemer DS, Perl DP. A Commentary on "Delayed-Onset Neuropathological Complications From a Foramen Magnum & Occipital Crest Focused Traumatic Brain Injury of the Vietnam War" Parts I, II, and III. Mil Med 2021; 187:938-940. [PMID: 34632520 DOI: 10.1093/milmed/usab376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- David S Priemer
- Department of Pathology, Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA.,Department of Defense, Uniformed Services University Brain Tissue Repository, Bethesda, MD 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Daniel P Perl
- Department of Pathology, Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA.,Department of Defense, Uniformed Services University Brain Tissue Repository, Bethesda, MD 20817, USA
| |
Collapse
|
54
|
Clausen AN, Bouchard HC, Welsh-Bohmer KA, Morey RA. Assessment of Neuropsychological Function in Veterans With Blast-Related Mild Traumatic Brain Injury and Subconcussive Blast Exposure. Front Psychol 2021; 12:686330. [PMID: 34262512 PMCID: PMC8273541 DOI: 10.3389/fpsyg.2021.686330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Objective: The majority of combat-related head injuries are associated with blast exposure. While Veterans with mild traumatic brain injury (mTBI) report cognitive complaints and exhibit poorer neuropsychological performance, there is little evidence examining the effects of subconcussive blast exposure, which does not meet clinical symptom criteria for mTBI during the acute period following exposure. We compared chronic effects of combat-related blast mTBI and combat-related subconcussive blast exposure on neuropsychological performance in Veterans. Methods: Post-9/11 Veterans with combat-related subconcussive blast exposure (n = 33), combat-related blast mTBI (n = 26), and controls (n = 33) without combat-related blast exposure, completed neuropsychological assessments of intellectual and executive functioning, processing speed, and working memory via NIH toolbox, assessment of clinical psychopathology, a retrospective account of blast exposures and non-blast-related head injuries, and self-reported current medication. Huber Robust Regressions were employed to compare neuropsychological performance across groups. Results: Veterans with combat-related blast mTBI and subconcussive blast exposure displayed significantly slower processing speed compared with controls. After adjusting for post-traumatic stress disorder and depressive symptoms, those with combat-related mTBI exhibited slower processing speed than controls. Conclusion: Veterans in the combat-related blast mTBI group exhibited slower processing speed relative to controls even when controlling for PTSD and depression. Cognition did not significantly differ between subconcussive and control groups or subconcussive and combat-related blast mTBI groups. Results suggest neurocognitive assessment may not be sensitive enough to detect long-term effects of subconcussive blast exposure, or that psychiatric symptoms may better account for cognitive sequelae following combat-related subconcussive blast exposure or combat-related blast mTBI.
Collapse
Affiliation(s)
- Ashley N. Clausen
- Kansas City VA Medical Center, Kansas City, MO, United States
- Duke-University of North Carolina at Chapel Hill Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham Veteran Affairs Healthcare System, Durham, NC, United States
| | - Heather C. Bouchard
- Duke-University of North Carolina at Chapel Hill Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham Veteran Affairs Healthcare System, Durham, NC, United States
| | | | | | - Rajendra A. Morey
- Duke-University of North Carolina at Chapel Hill Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham Veteran Affairs Healthcare System, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
55
|
Schwerin SC, Chatterjee M, Hutchinson EB, Djankpa FT, Armstrong RC, McCabe JT, Perl DP, Juliano SL. Expression of GFAP and Tau Following Blast Exposure in the Cerebral Cortex of Ferrets. J Neuropathol Exp Neurol 2021; 80:112-128. [PMID: 33421075 DOI: 10.1093/jnen/nlaa157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Blast exposures are a hallmark of contemporary military conflicts. We need improved preclinical models of blast traumatic brain injury for translation of pharmaceutical and therapeutic protocols. Compared with rodents, the ferret brain is larger, has substantial sulci, gyri, a higher white to gray matter ratio, and the hippocampus in a ventral position; these attributes facilitate comparison with the human brain. In this study, ferrets received compressed air shock waves and subsequent evaluation of glia and forms of tau following survival of up to 12 weeks. Immunohistochemistry and Western blot demonstrated altered distributions of astrogliosis and tau expression after blast exposure. Many aspects of the astrogliosis corresponded to human pathology: increased subpial reactivity, gliosis at gray-white matter interfaces, and extensive outlining of blood vessels. MRI analysis showed numerous hypointensities occurring in the 12-week survival animals, appearing to correspond to luminal expansions of blood vessels. Changes in forms of tau, including phosphorylated tau, and the isoforms 3R and 4R were noted using immunohistochemistry and Western blot in specific regions of the cerebral cortex. Of particular interest were the 3R and 4R isoforms, which modified their ratio after blast. Our data strongly support the ferret as an animal model with highly translational features to study blast injury.
