51
|
Alsharairi NA. The Role of Short-Chain Fatty Acids in Mediating Very Low-Calorie Ketogenic Diet-Infant Gut Microbiota Relationships and Its Therapeutic Potential in Obesity. Nutrients 2021; 13:3702. [PMID: 34835958 PMCID: PMC8624546 DOI: 10.3390/nu13113702] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
As the very low-calorie ketogenic diet (VLCKD) gains increased interest as a therapeutic approach for many diseases, little is known about its therapeutic use in childhood obesity. Indeed, the role of VLCKD during pregnancy and lactation in influencing short chain fatty acid (SCFA)-producing bacteria and the potential mechanisms involved in the protective effects on obesity are still unclear. Infants are characterized by a diverse gut microbiota composition with higher abundance of SCFA-producing bacteria. Maternal VLCKD during pregnancy and lactation stimulates the growth of diverse species of SCFA-producing bacteria, which may induce epigenetic changes in infant obese gene expression and modulate adipose tissue inflammation in obesity. Therefore, this review aims to determine the mechanistic role of SCFAs in mediating VLCKD-infant gut microbiota relationships and its protective effects on obesity.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
52
|
Ceylan Hİ, Saygın Ö. An investigation of the relationship between new fasting hormone asprosin, obesity and acute-chronic exercise: current systematic review. Arch Physiol Biochem 2021; 127:373-384. [PMID: 32427509 DOI: 10.1080/13813455.2020.1767652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purpose of this study was to reveal the relationship between new fasting hormone asprosin, obesity, and acute-chronic exercise. The prisma guidelines were followed in forming the methodological model of this review. The articles between 2016 and 2020 (including March) were identified by scanning Google Scholar, Pub Med, and Science Direct databases. Thirty-five articles were defined from 188 articles. Three cross-sectional, and 1 prospective cohort design studies in adults, and 3 cross-sectional studies in children were found. Three randomised-control group designed studies which examined the effect of acute exercise on serum asprosin levels in obese individuals. Asprosin may be a new therapeutic biomarker to be considered in the development, but long-term and deep-rooted researches are needed, and increasing the number of studies examining the effect of exercise on asprosin in the future might help us to identify the mechanisms underlying the decrease or increase in asprosin after exercise.
Collapse
Affiliation(s)
- Halil İbrahim Ceylan
- Faculty of Kazim Karabekir Education, Physical Education and Sports Teaching Department, Ataturk University, Erzurum, Turkey
| | - Özcan Saygın
- Faculty of Sports Sciences, Coaching Science Department, Mugla Sitki Kocman University, Muğla, Turkey
| |
Collapse
|
53
|
Kerem L, Lawson EA. The Effects of Oxytocin on Appetite Regulation, Food Intake and Metabolism in Humans. Int J Mol Sci 2021; 22:7737. [PMID: 34299356 PMCID: PMC8306733 DOI: 10.3390/ijms22147737] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022] Open
Abstract
The hypothalamic peptide oxytocin and its receptor are involved in a range of physiological processes, including parturition, lactation, cell growth, wound healing, and social behavior. More recently, increasing evidence has established the effects of oxytocin on food intake, energy expenditure, and peripheral metabolism. In this review, we provide a comprehensive description of the central oxytocinergic system in which oxytocin acts to shape eating behavior and metabolism. Next, we discuss the peripheral beneficial effects oxytocin exerts on key metabolic organs, including suppression of visceral adipose tissue inflammation, skeletal muscle regeneration, and bone tissue mineralization. A brief summary of oxytocin actions learned from animal models is presented, showing that weight loss induced by chronic oxytocin treatment is related not only to its anorexigenic effects, but also to the resulting increase in energy expenditure and lipolysis. Following an in-depth discussion on the technical challenges related to endogenous oxytocin measurements in humans, we synthesize data related to the association between endogenous oxytocin levels, weight status, metabolic syndrome, and bone health. We then review clinical trials showing that in humans, acute oxytocin administration reduces food intake, attenuates fMRI activation of food motivation brain areas, and increases activation of self-control brain regions. Further strengthening the role of oxytocin in appetite regulation, we review conditions of hypothalamic insult and certain genetic pathologies associated with oxytocin depletion that present with hyperphagia, extreme weight gain, and poor metabolic profile. Intranasal oxytocin is currently being evaluated in human clinical trials to learn whether oxytocin-based therapeutics can be used to treat obesity and its associated sequela. At the end of this review, we address the fundamental challenges that remain in translating this line of research to clinical care.
