51
|
Volgin AD, Yakovlev OA, Demin KA, Alekseeva PA, Kyzar EJ, Collins C, Nichols DE, Kalueff AV. Understanding Central Nervous System Effects of Deliriant Hallucinogenic Drugs through Experimental Animal Models. ACS Chem Neurosci 2019; 10:143-154. [PMID: 30252437 DOI: 10.1021/acschemneuro.8b00433] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hallucinogenic drugs potently alter human behavior and have a millennia-long history of use for medicinal and religious purposes. Interest is rapidly growing in their potential as CNS modulators and therapeutic agents for brain conditions. Antimuscarinic cholinergic drugs, such as atropine and scopolamine, induce characteristic hyperactivity and dream-like hallucinations and form a separate group of hallucinogens known as "deliriants". Although atropine and scopolamine are relatively well-studied drugs in cholinergic physiology, deliriants represent the least-studied class of hallucinogens in terms of their behavioral and neurological phenotypes. As such, novel approaches and new model organisms are needed to investigate the CNS effects of these compounds. Here, we comprehensively evaluate the preclinical effects of deliriant hallucinogens in various animal models, their mechanisms of action, and potential interplay with other signaling pathways. We also parallel experimental and clinical findings on deliriant agents and outline future directions of translational research in this field.
Collapse
Affiliation(s)
- Andrey D. Volgin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Military Medical Academy, St. Petersburg 194044, Russia
| | - Oleg A. Yakovlev
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Military Medical Academy, St. Petersburg 194044, Russia
| | | | | | - Evan J. Kyzar
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- The International Zebrafish Neuroscience Research Consortium (ZNRC), New Orleans, Louisiana 70458, United States
| | - Christopher Collins
- The International Zebrafish Neuroscience Research Consortium (ZNRC), New Orleans, Louisiana 70458, United States
| | - David E. Nichols
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Allan V. Kalueff
- School of Pharmacy, Southwest University, Chongqing 400716, China
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russiai
- Ural Federal University, Ekaterinburg 620075, Russia
- ZENEREI Research Center, Slidell, Louisiana 70458, United States
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
52
|
Stenbaek DS, Kristiansen S, Burmester D, Madsen MK, Frokjaer VG, Knudsen GM, Fisher PM. Trait Openness and serotonin 2A receptors in healthy volunteers: A positron emission tomography study. Hum Brain Mapp 2019; 40:2117-2124. [PMID: 30633430 DOI: 10.1002/hbm.24511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Recent research found lasting increases in personality trait Openness in healthy individuals and patients after administration of the serotonin 2A receptor (5-HT2A R) agonist psilocybin. However, no studies have investigated whether 5-HT2A R availability as imaged using positron emission tomography (PET) is associated with this trait. In 159 healthy individuals (53 females), the association between 5-HT2A R binding in neocortex imaged with [18 F]altanserin or [11 C]Cimbi-36 PET and personality trait Openness was investigated using linear regression models. In these models the influence of sex on the association was also investigated. Trait Openness was assessed with the NEO Personality Inventory-Revised. No significant associations between neocortical 5-HT2A R binding and trait Openness were found for [18 F]altanserin (p = 0.5) or [11 C]Cimbi-36 (p = 0.8). Pooling the data in a combined model did not substantially change our results (p = 0.4). No significant interactions with sex were found (p > 0.35). Our results indicate that differences in 5-HT2A R availability are not related to variations in trait Openness in healthy individuals. Although stimulation of the 5-HT2A R with compounds such as psilocybin may contribute to long-term changes in trait Openness, there is no evidence in favor of an association between 5-HT2A R and trait Openness.
Collapse
Affiliation(s)
- Dea Siggaard Stenbaek
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Sara Kristiansen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Burmester
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Martin Korsbak Madsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Vibe Gedsoe Frokjaer
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
53
|
Xiang D, Wang H, Sun S, Yao L, Li R, Zong X, Wang G, Liu Z. GRP Receptor Regulates Depression Behavior via Interaction With 5-HT2a Receptor. Front Psychiatry 2019; 10:1020. [PMID: 32047449 PMCID: PMC6997338 DOI: 10.3389/fpsyt.2019.01020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Accumulating evidences indicate that gastrin-releasing peptide receptor (GRPR) may contribute to the pathophysiology of depression. However, the mechanism of the involvement of GRPR in the progression of depression remains unclear. Here, we showed the extent to which stress and antidepressant treatment impact GRPR expression, and explored the interactions between 5-HT2a receptor (5-HT2aR) and GRPR at the cellular level. METHODS The rat depression models were created with chronic unpredictable mild stress (CUMS). Then, these rats were treated with fluoxetine for 4 weeks after CUMS. We measured body weight and performed behavioral tests to determine the effects of stress and fluoxetine on depressive-like behaviors. Real-time PCR and western blotting were used to measure the mRNA and protein expression levels of GRPR in the hypothalamus. Then, Flag-tagged protein (pcmv-Flag-5HT2aR) and Myc-tagged protein (pcmv-Myc-GRPR) expression vectors were constructed, identified, and transfected into human embryo kidney 293 (HEK293) cells. The interaction between 5-HT2aR and GRPR was detected by coimmunoprecipitation and double-label immunofluorescence. RESULTS The rats subjected to 4 weeks of CUMS showed depressive-like behaviors, including decreased body weight, sucrose preference, and distance traveled, rearing frequency and velocity in the open field test and increased immobility time in the forced swimming test. Fluoxetine treatment reversed CUMS-induced depressive-like behavior. The mRNA and protein expression of GRPR in the hypothalamus was significantly increased after 4 weeks CUMS exposure, and treatment with fluoxetine reversed these changes. Coimmunoprecipitation showed that 5-HT2aR and GRPR combine with each other in vitro. Immunofluorescence revealed that the 5-HT2aR and GRPR were colocalization in both the cell membrane and cytoplasm. CONCLUSION Our study enhances the understanding of the involvement of GRPR in depression. This study also provides in vitro experimental evidence of the interaction between 5-HT2aR and GRPR, which may play an important role in the pathogenesis of depression.