Collapse
Affiliation(s)
- Susan C Schwerin
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | | | - Elizabeth B Hutchinson
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis T Djankpa
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Department of Physiology, School of Medical Sciences, University of Cape Coast, Ghana
| | - Regina C Armstrong
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Joseph T McCabe
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Daniel P Perl
- Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Sharon L Juliano
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
56
|
Al-Hajj S, Dhaini HR, Mondello S, Kaafarani H, Kobeissy F, DePalma RG. Beirut Ammonium Nitrate Blast: Analysis, Review, and Recommendations. Front Public Health 2021; 9:657996. [PMID: 34150702 PMCID: PMC8212863 DOI: 10.3389/fpubh.2021.657996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
A massive chemical detonation occurred on August 4, 2020 in the Port of Beirut, Lebanon. An uncontrolled fire in an adjacent warehouse ignited ~2,750 tons of Ammonium Nitrate (AN), producing one of the most devastating blasts in recent history. The blast supersonic pressure and heat wave claimed the lives of 220 people and injured more than 6,500 instantaneously, with severe damage to the nearby dense residential and commercial areas. This review represents one of the in-depth reports to provide a detailed analysis of the Beirut blast and its health and environmental implications. It further reviews prior AN incidents and suggests actionable recommendations and strategies to optimize chemical safety measures, improve emergency preparedness, and mitigate the delayed clinical effects of blast and toxic gas exposures. These recommended actionable steps offer a starting point for government officials and policymakers to build frameworks, adopt regulations, and implement chemical safety protocols to ensure safe storage of hazardous materials as well as reorganizing healthcare system disaster preparedness to improve emergency preparedness in response to similar large-scale disasters and promote population safety. Future clinical efforts should involve detailed assessment of physical injuries sustained by blast victims, with systemic mitigation and possible treatment of late blast effects involving individuals, communities and the region at large.
Collapse
Affiliation(s)
- Samar Al-Hajj
- Health Management and Policy, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Hassan R Dhaini
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Haytham Kaafarani
- Division of Trauma, Emergency Surgery and Surgical Critical Care. Massachusetts General Hospital, Boston, MA, United States
| | - Firas Kobeissy
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, United States
| |
Collapse
|
57
|
Evans LP, Roghair AM, Gilkes NJ, Bassuk AG. Visual Outcomes in Experimental Rodent Models of Blast-Mediated Traumatic Brain Injury. Front Mol Neurosci 2021; 14:659576. [PMID: 33935648 PMCID: PMC8081965 DOI: 10.3389/fnmol.2021.659576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022] Open
Abstract
Blast-mediated traumatic brain injuries (bTBI) cause long-lasting physical, cognitive, and psychological disorders, including persistent visual impairment. No known therapies are currently utilized in humans to lessen the lingering and often serious symptoms. With TBI mortality decreasing due to advancements in medical and protective technologies, there is growing interest in understanding the pathology of visual dysfunction after bTBI. However, this is complicated by numerous variables, e.g., injury location, severity, and head and body shielding. This review summarizes the visual outcomes observed by various, current experimental rodent models of bTBI, and identifies data showing that bTBI activates inflammatory and apoptotic signaling leading to visual dysfunction. Pharmacologic treatments blocking inflammation and cell death pathways reported to alleviate visual deficits in post-bTBI animal models are discussed. Notably, techniques for assessing bTBI outcomes across exposure paradigms differed widely, so we urge future studies to compare multiple models of blast injury, to allow data to be directly compared.