Collapse
Affiliation(s)
- Liya Kerem
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
54
|
Noer ER, Dewi L, Kuo CH. Fermented soybean enhances post-meal response in appetite-regulating hormones among Indonesian girls with obesity. Obes Res Clin Pract 2021; 15:339-344. [PMID: 34147377 DOI: 10.1016/j.orcp.2021.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To assess the post-meal response in appetite-regulating hormones acyl-ghrelin and insulin after fermented soybean (tempeh) consumption in girls with obesity. METHODS A randomized counter-balanced crossover study was conducted using a breakfast (307 kcal, protein: 28%, fat: 23%, and carbohydrate: 55%) containing fermented soybean or isocaloric non-fermented soybean among 13 females (aged 18-20 y; BMI 25-30) after an overnight fast. The outcome variables were plasma acyl-ghrelin, insulin, arginine and score of the visual analog scale (VAS) appetite questionnaire. RESULTS While no change was observed after the non-fermented soybean meal, plasma acyl-ghrelin decreased by 35% at 30 min and remained below baseline until 120 min after the fermented soybean meal (P < 0.05). Plasma insulin increased after consumption of both meals and fermented soybean meal-induced 30% greater response in insulin at 120 min than non-fermented soybean meal (P < 0.05). Circulating arginine levels were slightly greater (24%) at 120 min after the fermented soybean meal than the non-fermented soybean meal (P < 0.05). No difference in subjective appetite was observed between the fermented soybean meal and the non-fermented soybean meal. CONCLUSIONS Fermented soybean meal induced greater response in appetite-regulating hormones compared with non-fermented soybean meal. No difference in post-meal satiety feeling between fermented and non-fermented soybean meal suggests poor sensitivity of the brain to the appetite-regulating hormones among girls with obesity.
Collapse
Affiliation(s)
- Etika Ratna Noer
- Department of Nutrition, Diponegoro University, Semarang, Indonesia
| | - Luthfia Dewi
- Department of Nutrition, Universitas Muhammadiyah Semarang, Indonesia; Institute of Sports Sciences, College of Kinesiology, University of Taipei, Taipei 11153, Taiwan
| | - Chia-Hua Kuo
- Institute of Sports Sciences, College of Kinesiology, University of Taipei, Taipei 11153, Taiwan; Laboratory of Exercise Biochemistry, College of Kinesiology, University of Taipei, Taipei 11153, Taiwan.
| |
Collapse
|
55
|
Kuchler JC, Siqueira BS, Ceglarek VM, Chasko FV, Moura IC, Sczepanhak BF, Vettorazzi JF, Balbo SL, Grassiolli S. The Vagus Nerve and Spleen: Influence on White Adipose Mass and Histology of Obese and Non-obese Rats. Front Physiol 2021; 12:672027. [PMID: 34248663 PMCID: PMC8269450 DOI: 10.3389/fphys.2021.672027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
The vagus nerve (VN) and spleen represent a complex interface between neural and immunological functions, affecting both energy metabolism and white adipose tissue (WAT) content. Here, we evaluated whether vagal and splenic axis participates in WAT mass regulation in obese and non-obese male Wistar rats. High doses of monosodium glutamate (M; 4 g/Kg) were administered during the neonatal period to induce hypothalamic lesion and obesity (M-Obese rats). Non-obese or Control (CTL) rats received equimolar saline. At 60 days of life, M-Obese and CTL rats were randomly distributed into experimental subgroups according to the following surgical procedures: sham, subdiaphragmatic vagotomy (SV), splenectomy (SPL), and SV + SPL (n = 11 rats/group). At 150 days of life and after 12 h of fasting, rats were euthanized, blood was collected, and the plasma levels of glucose, triglycerides, cholesterol, insulin, and interleukin 10 (IL10) were analyzed. The visceral and subcutaneous WAT depots were excised, weighed, and histologically evaluated for number and size of adipocytes as well as IL10 protein expression. M-Obese rats showed higher adiposity, hyperinsulinemia, hypertriglyceridemia, and