Collapse
Affiliation(s)
- Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruiting Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
54
|
Cameron LP, Olson DE. Dark Classics in Chemical Neuroscience: N, N-Dimethyltryptamine (DMT). ACS Chem Neurosci 2018; 9:2344-2357. [PMID: 30036036 DOI: 10.1021/acschemneuro.8b00101] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Though relatively obscure, N, N-dimethyltryptamine (DMT) is an important molecule in psychopharmacology as it is the archetype for all indole-containing serotonergic psychedelics. Its structure can be found embedded within those of better-known molecules such as lysergic acid diethylamide (LSD) and psilocybin. Unlike the latter two compounds, DMT is ubiquitous, being produced by a wide variety of plant and animal species. It is one of the principal psychoactive components of ayahuasca, a tisane made from various plant sources that has been used for centuries. Furthermore, DMT is one of the few psychedelic compounds produced endogenously by mammals, and its biological function in human physiology remains a mystery. In this review, we cover the synthesis of DMT as well as its pharmacology, metabolism, adverse effects, and potential use in medicine. Finally, we discuss the history of DMT in chemical neuroscience and why this underappreciated molecule is so important to the field of psychedelic science.
Collapse
Affiliation(s)
- Lindsay P. Cameron
- Neuroscience Graduate Program, University of California, Davis, 1544 Newton Ct., Davis, California 95618, United States
| | - David E. Olson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, 2700 Stockton Blvd., Suite 2102, Sacramento, California 95817, United States
- Center for Neuroscience, University of California, Davis, 1544 Newton Ct., Davis, California 95618, United States
| |
Collapse
|
55
|
Abstract
Background and Objective Lysergic acid diethylamide (LSD) is used recreationally and in clinical research. The aim of the present study was to characterize the pharmacokinetics and exposure–response relationship of oral LSD. Methods We analyzed pharmacokinetic data from two published placebo-controlled, double-blind, cross-over studies using oral administration of LSD 100 and 200 µg in 24 and 16 subjects, respectively. The pharmacokinetics of the 100-µg dose is shown for the first time and data for the 200-µg dose were reanalyzed and included. Plasma concentrations of LSD, subjective effects, and vital signs were repeatedly assessed. Pharmacokinetic parameters were determined using compartmental modeling. Concentration-effect relationships were described using pharmacokinetic-pharmacodynamic modeling. Results Geometric mean (95% confidence interval) maximum plasma concentration values of 1.3 (1.2–1.9) and 3.1 (2.6–4.0) ng/mL were reached 1.4 and 1.5 h after administration of 100 and 200 µg LSD, respectively. The plasma half-life was 2.6 h (2.2–3.4 h). The subjective effects lasted (mean ± standard deviation) 8.2 ± 2.1 and 11.6 ± 1.7 h for the 100- and 200-µg LSD doses, respectively. Subjective peak effects were reached 2.8 and 2.5 h after administration of LSD 100 and 200 µg, respectively. A close relationship was observed between the LSD concentration and subjective response within subjects, with moderate counterclockwise hysteresis. Half-maximal effective concentration values were in the range of 1 ng/mL. No correlations were found between plasma LSD concentrations and the effects of LSD across subjects at or near maximum plasma concentration and within dose groups. Conclusions The present pharmacokinetic data are important for the evaluation of clinical study findings (e.g., functional magnetic resonance imaging studies) and the interpretation of LSD intoxication. Oral LSD presented dose-proportional pharmacokinetics and first-order elimination up to 12 h. The effects of LSD were related to changes in plasma concentrations over time, with no evidence of acute tolerance. Trial registration: NCT02308969, NCT01878942. Electronic supplementary material The online version of this article (doi:10.1007/s40262-017-0513-9) contains supplementary material, which is available to authorized users.
Collapse
|
56
|
Daniel J, Haberman M. Clinical potential of psilocybin as a treatment for mental health conditions. Ment Health Clin 2018; 7:24-28. [PMID: 29955494 DOI: 10.9740/mhc.2017.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Psilocybin, a classic hallucinogen, is a chemical produced by more than 100 species of mushrooms worldwide. It has high affinity for several serotonin receptors, including 5-HT1A, 5-HT2A, and 5-HT2C, located in numerous areas of the brain, including the cerebral cortex and thalamus. With legislation introduced in 1992, more work is being done to further understand the implications of psilocybin use in a number of disease states. Certain mental health disease states and symptoms have been studied, including depressed mood, anxiety disorders, obsessive-compulsive disorder, alcohol use disorder, and tobacco use disorder. This article provides an in-depth review of the study design and results of psilocybin in each of these conditions and discusses the clinical potential for use.