Collapse
Affiliation(s)
- Lucy P. Evans
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
| | - Ariel M. Roghair
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Noah J. Gilkes
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
58
|
Kawoos U, Abutarboush R, Gu M, Chen Y, Statz JK, Goodrich SY, Ahlers ST. Blast-induced temporal alterations in blood-brain barrier properties in a rodent model. Sci Rep 2021; 11:5906. [PMID: 33723300 PMCID: PMC7971015 DOI: 10.1038/s41598-021-84730-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
The consequences of blast-induced traumatic brain injury (bTBI) on the blood–brain barrier (BBB) and components of the neurovascular unit are an area of active research. In this study we assessed the time course of BBB integrity in anesthetized rats exposed to a single blast overpressure of 130 kPa (18.9 PSI). BBB permeability was measured in vivo via intravital microscopy by imaging extravasation of fluorescently labeled tracers (40 kDa and 70 kDa molecular weight) through the pial microvasculature into brain parenchyma at 2–3 h, 1, 3, 14, or 28 days after the blast exposure. BBB structural changes were assessed by immunostaining and molecular assays. At 2–3 h and 1 day after blast exposure, significant increases in the extravasation of the 40 kDa but not the 70 kDa tracers were observed, along with differential reductions in the expression of tight junction proteins (occludin, claudin-5, zona occluden-1) and increase in the levels of the astrocytic water channel protein, AQP-4, and matrix metalloprotease, MMP-9. Nearly all of these measures were normalized by day 3 and maintained up to 28 days post exposure. These data demonstrate that blast-induced changes in BBB permeability are closely coupled to structural and functional components of the BBB.
Collapse
Affiliation(s)
- Usmah Kawoos
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA. .,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA.
| | - Rania Abutarboush
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Ming Gu
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Ye Chen
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Jonathan K Statz
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Samantha Y Goodrich
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Stephen T Ahlers
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| |
Collapse
|
59
|
Marsh JL, Bentil SA. Cerebrospinal Fluid Cavitation as a Mechanism of Blast-Induced Traumatic Brain Injury: A Review of Current Debates, Methods, and Findings. Front Neurol 2021; 12:626393. [PMID: 33776887 PMCID: PMC7994250 DOI: 10.3389/fneur.2021.626393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 11/15/2022] Open
Abstract
Cavitation has gained popularity in recent years as a potential mechanism of blast-induced traumatic brain injury (bTBI). This review presents the most prominent debates on cavitation; how bubbles can form or exist within the cerebrospinal fluid (CSF) and brain vasculature, potential mechanisms of cellular, and tissue level damage following the collapse of bubbles in response to local pressure fluctuations, and a survey of experimental and computational models used to address cavitation research questions. Due to the broad and varied nature of cavitation research, this review attempts to provide a necessary synthesis of cavitation findings relevant to bTBI, and identifies key areas where additional work is required. Fundamental questions about the viability and likelihood of CSF cavitation during blast remain, despite a variety of research regarding potential injury pathways. Much of the existing literature on bTBI evaluates cavitation based off its prima facie plausibility, while more rigorous evaluation of its likelihood becomes increasingly necessary. This review assesses the validity of some of the common assumptions in cavitation research, as well as highlighting outstanding questions that are essential in future work.