insulin resistance when compared with CTL groups (p < 0.05). In CTL and M-Obese rats, SV reduced body weight gain and triglycerides levels, diminishing adipocyte size without changes in IL10 expression in WAT (p< 0.05). The SV procedure resulted in high IL10 plasma levels in CTL rats, but not in the M-Obese group. The splenectomy prevented the SV anti-adiposity effects, as well as blocked the elevation of IL10 levels in plasma of CTL rats. In contrast, neither SV nor SPL surgeries modified the plasma levels of IL10 and IL10 protein expression in WAT from M-Obese rats. In conclusion, vagotomy promotes body weight and adiposity reduction, elevating IL10 plasma levels in non-obese animals, in a spleen-dependent manner. Under hypothalamic obesity conditions, VN ablation also reduces body weight gain and adiposity, improving insulin sensitivity without changes in IL10 protein expression in WAT or IL10 plasma levels, in a spleen-independent manner. Our findings indicate that the vagal-spleen axis influence the WAT mass in a health state, while this mechanism seems to be disturbed in hypothalamic obese animals.
Collapse
Affiliation(s)
- Joice Cristina Kuchler
- Postgraduate Program in Applied Health Sciences, Western Paraná State University, Francisco Beltrão, Brazil
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| | - Bruna Schumaker Siqueira
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| | - Vanessa Marieli Ceglarek
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Biological Sciences, Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Vigilato Chasko
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| | - Isllany Carvalho Moura
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| | - Bruna Fatima Sczepanhak
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| | | | - Sandra Lucinei Balbo
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| | - Sabrina Grassiolli
- Postgraduate Program in Applied Health Sciences, Western Paraná State University, Francisco Beltrão, Brazil
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| |
Collapse
|
56
|
Neuropeptidergic Control of Feeding: Focus on the Galanin Family of Peptides. Int J Mol Sci 2021; 22:ijms22052544. [PMID: 33802616 PMCID: PMC7961366 DOI: 10.3390/ijms22052544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity/overweight are important health problems due to metabolic complications. Dysregulation of peptides exerting orexigenic/anorexigenic effects must be investigated in-depth to understand the mechanisms involved in feeding behaviour. One of the most important and studied orexigenic peptides is galanin (GAL). The aim of this review is to update the mechanisms of action and physiological roles played by the GAL family of peptides (GAL, GAL-like peptide, GAL message-associated peptide, alarin) in the control of food intake and to review the involvement of these peptides in metabolic diseases and food intake disorders in experimental animal models and humans. The interaction between GAL and NPY in feeding and energy metabolism, the relationships between GAL and other substances involved in food intake mechanisms, the potential pharmacological strategies to treat food intake disorders and obesity and the possible clinical applications will be mentioned and discussed. Some research lines are suggested to be developed in the future, such as studies focused on GAL receptor/neuropeptide Y Y1 receptor interactions in hypothalamic and extra-hypothalamic nuclei and sexual differences regarding the expression of GAL in feeding behaviour. It is also important to study the possible GAL resistance in obese individuals to better understand the molecular mechanisms by which GAL regulates insulin/glucose metabolism. GAL does not exert a pivotal role in weight regulation and food intake, but this role is crucial in fat intake and also exerts an important action by regulating the activity of other key compounds under conditions of stress/altered diet.