Collapse
Affiliation(s)
- Jeremy Daniel
- Assistant Professor, South Dakota State University College of Pharmacy, Sioux Falls, South Dakota; Psychiatric Clinical Pharmacist, Avera Behavioral Health Center, Sioux Falls, South Dakota,
| | - Margaret Haberman
- Psychiatric Clinical Pharmacist, Avera Behavioral Health Center, Sioux Falls, South Dakota
| |
Collapse
|
57
|
Abstract
This chapter reviews what is known about the therapeutic uses of the serotonergic or classic hallucinogens, i.e., psychoactive drugs such as LSD and psilocybin that exert their effects primarily through agonist activity at serotonin 2A (5HT2A) receptors. Following a review of the history of human use and scientific study of these drugs, the data from clinical research are summarized, including extensive work on the use of classic hallucinogens in the treatment of alcoholism and other addictions, studies of the use of LSD and psilocybin to relieve distress concerning death, particularly in patients with advanced or terminal cancer, and more limited data concerning the use of classic hallucinogens to treat mood and anxiety disorders. A survey of possible mechanisms of clinically relevant effects is provided. The well-established safety of classic hallucinogens is reviewed. To provide a clinical perspective, case summaries are provided of two individuals who received treatment in recent controlled trials of psilocybin: one being treated for alcoholism, the other suffering from anxiety and depression related to fear of death due to a cancer diagnosis. Although promising early phase research conducted from the 1950s through the early 1970s was discontinued before firm conclusions could be reached concerning the efficacy of any of the classic hallucinogens for any clinical condition, the research that was conducted in that era strongly suggests that classic hallucinogens have clinically relevant effects, particularly in the case of LSD treatment of alcoholism. In the past decade, clinical trials have resumed investigating the effects of classic hallucinogens in the treatment of existential distress in the face of cancer, and in the treatment of addictions including alcoholism and nicotine addiction. The studies that have been completed to date are not sufficient to establish efficacy, but the outcomes have been very encouraging, and larger trials, up to and including phase 3, are now underway or being planned. Although research has elucidated many of the acute neurobiological and psychological effects of classic hallucinogens on humans, animals, and in vitro systems, the mechanisms of clinically relevant persisting effects remain poorly understood.
Collapse
Affiliation(s)
- Michael P Bogenschutz
- Department of Psychiatry, New York University Langone Medical Center, New York City, USA.
| | - Stephen Ross
- Department of Psychiatry, New York University Langone Medical Center, New York City, USA
| |
Collapse
|
58
|
Galvão ACDM, de Almeida RN, Silva EADS, Freire FAM, Palhano-Fontes F, Onias H, Arcoverde E, Maia-de-Oliveira JP, de Araújo DB, Lobão-Soares B, Galvão-Coelho NL. Cortisol Modulation by Ayahuasca in Patients With Treatment Resistant Depression and Healthy Controls. Front Psychiatry 2018; 9:185. [PMID: 29867608 PMCID: PMC5952178 DOI: 10.3389/fpsyt.2018.00185] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Major depression is a highly prevalent mood disorder, affecting about 350 million people, and around 30% of the patients are resistant to currently available antidepressant medications. Recent evidence from a randomized controlled trial (RCT) supports the rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression. The aim of this study was to explore the effect of ayahuasca on plasma cortisol and awakening salivary cortisol response, in the same group of treatment-resistant patients (MD) and in healthy volunteers (C). Subjects received a single dose of ayahuasca or placebo (dosing session), and both plasma and awakening salivary cortisol response were measured at baseline (before dosing session) and 48 h after the dosing session. Baseline assessment (D0) showed blunted awakening salivary cortisol response and hypocortisolemia in patients, with respect to healthy controls. Salivary cortisol was also measured during dosing session, and we observed higher increases for both C and MD that ingested ayahuasca than placebo. After 48 h from the dosing session with ayahuasca, patients' awakening salivary cortisol response is similar to the ones detected in controls. No significant changes in plasma cortisol levels were observed 48 h after the sessions. Therefore, these findings point to new evidence on the modulation of salivary cortisol levels as a result of an ayahuasca session, both in healthy and depressive volunteers. Considering that cortisol acts in regulation of distinct physiological pathways, emotional and cognitive processes, it is assumed to be critically involved to the etiology of depression and its regulation seems to be important for the treatment and remission of major depression, ayahuasca use as antidepressant should be further investigated. Moreover, this study highlights the importance of psychedelics in the treatment of human mental disorders.
Collapse
Affiliation(s)
- Ana C de Menezes Galvão
- Laboratory of Hormone Measurement, Department of Physiology, Federal University of Rio Grande do Norte, Natal, Brazil.,Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raíssa N de Almeida
- Laboratory of Hormone Measurement, Department of Physiology, Federal University of Rio Grande do Norte, Natal, Brazil.,Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Erick A Dos Santos Silva
- Laboratory of Hormone Measurement, Department of Physiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fúlvio A M Freire
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fernanda Palhano-Fontes
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.,Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Heloisa Onias
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.,Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Emerson Arcoverde
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - João P Maia-de-Oliveira
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil.,National Institute of Science and Technology in Translational Medicine, Natal, Brazil
| | - Dráulio B de Araújo
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.,Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruno Lobão-Soares
- National Institute of Science and Technology in Translational Medicine, Natal, Brazil.,Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Nicole L Galvão-Coelho
- Laboratory of Hormone Measurement, Department of Physiology, Federal University of Rio Grande do Norte, Natal, Brazil.,Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil.,National Institute of Science and Technology in Translational Medicine, Natal, Brazil
| |
Collapse
|
59
|
Riga MS, Lladó-Pelfort L, Artigas F, Celada P. The serotonin hallucinogen 5-MeO-DMT alters cortico-thalamic activity in freely moving mice: Regionally-selective involvement of 5-HT 1A and 5-HT 2A receptors. Neuropharmacology 2017; 142:219-230. [PMID: 29221792 DOI: 10.1016/j.neuropharm.2017.11.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 01/26/2023]
Abstract
5-MeO-DMT is a natural hallucinogen acting as serotonin 5-HT1A/5-HT2A receptor agonist. Its ability to evoke hallucinations could be used to study the neurobiology of psychotic symptoms and to identify new treatment targets. Moreover, recent studies revealed the therapeutic potential of serotonin hallucinogens in treating mood and anxiety disorders. Our previous results in anesthetized animals show that 5-MeO-DMT alters cortical activity via 5-HT1A and 5-HT2A receptors. Here, we examined 5-MeO-DMT effects on oscillatory activity in prefrontal (PFC) and visual (V1) cortices, and in mediodorsal thalamus (MD) of freely-moving wild-type (WT) and 5-HT2A-R knockout (KO2A) mice. We performed local field potential multi-recordings evaluating the power at different frequency bands and coherence between areas. We also examined the prevention of 5-MeO-DMT effects by the 5-HT1A-R antagonist WAY-100635. 5-MeO-DMT affected oscillatory activity more in cortical than in thalamic areas. More marked effects were observed in delta power in V1 of KO2A mice. 5-MeO-DMT increased beta band coherence between all examined areas. In KO2A mice, WAY100635 prevented most of 5-MeO-DMT effects on oscillatory activity. The present results indicate that hallucinatory activity of 5-MeO-DMT is likely mediated by simultaneous alteration of prefrontal and visual activities. The prevention of these effects by WAY-100635 in KO2A mice supports the potential usefulness of 5-HT1A receptor antagonists to treat visual hallucinations. 5-MeO-DMT effects on PFC theta activity and cortico-thalamic coherence may be related to its antidepressant activity. This article is part of the Special Issue entitled 'Psychedelics: New Doors, Altered Perceptions'.