Collapse
Affiliation(s)
- Jenny L Marsh
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| | - Sarah A Bentil
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
60
|
Jones C, Harasym J, Miguel-Cruz A, Chisholm S, Smith-MacDonald L, Brémault-Phillips S. Neurocognitive Assessment Tools for Military Personnel With Mild Traumatic Brain Injury: Scoping Literature Review. JMIR Ment Health 2021; 8:e26360. [PMID: 33616538 PMCID: PMC7939942 DOI: 10.2196/26360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) occurs at a higher frequency among military personnel than among civilians. A common symptom of mTBIs is cognitive dysfunction. Health care professionals use neuropsychological assessments as part of a multidisciplinary and best practice approach for mTBI management. Such assessments support clinical diagnosis, symptom management, rehabilitation, and return-to-duty planning. Military health care organizations currently use computerized neurocognitive assessment tools (NCATs). NCATs and more traditional neuropsychological assessments present unique challenges in both clinical and military settings. Many research gaps remain regarding psychometric properties, usability, acceptance, feasibility, effectiveness, sensitivity, and utility of both types of assessments in military environments. OBJECTIVE The aims of this study were to explore evidence regarding the use of NCATs among military personnel who have sustained mTBIs; evaluate the psychometric properties of the most commonly tested NCATs for this population; and synthesize the data to explore the range and extent of NCATs among this population, clinical recommendations for use, and knowledge gaps requiring future research. METHODS Studies were identified using MEDLINE, Embase, American Psychological Association PsycINFO, CINAHL Plus with Full Text, Psych Article, Scopus, and Military & Government Collection. Data were analyzed using descriptive analysis, thematic analysis, and the Randolph Criteria. Narrative synthesis and the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews) guided the reporting of findings. The psychometric properties of NCATs were evaluated with specific criteria and summarized. RESULTS Of the 104 papers, 33 met the inclusion criteria for this scoping review. Thematic analysis and NCAT psychometrics were reported and summarized. CONCLUSIONS When considering the psychometric properties of the most commonly used NCATs in military populations, these assessments have yet to demonstrate adequate validity, reliability, sensitivity, and clinical utility among military personnel with mTBIs. Additional research is needed to further validate NCATs within military populations, especially for those living outside of the United States and individuals experiencing other conditions known to adversely affect cognitive processing. Knowledge gaps remain, warranting further study of psychometric properties and the utility of baseline and normative testing for NCATs.
Collapse
Affiliation(s)
- Chelsea Jones
- Heroes in Mind, Advocacy and Research Consortium, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- 1 Field Ambulance Physical Rehabilitation Department, Canadian Forces Health Services, Department of National Defense, Edmonton, AB, Canada
| | - Jessica Harasym
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Institute for Stuttering Treatment and Research, Faculty of Rehabilitation, University of Alberta, Edmonton, AB, Canada
| | - Antonio Miguel-Cruz
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Glenrose Rehabilitation Hospital Research Innovation and Technology, Glenrose Rehabilitation Hospital, Edmonton, AB, Canada
| | - Shannon Chisholm
- Heroes in Mind, Advocacy and Research Consortium, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Lorraine Smith-MacDonald
- Heroes in Mind, Advocacy and Research Consortium, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Suzette Brémault-Phillips
- Heroes in Mind, Advocacy and Research Consortium, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
61
|
Vartanian O, Tenn C, Rhind SG, Nakashima A, Di Battista AP, Sergio LE, Gorbet DJ, Fraser DD, Colantonio A, King K, Lam Q, Saunders D, Jetly R. Blast in Context: The Neuropsychological and Neurocognitive Effects of Long-Term Occupational Exposure to Repeated Low-Level Explosives on Canadian Armed Forces' Breaching Instructors and Range Staff. Front Neurol 2020; 11:588531. [PMID: 33343492 PMCID: PMC7744759 DOI: 10.3389/fneur.2020.588531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
Currently, there is strong interest within the military to better understand the effects of long-term occupational exposure to repeated low-level blast on health and performance. To gain traction on the chronic sequelae of blast, we focused on breaching—a tactical technique for gaining entry into closed/blocked spaces by placing explosives and maintaining a calculated safe distance from the detonation. Using a cross-sectional design, we compared the neuropsychological and neurocognitive profiles of breaching instructors and range staff to sex- and age-matched Canadian Armed Forces (CAF) controls. Univariate tests demonstrated that breaching was associated with greater post-concussive symptoms (Rivermead Post Concussion Symptoms Questionnaire) and lower levels of energy (RAND SF-36). In addition, breaching instructors and range staff were slower on a test that requires moving and thinking simultaneously (i.e., cognitive-motor integration). Next, using a multivariate approach, we explored the impact of other possible sources of injury, including concussion and prior war-zone deployment on the same outcomes. Concussion history was associated with higher post-concussive scores and musculoskeletal problems, whereas deployment was associated with higher post-concussive scores, but lower energy and greater PTSD symptomatology (using PCL-5). Our results indicate that although breaching, concussion, and deployment were similarly correlated with greater post-concussive symptoms, concussion history appears to be uniquely associated with altered musculoskeletal function, whereas deployment history appears to be uniquely associated with lower energy and risk of PTSD. We argue that the broader injury context must, therefore, be considered when studying the impact of repetitive low-level explosives on health and performance in military members.