Collapse
|
57
|
Psychobiology of Appetite and Food Reward in Adults with Type 1 and Type 2 Diabetes: Is there a Role for Exercise? Can J Diabetes 2020; 44:768-774. [PMID: 33279099 DOI: 10.1016/j.jcjd.2020.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
Hyperglycemia is the defining feature of type 1 diabetes (T1D) and type 2 diabetes (T2D) and results from deficient insulin production, impaired insulin-stimulated glucose uptake or both. It is now well established that hyperglycemia results in profound metabolic complications, but the effect of diabetes and its associated metabolic effects on homeostatic and hedonic appetite control has received less attention. Inappropriate food choices and excess food intake might promote weight gain, further exacerbating the metabolic consequences of T1D and T2D. The need to control blood glucose through diet, physical activity and/or medication as a consequence of impaired insulin secretion and/or sensitivity adds a further level of physiological and behavioural complexity to the processes underlying food choice and appetite control. Alterations in appetite-related processes have been noted in people with T2D, but the effect of T1D on appetite is largely unexplored. Peripheral neuroendocrine signalling appears disrupted in people with T2D, and brain regions involved in the central modulation of appetite might display central insulin resistance. However, it is difficult to isolate the consequences of T2D from those of obesity. Health-care policy advocates the use of physical activity as a means of preventing and treating T2D via the promotion of weight loss and its independent influence on insulin sensitivity. Exercise-induced perturbations to energy balance can elicit biological and behavioural compensation that attenuates weight loss, and diabetes pathophysiology might alter the strength of such compensation. However, the effect of exercise on appetite in people living with diabetes has yet to be fully explored.
Collapse
|
58
|
Zaplatosch ME, Adams WM. The Effect of Acute Hypohydration on Indicators of Glycemic Regulation, Appetite, Metabolism and Stress: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12092526. [PMID: 32825404 PMCID: PMC7551868 DOI: 10.3390/nu12092526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Evidence synthesizing the effects of acute body water losses on various markers of glycemic regulation, appetite, metabolism, and stress is lacking. Thus, the purpose of this review was to summarize the response of various hormonal changes involved in these physiologic functions to dehydration. A comprehensive literature search for peer-reviewed research in the databases PubMed, Scopus, CINAHL, and SportDiscus was conducted. Studies were included if they contained samples of adults (>18 years) and experimentally induced dehydration as measured by acute body mass loss. Twenty-one articles were eligible for inclusion. Findings suggested cortisol is significantly elevated with hypohydration (standard mean difference [SMD] = 1.12, 95% CI [0.583, 1.67], p < 0.0001). Testosterone was significantly lower in studies where hypohydration was accompanied by caloric restriction (SMD= -1.04, 95% CI [-1.93, -0.14], p = 0.02), however, there were no changes in testosterone in studies examining hypohydration alone (SMD = -0.17, 95% CI [-0.51 0.16], p = 0.30). Insulin and ghrelin were unaffected by acute total body water losses. Acute hypohydration increases markers of catabolism but has a negligible effect on markers of glycemic regulation, appetite, anabolism and stress. Given the brevity of existing research, further research is needed to determine the impact of hydration on glucagon, leptin, peptide YY and the subsequent outcomes relevant to both health and performance.
Collapse
|
59
|
Chen C, Zhou Y, Huang R, Wang M, Li Y, Li J. [Bile acids regulate anorexigenic neuropeptide through p-STAT3-SOCS3 signaling in mouse hypothalamic cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1001-1007. [PMID: 32895154 DOI: 10.12122/j.issn.1673-4254.2020.07.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the effects of taurolithocholic acid (tLCA) and chenodeoxycholic acid (CDCA) on the expression of aorexigenic neuropeptide in mouse hypothalamus GT1-7 cells. METHODS Mouse hypothalamic GT1-7 cells were treated with culture medium containing 10% FBS (control group, n=3) or with 10 nmol/L, 100 nmol/L, 1 μmol/L and 10 μmol/L tLCA (tLCA group, n=3) or CDCA (CDCA group, n=3) for 12, 24 or 48 h. Real-time PCR was performed to determine the expression levels of proopiomelanocortin (POMC) mRNA in the cells, and the production levels of α-melanocyte-stimulating hormone (α-MSH) were assessed using an ELISA kit. Signal transduction and activator of transcription 3 phosphorylation (p-STAT3), threonine kinase phosphorylation (p-AKT), suppressor of cytokine signaling 3 (SOCS3), G protein-coupled bile acid receptor-1 (TGR5) and farnesoid X receptor (FXR) protein were detected by Western blotting. RESULTS Western blotting results showed that mouse hypothalamic GT1-7 cells expressed two bile acid receptors, TGR5 and FXR, whose expressions were regulated by bile acids. Real-time PCR showed that the expression of POMC mRNA was significantly increased in the cells after treatment with 10 μmol/L tLCA or CDCA for 24 h. POMC-derived anorexigenic peptide α-MSH increased significantly in GT1-7 cells after treatment with 10 μmol/L tLCA or CDCA for 24 h. Treatment of the cells with tLCA or CDCA significantly increased the expressions of intracellular signaling proteins including p-STAT3, p-AKT and SOCS3. CONCLUSIONS Mouse hypothalamic GT1-7 cells express bile acid receptors TGR5 and FXR. Bile acids tLCA or CDCA can promote the expression of POMC mRNA and increase the production of the anorexigenic peptide α-MSH. The intracellular signaling proteins p-AKT, p-STAT3 and SOCS3 are likely involved in bile acid-induced anorexigenic peptide production.