Collapse
Affiliation(s)
- Maurizio S Riga
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| | - Laia Lladó-Pelfort
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| | - Francesc Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| | - Pau Celada
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain.
| |
Collapse
|
60
|
Abstract
Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.
Collapse
Affiliation(s)
- RL Carhart-Harris
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - DJ Nutt
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
61
|
González D, Carvalho M, Cantillo J, Aixalá M, Farré M. Potential Use of Ayahuasca in Grief Therapy. OMEGA-JOURNAL OF DEATH AND DYING 2017; 79:260-285. [DOI: 10.1177/0030222817710879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The death of a loved one is ultimately a universal experience. However, conventional interventions employed for people suffering with uncomplicated grief have gathered little empirical support. The present study aimed to explore the potential effects of ayahuasca on grief. We compared 30 people who had taken ayahuasca with 30 people who had attended peer-support groups, measuring level of grief and experiential avoidance. We also examined themes in participant responses to an open-ended question regarding their experiences with ayahuasca. The ayahuasca group presented a lower level of grief in the Present Feelings Scale of Texas Revised Inventory of Grief, showing benefits in some psychological and interpersonal dimensions. Qualitative responses described experiences of emotional release, biographical memories, and experiences of contact with the deceased. Additionally, some benefits were identified regarding the ayahuasca experiences. These results provide preliminary data about the potential of ayahuasca as a therapeutic tool in treatments for grief.
Collapse
Affiliation(s)
- Débora González
- ICEERS—International Center for Ethnobotanical Education Research & Service, Roosendaal, The Netherlands
| | - María Carvalho
- ICEERS—International Center for Ethnobotanical Education Research & Service, Roosendaal, The Netherlands
- Centro de Estudos em Desenvolvimento Humano (CEDH), Faculdade de Educação e Psicologia, Universidade Católica Portuguesa, Rua Diogo Botelho, Portugal
| | - Jordi Cantillo
- ICEERS—International Center for Ethnobotanical Education Research & Service, Roosendaal, The Netherlands
| | - Marc Aixalá
- ICEERS—International Center for Ethnobotanical Education Research & Service, Roosendaal, The Netherlands
| | - Magí Farré
- Autonomous University of Barcelona, Barcelona, Spain
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
| |
Collapse
|
62
|
Thomas K, Malcolm B, Lastra D. Psilocybin-Assisted Therapy: A Review of a Novel Treatment for Psychiatric Disorders. J Psychoactive Drugs 2017; 49:446-455. [PMID: 28481178 DOI: 10.1080/02791072.2017.1320734] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent research suggests that functional connectivity changes may be involved in the pathophysiology of psychiatric disorders. Hyperconnectivity in the default mode network has been associated with psychopathology, but psychedelic serotonin agonists like psilocybin may profoundly disrupt these dysfunctional neural network circuits and provide a novel treatment for psychiatric disorders. We have reviewed the current literature to investigate the efficacy and safety of psilocybin-assisted therapy for the treatment of psychiatric disorders. There were seven clinical trials that investigated psilocybin-assisted therapy as a treatment for psychiatric disorders related to anxiety, depression, and substance use. All trials demonstrated reductions in psychiatric rating scale scores or increased response and remission rates. There were large effect sizes related to improved depression and anxiety symptoms. Psilocybin may also potentially reduce alcohol or tobacco use and increase abstinence rates in addiction, but the benefits of these two trials were less clear due to open-label study designs without statistical analysis. Psilocybin-assisted therapy efficacy and safety appear promising, but more robust clinical trials will be required to support FDA approval and identify the potential role in clinical psychiatry.