Collapse
Affiliation(s)
- Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Alex P Di Battista
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Diana J Gorbet
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Douglas D Fraser
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | | | - Kristen King
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Quan Lam
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Doug Saunders
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Rakesh Jetly
- Canadian Forces Health Services, Ottawa, ON, Canada
| |
Collapse
|
62
|
Muresanu DF, Sharma A, Sahib S, Tian ZR, Feng L, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma HS. Diabetes exacerbates brain pathology following a focal blast brain injury: New role of a multimodal drug cerebrolysin and nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:285-367. [PMID: 33223037 DOI: 10.1016/bs.pbr.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blast brain injury (bBI) is a combination of several forces of pressure, rotation, penetration of sharp objects and chemical exposure causing laceration, perforation and tissue losses in the brain. The bBI is quite prevalent in military personnel during combat operations. However, no suitable therapeutic strategies are available so far to minimize bBI pathology. Combat stress induces profound cardiovascular and endocrine dysfunction leading to psychosomatic disorders including diabetes mellitus (DM). This is still unclear whether brain pathology in bBI could exacerbate in DM. In present review influence of DM on pathophysiology of bBI is discussed based on our own investigations. In addition, treatment with cerebrolysin (a multimodal drug comprising neurotrophic factors and active peptide fragments) or H-290/51 (a chain-breaking antioxidant) using nanowired delivery of for superior neuroprotection on brain pathology in bBI in DM is explored. Our observations are the first to show that pathophysiology of bBI is exacerbated in DM and TiO2-nanowired delivery of cerebrolysin induces profound neuroprotection in bBI in DM, not reported earlier. The clinical significance of our findings with regard to military medicine is discussed.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
63
|
Phipps H, Mondello S, Wilson A, Dittmer T, Rohde NN, Schroeder PJ, Nichols J, McGirt C, Hoffman J, Tanksley K, Chohan M, Heiderman A, Abou Abbass H, Kobeissy F, Hinds S. Characteristics and Impact of U.S. Military Blast-Related Mild Traumatic Brain Injury: A Systematic Review. Front Neurol 2020; 11:559318. [PMID: 33224086 PMCID: PMC7667277 DOI: 10.3389/fneur.2020.559318] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022] Open
Abstract
As a result of armed conflict, head trauma from exposure to blasts is an increasing critical health issue, particularly among military service members. Whilst numerous studies examined the burden of blast-related brain injuries on service members', few systematic reviews have been published. This work provides a comprehensive summary of the evidence on blast-related mild traumatic brain injury (mTBI) burden in active U.S. military service members and inactive Veterans, describing characteristics and outcomes. Records published up to April 2017 were identified through a search of PubMed, Web of Science, Scopus, Ovid MEDLINE, and Cochrane Library. Records-based and original research reporting on U.S. military service members and Veterans with mild blast TBI were included. Data on subject characteristics, exposure, diagnostic criterion, and outcomes were extracted from included studies using a standardized extraction form and were presented narratively. Of the 2,290 references identified by the search, 106 studies with a total of 37,515 participants met inclusion criteria for blast-related mTBI. All but nine studies were based out of military or Veteran medical facilities. Unsurprisingly, men were over-represented (75–100%). The criteria used to define blast-related mTBI were consistent; however, the methodology used to ascertain whether individuals met those criteria for diagnosis were inconsistent. The diagnosis, most prevalent among the Army, heavily relied on self-reported histories. Commonly reported adverse outcomes included hearing disturbances and headaches. The most frequently associated comorbidities were post-traumatic stress disorder, depression, anxiety, sleep disorders, attention disorders, and cognitive disorders. The primary objective of this review was to provide a summary of descriptive data on blast-related mTBI in a U.S. military population. Low standardization of the methods for reaching diagnosis and problems in the study reporting emphasize the importance to collect high-quality data to fill knowledge gaps pertaining to blast-related mTBI.