Collapse
Affiliation(s)
- Chunxiu Chen
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing 400016, China.,Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong Zhou
- People's Hospital of Banan District, Chongqing 401320, China
| | - Rongfeng Huang
- Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Miaoran Wang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing 400016, China.,Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Li
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing 400016, China.,Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jibin Li
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing 400016, China
| |
Collapse
|
60
|
Абатуров А, Никулина А. Antibiotic Therapy as a Risk Factor of Obesity Development in Children. ПЕДИАТРИЯ. ВОСТОЧНАЯ ЕВРОПА 2020:268-290. [DOI: 10.34883/pi.2020.8.2.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Настоящий обзор научной литературы посвящен вопросам, связанным с механизмами антибактериально-индуцированного адипогенеза. Антибиотиками, наиболее высоко ассоциированными с развитием ожирения у детей, считают: амоксициллин, цефотаксим, макролиды, тетрациклины, ванкомицин. На основании результатов филогенетических, метагеномных исследований эффектов антибиотиков установлено, что их применение в антенатальном, раннем постнатальном периоде приводит к пролонгированным изменениям как состава, так и функционирования микробиома, которые ассоциированы с повышенным риском последующего увеличения массы тела ребенка. Механизмы непосредственного влияния антибиотиков на адипогенез связаны с их способностью повышать аппетит за счет стимуляции высвобождения орексина и меланин-концентрирующего гормона; увеличивать абсорбцию пищевых ингредиентов; активировать липогенез; индуцировать митохондриальную дисфункцию и тем самым способствовать накоплению жирных кислот. Применение антибиотиков существенно изменяет структуру микробиома кишечника, а именно: развитие ожирения связано с высоким уровнем представительства бактерий филюмов Actinobacteria и Firmicutes в сочетании со снижением численности бактерий Bacteroidetes, Verrucomicrobia и Faecalibacterium prausnitzii. Антибиотик-индуцированные изменения микробиома могут существенно влиять на аппетит, так как уровень грелина, вызывающего аппетит, положительно коррелирует с представительством бактерий Bacteroides и Prevotella, и отрицательно – с численностью бактерий Bifidobacterium, Lactobacillus, Blautia coccoides и Eubacterium rectale. Доказано, что применение некоторых антибиотиков сопровождается не только накоплением висцерального жира, но и приводит к развитию как неалкогольной болезни печени, так и инсулинорезистентности. Рецепторы FXR и TGR5 являются сенсорами изменений микробиоты кишечника, которые участвуют в регуляции метаболических процессов макроорганизма. Развитие ожирения характеризуется наличием низкоуровневого системного воспаления. При развитии ожирения по мере увеличения размеров адипоцитов фенотип макрофагов меняется на провоспалительный фенотип М1. Накопление провоспалительных клеток в висцеральной жировой ткани является важной причиной развития инсулинорезистентности. В настоящее время необходимость применения антибиотиков при лечении инфекционных заболеваний, вызванных бактериальными агентами, не вызывает никаких клинических сомнений. Однако появление научных сведений о метаболических эффектах, возникновение которых ассоциировано с антибиотикотерапией, ставит клинические новые задачи, решение которых, вероятно, лежит в оптимизации режимов применения антибиотиков и выборе сопровождающих лекарственных средств.