Collapse
Affiliation(s)
- Kelan Thomas
- a Assistant Professor, Clinical Sciences , Touro University California , Vallejo , CA , USA
| | - Benjamin Malcolm
- b Assistant Professor, Pharmacy Practice and Administration , Western University of Health Sciences, Pomona, CA, USA
| | - Dan Lastra
- c Pharmacy Student , Touro University California , Vallejo , CA , USA
| |
Collapse
|
63
|
Donfrancesco R, Melegari MG, Giua E, Bruni O. Are some cases of sleep paralysis an expression of a dissociative condition? Dramatic resolution of sleep paralysis in an adolescent after administration of aripiprazole. Sleep Med 2017; 32:267-268. [DOI: 10.1016/j.sleep.2016.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/27/2016] [Indexed: 11/28/2022]
|
64
|
Fajemiroye JO, Prabhakar PR, Cunha LCD, Costa EA, Zjawiony JK. 22-azidosalvinorin A exhibits antidepressant-like effect in mice. Eur J Pharmacol 2017; 800:96-106. [PMID: 28219707 DOI: 10.1016/j.ejphar.2017.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
The increasing cases of depression has made the searches for new drugs and understanding of the underligning neurobiology of this psychiatric disorder a necessity. Here, we modified the structure of salvinorin A (a known halucinogen) and investigated antidepressant-like activity of its four derivatives; 22-methylsulfanylsalvinorin A(SA1), 2-O-cinnamoylsalvinorin B (CSB), 22-azidosalvinorin A (SA2), and 2-O-(4'-azidophenylsulfonyl)salvinorin B (SA3). Prior to behavioural tests (Irwin test, open field test - OFT, forced swimming test - FST and tail suspension test - TST), SA1 was prepared by reacting salvinorin B and methylthioacetic acid with 89% yield; CSB was obtained from the reaction of salvinorin B and cinnamic acid with 92% yield; SA2 was obtained from the reaction of salvinorin B and azidoacetic acid with 81% yield; and SA3 was prepared by reacting salvinorin B with 4-azidophenylsulfonyl chloride with 80% yield. Oral treatment of mice with these derivatives (1-1000mg/kg) did not elicit toxic sign or death. Unlike SA, SA1, CSB and SA3, treatment with SA2 (5, 10 and 20mg/kg) decreased the immobility (TST and FST) and swimming time (FST) without altering locomotor activity in OFT. A decrease in the immobility time in TST and FST confirmed antidepressant-like property of SA2. Although p-chlorophenylalanine (serotonin depletor) or WAY100635 (selective 5-HT1A receptor antagonist) did not attenuate effect of SA2, alpha-methyl-para-tyrosine (catecholamine depletor) and prazosin (selective α1-receptor antagonist) attenuated this effect. SA2 mildly inhibited monoamine oxidase and showed affinity for α1A, α1B, α1D and κ-opioid receptor subtypes. In summary, SA2 induced monoamine-mediated antidepressant-like effect.
Collapse
Affiliation(s)
- James Oluwagbamigbe Fajemiroye
- Department of Pharmacology, Federal University of Goias, Campus Samambaia, 74001-970 Goiania, GO, Brazil; Center for Studies and Toxicological-Pharmacological Research, Faculty of Pharmacy, Federal University of Goiás, PMB 131, CEP 74001-970, Goiânia, Brazil.
| | - Polepally Reddy Prabhakar
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, P.O. Box 1848, MS 38677, USA
| | - Luiz Carlos da Cunha
- Center for Studies and Toxicological-Pharmacological Research, Faculty of Pharmacy, Federal University of Goiás, PMB 131, CEP 74001-970, Goiânia, Brazil
| | - Elson Alves Costa
- Department of Pharmacology, Federal University of Goias, Campus Samambaia, 74001-970 Goiania, GO, Brazil
| | - Jordan K Zjawiony
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, P.O. Box 1848, MS 38677, USA
| |
Collapse
|
65
|
Bodeau S, Bennis Y, Régnaut O, Fabresse N, Richeval C, Humbert L, Alvarez JC, Allorge D, Lemaire-Hurtel AS. LSD instead of 25I-NBOMe: The revival of LSD? A case report. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2017. [DOI: 10.1016/j.toxac.2016.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Dos Santos RG, Osório FL, Crippa JAS, Hallak JEC. Antidepressive and anxiolytic effects of ayahuasca: a systematic literature review of animal and human studies. BRAZILIAN JOURNAL OF PSYCHIATRY 2017; 38:65-72. [PMID: 27111702 PMCID: PMC7115465 DOI: 10.1590/1516-4446-2015-1701] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/05/2015] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To conduct a systematic literature review of animal and human studies reporting anxiolytic or antidepressive effects of ayahuasca or some of its isolated alkaloids (dimethyltryptamine, harmine, tetrahydroharmine, and harmaline). METHODS Papers published until 3 April 2015 were retrieved from the PubMed, LILACS and SciELO databases following a comprehensive search strategy and using a predetermined set of criteria for article selection. RESULTS Five hundred and fourteen studies were identified, of which 21 met the established criteria. Studies in animals have shown anxiolytic and antidepressive effects of ayahuasca, harmine, and harmaline, and experimental studies in humans and mental health assessments of experienced ayahuasca consumers also suggest that ayahuasca is associated with reductions in anxiety and depressive symptoms. A pilot study reported rapid antidepressive effects of a single ayahuasca dose in six patients with recurrent depression. CONCLUSION Considering the need for new drugs that produce fewer adverse effects and are more effective in reducing anxiety and depression symptomatology, the described effects of ayahuasca and its alkaloids should be further investigated.
Collapse
Affiliation(s)
- Rafael G Dos Santos
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Flávia L Osório
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - José Alexandre S Crippa
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Jaime E C Hallak
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
67
|
Alterations of consciousness and mystical-type experiences after acute LSD in humans. Psychopharmacology (Berl) 2017; 234:1499-1510. [PMID: 27714429 PMCID: PMC5420386 DOI: 10.1007/s00213-016-4453-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/27/2016] [Indexed: 01/30/2023]
Abstract
RATIONALE Lysergic acid diethylamide (LSD) is used recreationally and in clinical research. Acute mystical-type experiences that are acutely induced by hallucinogens are thought to contribute to their potential therapeutic effects. However, no data have been reported on LSD-induced mystical experiences and their relationship to alterations of consciousness. Additionally, LSD dose- and concentration-response functions with regard to alterations of consciousness are lacking. METHODS We conducted two placebo-controlled, double-blind, cross-over studies using oral administration of 100 and 200 μg LSD in 24 and 16 subjects, respectively. Acute effects of LSD were assessed using the 5 Dimensions of Altered States of Consciousness (5D-ASC) scale after both doses and the Mystical Experience Questionnaire (MEQ) after 200 μg. RESULTS On the MEQ, 200 μg LSD induced mystical experiences that were comparable to those in patients who underwent LSD-assisted psychotherapy but were fewer than those reported for psilocybin in healthy subjects or patients. On the 5D-ASC scale, LSD produced higher ratings of blissful state, insightfulness, and changed meaning of percepts after 200 μg compared with 100 μg. Plasma levels of LSD were not positively correlated with its effects, with the exception of ego dissolution at 100 μg. CONCLUSIONS Mystical-type experiences were infrequent after LSD, possibly because of the set and setting used in the present study. LSD may produce greater or different alterations of consciousness at 200 μg (i.e., a dose that is currently used in psychotherapy in Switzerland) compared with 100 μg (i.e., a dose used in imaging studies). Ego dissolution may reflect plasma levels of LSD, whereas more robustly induced effects of LSD may not result in such associations.