Collapse
Affiliation(s)
- Helen Phipps
- Booz Allen Hamilton, San Antonio, TX, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | | | | | | | | | | | | | | | | | | | | | - Hussein Abou Abbass
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, United States
| | - Sidney Hinds
- Medical Research and Development Command, Ft Detrick, MD, United States
| |
Collapse
|
64
|
Blast-Induced Traumatic Brain Injuries: Experience from the Deadliest Double Suicide Bombing Attack in Iraq. World Neurosurg 2020; 145:e192-e201. [PMID: 33045452 DOI: 10.1016/j.wneu.2020.09.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Blast-induced traumatic brain injuries (bTBIs) are increasingly frequent in civilian settings. We present the first study of individuals with bTBI in Iraq. The study focuses on one of the deadliest suicide car bomb attacks in Iraq and uses it to show the devastating nature of bTBIs. METHODS This study was conducted at the Neurosurgery Teaching Hospital in Baghdad, Iraq. A retrospective chart analysis of patients with bTBI admitted to the Neurosurgery Teaching Hospital was performed. Measured parameters included patients' demographics, initial presentation, injury patterns, hospital course, surgical management, and outcomes. RESULTS A total of 75 patients with bTBI were included in this study, 19 of whom died in the emergency room. The remaining 56 patients were admitted to the hospital. Of those patients, 68.6% (n = 39) underwent surgery, and 30.4% were managed conservatively. A modified, tailored triaging system was implemented. All surgery was guided by the principles of damage control neurosurgery. In addition, 76.9% and 46.2% of patients underwent corticectomy and decompressive craniectomy, respectively. Dural venous sinus repair was performed in 17.9% of patients, and 30.7% of the operations entailed additional steps to control major (arterial) cerebrovascular bleeding. The net bTBI-related complication rate was 76%. The total mortality was 48%. Of survivors, 10.7% (n = 8) were discharged with a severe disability. Overall, good outcomes were achieved in 41.3% of the patients. CONCLUSIONS This study sheds light on the devastating nature of bTBIs. Neurosurgeons worldwide need to be mindful of the unique triaging, diagnostic, and management requirements of these injuries.