This review of scientific literature is devoted to issues related to the mechanisms of antibacterial- induced adipogenesis. The antibiotics most highly associated with the development of obesity in children are the following: amoxicillin, cefotaxime, macrolides, tetracyclines, vancomycin. On the base of the results of phylogenetic, metagenomic studies of the effects of antibiotics, it was found that their use in the antenatal, early postnatal period leads to prolonged changes in both the composition and functioning of the microbiome, which is associated with the increased risk of subsequent increase of body weight of the child. The mechanisms of direct effect of antibiotics on adipogenesis are associated with their ability to increase appetite, by stimulating the release of orexin and melanin-concentrating hormone; increase the absorption of food ingredients; activate lipogenesis; induce mitochondrial dysfunction and thereby contribute to accumulation of fatty acids. The use of antibiotics significantly changes the structure of the intestinal microbiome, namely, the development of obesity is associated with a high representation of phylum bacteria Actinobacteria and Firmicutes in combination with the decrease of the number of bacteria Bacteroidetes, Verrucomicrobia and Faecalibacterium prausnitzii. Antibiotic-induced changes in the microbiome can significantly affect appetite, because the level of ghrelin that causes appetite positively correlates with the presence of bacteria Bacteroides and Prevotella, and negatively with the number of bacteria Bifidobacterium, Lactobacillus, Blautia coccoides and Eubacterium rectale. It was proved that the use of certain antibiotics is accompanied not only by the accumulation of visceral fat, but also leads to the development of both non-alcoholic liver disease and insulin resistance. The FXR and TGR5 receptors are the sensors of changes in the intestinal microbiota, which is involved in the regulation of the metabolic processes of the macroorganism. The development of obesity is characterized by the presence of low-level systemic inflammation. With the development of obesity, as the size of adipocytes increases, the macrophage phenotype changes to the pro- inflammatory M1 phenotype. The accumulation of pro-inflammatory cells in visceral adipose tissue is an important reason for development of insulin resistance. Currently, the need for antibiotics in the treatment of infectious diseases caused by bacterial agents does not raise any clinical doubts. However, the emergence of scientific information about metabolic effects, the occurrence of which is associated with antibiotic therapy, presents new clinical challenges, the solution of which probably lies in optimizing antibiotic regimens and choosing the accompanying drugs.
Collapse
|
61
|
Paolacci S, Kiani AK, Manara E, Beccari T, Ceccarini MR, Stuppia L, Chiurazzi P, Dalla Ragione L, Bertelli M. Genetic contributions to the etiology of anorexia nervosa: New perspectives in molecular diagnosis and treatment. Mol Genet Genomic Med 2020; 8:e1244. [PMID: 32368866 PMCID: PMC7336737 DOI: 10.1002/mgg3.1244] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Anorexia nervosa is a multifactorial eating disorder that manifests with self-starvation, extreme anxiety, hyperactivity, and amenorrhea. Long-term effects include organ failure, disability, and in extreme cases, even death. METHODS Through a literature search, here we summarize what is known about the molecular etiology of anorexia nervosa and propose genetic testing for this condition. RESULTS Anorexia nervosa often has a familial background and shows strong heritability. Various genetic studies along with genome-wide association studies have identified several genetic loci involved in molecular pathways that might lead to anorexia. CONCLUSION Anorexia nervosa is an eating disorder with a strong genetic component that contributes to its etiology. Various genetic approaches might help in the molecular diagnosis of this disease and in devising novel therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Tommaso Beccari
- Department of Pharmaceutical SciencesUniversity of PerugiaPerugiaItaly
| | | | - Liborio Stuppia
- Department of Psychological, Health and Territorial SciencesSchool of Medicine and Health Sciences"G. d'Annunzio" UniversityChietiItaly
| | - Pietro Chiurazzi
- Istituto di Medicina GenomicaUniversità Cattolica del Sacro CuoreRomeItaly