Collapse
|
68
|
Dos Santos RG, Balthazar FM, Bouso JC, Hallak JE. The current state of research on ayahuasca: A systematic review of human studies assessing psychiatric symptoms, neuropsychological functioning, and neuroimaging. J Psychopharmacol 2016; 30:1230-1247. [PMID: 27287824 DOI: 10.1177/0269881116652578] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE In recent decades, the use of ayahuasca (AYA) - a β-carboline- and dimethyltryptamine-rich hallucinogenic botanical preparation traditionally used by Northwestern Amazonian tribes for ritual and therapeutic purposes - has spread from South America to Europe and the USA, raising concerns about its possible toxicity and hopes of its therapeutic potential. Thus, it is important to analyze the acute, subacute, and long-term effects of AYA to assess its safety and toxicity. OBJECTIVES The purpose of this study was to conduct a systematic review of human studies assessing AYA effects on psychiatric symptoms, neuropsychological functioning, and neuroimaging. METHODS Papers published until 16 December 2015 were included from PubMed, LILACS and SciELO databases following a comprehensive search strategy and pre-determined set of criteria for article selection. RESULTS The review included 28 full-text articles. Acute AYA administration was well tolerated, increased introspection and positive mood, altered visual perceptions, activated frontal and paralimbic regions and decreased default mode network activity. It also improved planning and inhibitory control and impaired working memory, and showed antidepressive and antiaddictive potentials. Long-term AYA use was associated with increased cortical thickness of the anterior cingulate cortex and cortical thinning of the posterior cingulate cortex, which was inversely correlated to age of onset, intensity of prior AYA use, and spirituality. Subacute and long-term AYA use was not associated with increased psychopathology or cognitive deficits, being associated with enhanced mood and cognition, increased spirituality, and reduced impulsivity. CONCLUSIONS Acute, subacute, and long-term AYA use seems to have low toxicity. Preliminary studies about potential therapeutic effects of AYA need replication due to their methodological limitations.
Collapse
Affiliation(s)
- Rafael G Dos Santos
- Department of Neurosciences and Behavior, University of São Paulo, Ribeirão Preto, Brazil .,International Center for Ethnobotanical Education, Research and Service, Barcelona, Spain
| | - Fermanda M Balthazar
- Federal Institute of Education, Science and Technology of São Paulo, São Paulo, Brazil
| | - José C Bouso
- International Center for Ethnobotanical Education, Research and Service, Barcelona, Spain
| | - Jaime Ec Hallak
- Department of Neurosciences and Behavior, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology - Translational Medicine, Ribeirão Preto, Brazil
| |
Collapse
|
69
|
Dos Santos RG, Osório FL, Crippa JAS, Hallak JEC. Classical hallucinogens and neuroimaging: A systematic review of human studies: Hallucinogens and neuroimaging. Neurosci Biobehav Rev 2016; 71:715-728. [PMID: 27810345 DOI: 10.1016/j.neubiorev.2016.10.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/29/2016] [Accepted: 10/27/2016] [Indexed: 01/07/2023]
Abstract
Serotonergic hallucinogens produce alterations of perceptions, mood, and cognition, and have anxiolytic, antidepressant, and antiaddictive properties. These drugs act as agonists of frontocortical 5-HT2A receptors, but the neural basis of their effects are not well understood. Thus, we conducted a systematic review of neuroimaging studies analyzing the effects of serotonergic hallucinogens in man. Studies published in the PubMed, Lilacs, and SciELO databases until 12 April 2016 were included using the following keywords: "ayahuasca", "DMT", "psilocybin", "LSD", "mescaline" crossed one by one with the terms "mri", "fmri", "pet", "spect", "imaging" and "neuroimaging". Of 279 studies identified, 25 were included. Acute effects included excitation of frontolateral/frontomedial cortex, medial temporal lobe, and occipital cortex, and inhibition of the default mode network. Long-term use was associated with thinning of the posterior cingulate cortex, thickening of the anterior cingulate cortex, and decreased neocortical 5-HT2A receptor binding. Despite the high methodological heterogeneity and the small sample sizes, the results suggest that hallucinogens increase introspection and positive mood by modulating brain activity in the fronto-temporo-parieto-occipital cortex.
Collapse
Affiliation(s)
- Rafael G Dos Santos
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil.
| | - Flávia L Osório
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Brazil
| | - José Alexandre S Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Brazil
| |
Collapse
|
70
|
Ayahuasca: Pharmacology, neuroscience and therapeutic potential. Brain Res Bull 2016; 126:89-101. [DOI: 10.1016/j.brainresbull.2016.03.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 12/21/2022]
|
71
|
Rickli A, Moning OD, Hoener MC, Liechti ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur Neuropsychopharmacol 2016; 26:1327-37. [PMID: 27216487 DOI: 10.1016/j.euroneuro.2016.05.001] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/25/2016] [Accepted: 05/08/2016] [Indexed: 11/25/2022]
Abstract
The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties.