Collapse
|
65
|
Jones C, O'Toole K, Jones K, Brémault-Phillips S. Quality of Psychoeducational Apps for Military Members With Mild Traumatic Brain Injury: An Evaluation Utilizing the Mobile Application Rating Scale. JMIR Mhealth Uhealth 2020; 8:e19807. [PMID: 32808937 PMCID: PMC7463411 DOI: 10.2196/19807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Military personnel have an elevated risk of sustaining mild traumatic brain injuries (mTBI) and postconcussion symptoms (PCS). Smartphone apps that provide psychoeducation may assist those with mTBI or PCS to overcome unique barriers that military personnel experience with stigma and access to health care resources. OBJECTIVE This study aims to (1) use the Mobile Application Rating Scale (MARS) to evaluate smartphone apps purporting to provide psychoeducation for those who have sustained an mTBI or a PCS; (2) explore the relevance, utility, and effectiveness of these apps in facilitating symptom management and overall recovery from mTBI and PCS among military personnel; and (3) discuss considerations pertinent to health care professionals and patients with mTBI when considering the use of mobile health (mHealth), including apps for mTBI psychoeducation. METHODS A five-step systematic search for smartphone apps for military members with mTBI or PCS was conducted on January 31, 2020. Cost-free apps meeting the inclusion criteria were evaluated using the MARS and compared with evidence-based best practice management protocols for mTBI and PCS. RESULTS The search yielded a total of 347 smartphone apps. After applying the inclusion and exclusion criteria, 13 apps were subjected to evaluation. Two apps were endorsed by the US Department of Veterans Affairs and the US Department of Defense; all the others (n=11) were developed for civilians. When compared with evidence-based best practice resources, the apps provided various levels of psychoeducational content. There are multiple considerations that health care professionals and those who sustain an mTBI or a PCS have to consider when choosing to use mHealth and selecting a specific app for mTBI psychoeducation. These may include factors such as the app platform, developer, internet requirement, cost, frequency of updates, language, additional features, acknowledgment of mental health, accessibility, military specificity, and privacy and security of data. CONCLUSIONS Psychoeducational interventions have a good evidence base as a treatment for mTBI and PCS. The use of apps for this purpose may be clinically effective, cost-effective, confidential, user friendly, and accessible. However, more research is needed to explore the effectiveness, usability, safety, security, and accessibility of apps designed for mTBI management.
Collapse
Affiliation(s)
- Chelsea Jones
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada.,Canadian Forces Health Services, Department of National Defence, Government of Canada, Ottawa, ON, Canada
| | - Kaitlin O'Toole
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kevin Jones
- Edmonton North Primary Care Network, Edmonton, AB, Canada
| | - Suzette Brémault-Phillips
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
66
|
Nagappan PG, Chen H, Wang DY. Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Mil Med Res 2020; 7:30. [PMID: 32527334 PMCID: PMC7288425 DOI: 10.1186/s40779-020-00259-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Neuronal networks, especially those in the central nervous system (CNS), evolved to support extensive functional capabilities while ensuring stability. Several physiological "brakes" that maintain the stability of the neuronal networks in a healthy state quickly become a hinderance postinjury. These "brakes" include inhibition from the extracellular environment, intrinsic factors of neurons and the control of neuronal plasticity. There are distinct differences between the neuronal networks in the peripheral nervous system (PNS) and the CNS. Underpinning these differences is the trade-off between reduced functional capabilities with increased adaptability through the formation of new connections and new neurons. The PNS has "facilitators" that stimulate neuroregeneration and plasticity, while the CNS has "brakes" that limit them. By studying how these "facilitators" and "brakes" work and identifying the key processes and molecules involved, we can attempt to apply these theories to the neuronal networks of the CNS to increase its adaptability. The difference in adaptability between the CNS and PNS leads to a difference in neuroregenerative properties and plasticity. Plasticity ensures quick functional recovery of abilities in the short and medium term. Neuroregeneration involves synthesizing new neurons and connections, providing extra resources in the long term to replace those damaged by the injury, and achieving a lasting functional recovery. Therefore, by understanding the factors that affect neuroregeneration and plasticity, we can combine their advantages and develop rehabilitation techniques. Rehabilitation training methods, coordinated with pharmacological interventions and/or electrical stimulation, contributes to a precise, holistic treatment plan that achieves functional recovery from nervous system injuries. Furthermore, these techniques are not limited to limb movement, as other functions lost as a result of brain injury, such as speech, can also be recovered with an appropriate training program.
Collapse
Affiliation(s)
| | - Hong Chen
- Shengli Clinical College of Fujian Medical University; Department of Neurology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|