- UOC Genetica MedicaFondazione Policlinico Universitario “A. Gemelli” IRCCSRomeItaly
| | - Laura Dalla Ragione
- Center for the Treatment of Eating DisordersResidenza Palazzo FrancisciTodiPerugiaItaly
| | - Matteo Bertelli
- MAGI'S LABRoveretoTrentoItaly
- MAGI EUREGIOBolzanoItaly
- EBTNA‐LABRoveretoTrentoItaly
| |
Collapse
|
62
|
Seebacher F. Is Endothermy an Evolutionary By-Product? Trends Ecol Evol 2020; 35:503-511. [PMID: 32396817 DOI: 10.1016/j.tree.2020.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022]
Abstract
Endothermy alters the energetic relationships between organisms and their environment and thereby influences fundamental niches. Endothermy is closely tied to energy metabolism. Regulation of energy balance is indispensable for all life and regulatory pathways increase in complexity from bacteria to vertebrates. Increasing complexity of metabolic networks also increase the probability for endothermic phenotypes to appear. Adaptive arguments are problematic epistemologically because the regulatory mechanisms enabling endothermy have not evolved for the 'purpose' of endothermy and the utility of current traits is likely to have changed over evolutionary time. It is most parsimonious to view endothermy as the evolutionary by-product of energy balance regulation rather than as an adaptation and interpret its evolution in the context of metabolic networks.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, Heydon-Laurence Building A08, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
63
|
Role of Paraventricular Nucleus in Regulation of Feeding Behaviour and the Design of Intranuclear Neuronal Pathway Communications. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09928-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
64
|
Dandachy S, Mawlawi H, Chedid M, El-Mallah C, Obeid O. Impact of Pre-Processed Chickpea Flour Incorporation into " Mankoushe" on Appetite Hormones and Scores. Foods 2018; 7:E173. [PMID: 30347703 PMCID: PMC6209887 DOI: 10.3390/foods7100173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/25/2022] Open
Abstract
Recently, there has been an increasing interest in integrating pulse flours into pastries and baked products to improve their nutritional and health benefits. "Mankoushe," a popular Lebanese pastry made up of refined wheat flour was enriched with chickpea flour that is of better nutritional value, and its postprandial glycemia, insulinemia, lipidemia and appetite measures were monitored. A randomized cross-over study was performed on sixteen healthy Lebanese females, age (years): 22.90 ± 3.00, and BMI (kg/m²): 22.70 ± 2.65. Over-night fasted females were asked to consume two iso-energetic meals (201 g; 681 kcal) on two separate days, three days apart. One meal was the "Regular Mankoushe" (RM) made with white flour 100%, and the second meal was the "Chickpeas Mankoushe" (CM) made with a mixture of wheat/chickpea flour (70/30). Blood samples were collected 15 min before meal ingest and at 30, 90, 150 and 210 min postprandial. Glucose, insulin, triglycerides (TG), ghrelin, and glucagon-like peptide 1 (GLP-1) plasma levels were measured. Subjective appetite rating and food intake were also assessed. Incorporation of pre-processed chickpea flour into "Mankoushe" as 30% of the dough was associated with a modest reduction in both glucose and insulin levels, and TG was minimally affected. At the level of appetite hormones, changes in GLP-1 were similar, whereas the reduction in ghrelin was significantly lower after the RM meal and thus favored a higher satiating effect compared to CM. This was not paralleled by a similar change in subjective appetite scores and subsequent energy intake. In conclusion, findings suggest that pre-processed chickpea flour could be a promising functional ingredient of traditional pastries to improve their nutritional quality. Nevertheless, further investigations are warranted regarding its satiating effect.
Collapse
Affiliation(s)
- Sahar Dandachy
- Department of Nutrition, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| | - Hiba Mawlawi
- Department of Nutrition, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
- Doctoral School of Science & Technology, Lebanese University, Tripoli, Lebanon.
| | - Marwan Chedid
- Laboratory Department, New Mazloum Hospital, Tripoli, Lebanon.
| | - Carla El-Mallah
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Omar Obeid
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| |
Collapse
|