Collapse
Affiliation(s)
- Anna Rickli
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Olivier D Moning
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Marius C Hoener
- Neuroscience Research, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Matthias E Liechti
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
72
|
Larsen JK. Neurotoxicity and LSD treatment: a follow-up study of 151 patients in Denmark. HISTORY OF PSYCHIATRY 2016; 27:172-189. [PMID: 26966135 DOI: 10.1177/0957154x16629902] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
LSD was introduced in psychiatry in the 1950s. Between 1960 and 1973, nearly 400 patients were treated with LSD in Denmark. By 1964, one homicide, two suicides and four suicide attempts had been reported. In 1986 the Danish LSD Damages Law was passed after complaints by only one patient. According to the Law, all 154 applicants received financial compensation for LSD-inflicted harm. The Danish State Archives has preserved the case material of 151 of the 154 applicants. Most of the patients suffered from severe side effects of the LSD treatment many years afterwards. In particular, two-thirds of the patients had flashbacks. With the recent interest in LSD therapy, we should consider the neurotoxic potential of LSD.
Collapse
|
73
|
dos Santos RG, Osório FL, Crippa JAS, Riba J, Zuardi AW, Hallak JEC. Antidepressive, anxiolytic, and antiaddictive effects of ayahuasca, psilocybin and lysergic acid diethylamide (LSD): a systematic review of clinical trials published in the last 25 years. Ther Adv Psychopharmacol 2016; 6:193-213. [PMID: 27354908 PMCID: PMC4910400 DOI: 10.1177/2045125316638008] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To date, pharmacological treatments for mood and anxiety disorders and for drug dependence show limited efficacy, leaving a large number of patients suffering severe and persistent symptoms. Preliminary studies in animals and humans suggest that ayahuasca, psilocybin and lysergic acid diethylamide (LSD) may have antidepressive, anxiolytic, and antiaddictive properties. Thus, we conducted a systematic review of clinical trials published from 1990 until 2015, assessing these therapeutic properties. Electronic searches were performed using the PubMed, LILACS, and SciELO databases. Only clinical trials published in peer-reviewed journals were included. Of these, 151 studies were identified, of which six met the established criteria. Reviewed studies suggest beneficial effects for treatment-resistant depression, anxiety and depression associated with life-threatening diseases, and tobacco and alcohol dependence. All drugs were well tolerated. In conclusion, ayahuasca, psilocybin and LSD may be useful pharmacological tools for the treatment of drug dependence, and anxiety and mood disorders, especially in treatment-resistant patients. These drugs may also be useful pharmacological tools to understand psychiatric disorders and to develop new therapeutic agents. However, all studies reviewed had small sample sizes, and half of them were open-label, proof-of-concept studies. Randomized, double-blind, placebo-controlled studies with more patients are needed to replicate these preliminary findings.
Collapse
Affiliation(s)
- Rafael G. dos Santos
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Hospital das Clínicas, Terceiro Andar, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil
| | - Flávia L. Osório
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil National Institute for Translational Medicine (INCT-TM), CNPq, Brazil
| | - José Alexandre S. Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil National Institute for Translational Medicine (INCT-TM), CNPq, Brazil
| | - Jordi Riba
- Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Human Experimental Neuropsy-chopharmacology, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Departament de Farmacologia i Terapèutica, Universitat Autònoma de Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Antônio W. Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil National Institute for Translational Medicine (INCT-TM), CNPq, Brazil
| | - Jaime E. C. Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil National Institute for Translational Medicine (INCT-TM), CNPq, Brazil
| |
Collapse
|
74
|
Speth J, Speth C, Kaelen M, Schloerscheidt AM, Feilding A, Nutt DJ, Carhart-Harris RL. Decreased mental time travel to the past correlates with default-mode network disintegration under lysergic acid diethylamide. J Psychopharmacol 2016; 30:344-53. [PMID: 26979587 DOI: 10.1177/0269881116628430] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper reports on the effects of LSD on mental time travel during spontaneous mentation. Twenty healthy volunteers participated in a placebo-controlled crossover study, incorporating intravenous administration of LSD (75 μg) and placebo (saline) prior to functional magnetic resonance imaging (fMRI). Six independent, blind judges analysed mentation reports acquired during structured interviews performed shortly after the functional magnetic resonance imaging (fMRI) scans (approximately 2.5 h post-administration). Within each report, specific linguistic references to mental spaces for the past, present and future were identified. Results revealed significantly fewer mental spaces for the past under LSD and this effect correlated with the general intensity of the drug's subjective effects. No differences in the number of mental spaces for the present or future were observed. Consistent with the previously proposed role of the default-mode network (DMN) in autobiographical memory recollection and ruminative thought, decreased resting-state functional connectivity (RSFC) within the DMN correlated with decreased mental time travel to the past. These results are discussed in relation to potential therapeutic applications of LSD and related psychedelics, e.g. in the treatment of depression, for which excessive reflection on one's past, likely mediated by DMN functioning, is symptomatic.
Collapse
Affiliation(s)
- Jana Speth
- Department of Psychology, School of Social Sciences, University of Dundee, Dundee, UK
| | - Clemens Speth
- Department of Psychology, School of Social Sciences, University of Dundee, Dundee, UK
| | - Mendel Kaelen
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | | | | | - David J Nutt
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | | |
Collapse
|
75
|
Abstract
Psychedelics (serotonergic hallucinogens) are powerful psychoactive substances that alter perception and mood and affect numerous cognitive processes. They are generally considered physiologically safe and do not lead to dependence or addiction. Their origin predates written history, and they were employed by early cultures in many sociocultural and ritual contexts. After the virtually contemporaneous discovery of (5R,8R)-(+)-lysergic acid-N,N-diethylamide (LSD)-25 and the identification of serotonin in the brain, early research focused intensively on the possibility that LSD and other psychedelics had a serotonergic basis for their action. Today there is a consensus that psychedelics are agonists or partial agonists at brain serotonin 5-hydroxytryptamine 2A receptors, with particular importance on those expressed on apical dendrites of neocortical pyramidal cells in layer V. Several useful rodent models have been developed over the years to help unravel the neurochemical correlates of serotonin 5-hydroxytryptamine 2A receptor activation in the brain, and a variety of imaging techniques have been employed to identify key brain areas that are directly affected by psychedelics. Recent and exciting developments in the field have occurred in clinical research, where several double-blind placebo-controlled phase 2 studies of psilocybin-assisted psychotherapy in patients with cancer-related psychosocial distress have demonstrated unprecedented positive relief of anxiety and depression. Two small pilot studies of psilocybin-assisted psychotherapy also have shown positive benefit in treating both alcohol and nicotine addiction. Recently, blood oxygen level-dependent functional magnetic resonance imaging and magnetoencephalography have been employed for in vivo brain imaging in humans after administration of a psychedelic, and results indicate that intravenously administered psilocybin and LSD produce decreases in oscillatory power in areas of the brain's default mode network.
Collapse
Affiliation(s)
- David E Nichols
- Eschelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
76
|
Letheby C. The epistemic innocence of psychedelic states. Conscious Cogn 2016; 39:28-37. [DOI: 10.1016/j.concog.2015.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
77
|
Kalueff AV, Echevarria DJ, Homechaudhuri S, Stewart AM, Collier AD, Kaluyeva AA, Li S, Liu Y, Chen P, Wang J, Yang L, Mitra A, Pal S, Chaudhuri A, Roy A, Biswas M, Roy D, Podder A, Poudel MK, Katare DP, Mani RJ, Kyzar EJ, Gaikwad S, Nguyen M, Song C. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:297-309. [PMID: 26372090 DOI: 10.1016/j.aquatox.2015.08.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 05/25/2023]
Abstract
Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Chemical-Technological Institute and Institute of Natural Sciences, Ural Federal University, Ekaterinburg 620002, Russia.
| | - David J Echevarria
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Sumit Homechaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adam Michael Stewart
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Adam D Collier
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | | | - Shaomin Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Yingcong Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Peirong Chen
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - JiaJia Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Lei Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Anisa Mitra
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Subharthi Pal
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adwitiya Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anwesha Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Missidona Biswas
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Dola Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anupam Podder
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Manoj K Poudel
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Deepshikha P Katare
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Ruchi J Mani
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Evan J Kyzar
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, 1601 W Taylor St., Chicago, IL 60612, USA
| | - Siddharth Gaikwad
- Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| | - Michael Nguyen
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
78
|
Szabo A. Psychedelics and Immunomodulation: Novel Approaches and Therapeutic Opportunities. Front Immunol 2015; 6:358. [PMID: 26236313 PMCID: PMC4500993 DOI: 10.3389/fimmu.2015.00358] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
Classical psychedelics are psychoactive substances, which, besides their psychopharmacological activity, have also been shown to exert significant modulatory effects on immune responses by altering signaling pathways involved in inflammation, cellular proliferation, and cell survival via activating NF-κB and mitogen-activated protein kinases. Recently, several neurotransmitter receptors involved in the pharmacology of psychedelics, such as serotonin and sigma-1 receptors, have also been shown to play crucial roles in numerous immunological processes. This emerging field also offers promising treatment modalities in the therapy of various diseases including autoimmune and chronic inflammatory conditions, infections, and cancer. However, the scarcity of available review literature renders the topic unclear and obscure, mostly posing psychedelics as illicit drugs of abuse and not as physiologically relevant molecules or as possible agents of future pharmacotherapies. In this paper, the immunomodulatory potential of classical serotonergic psychedelics, including N,N-dimethyltryptamine (DMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), lysergic acid diethylamide (LSD), 2,5-dimethoxy-4-iodoamphetamine, and 3,4-methylenedioxy-methamphetamine will be discussed from a perspective of molecular immunology and pharmacology. Special attention will be given to the functional interaction of serotonin and sigma-1 receptors and their cross-talk with toll-like and RIG-I-like pattern-recognition receptor-mediated signaling. Furthermore, novel approaches will be suggested feasible for the treatment of diseases with chronic inflammatory etiology and pathology, such as atherosclerosis, rheumatoid arthritis, multiple sclerosis, schizophrenia, depression, and Alzheimer’s disease.
Collapse
Affiliation(s)
- Attila Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| |
Collapse
|
79
|
Murugaiyah V, Mattson MP. Neurohormetic phytochemicals: An evolutionary-bioenergetic perspective. Neurochem Int 2015; 89:271-80. [PMID: 25861940 DOI: 10.1016/j.neuint.2015.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 12/25/2022]
Abstract
The impact of dietary factors on brain health and vulnerability to disease is increasingly appreciated. The results of epidemiological studies, and intervention trials in animal models suggest that diets rich in phytochemicals can enhance neuroplasticity and resistance to neurodegeneration. Here we describe how interactions of plants and animals during their co-evolution, and resulting reciprocal adaptations, have shaped the remarkable characteristics of phytochemicals and their effects on the physiology of animal cells in general, and neurons in particular. Survival advantages were conferred upon plants capable of producing noxious bitter-tasting chemicals, and on animals able to tolerate the phytochemicals and consume the plants as an energy source. The remarkably diverse array of phytochemicals present in modern fruits, vegetables spices, tea and coffee may have arisen, in part, from the acquisition of adaptive cellular stress responses and detoxification enzymes in animals that enabled them to consume plants containing potentially toxic chemicals. Interestingly, some of the same adaptive stress response mechanisms that protect neurons against noxious phytochemicals are also activated by dietary energy restriction and vigorous physical exertion, two environmental challenges that shaped brain evolution. In this perspective article, we describe some of the signaling pathways relevant to cellular energy metabolism that are modulated by 'neurohormetic phytochemicals' (potentially toxic chemicals produced by plants that have beneficial effects on animals when consumed in moderate amounts). We highlight the cellular bioenergetics-related sirtuin, adenosine monophosphate activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and insulin-like growth factor 1 (IGF-1) pathways. The inclusion of dietary neurohormetic phytochemicals in an overall program for brain health that also includes exercise and energy restriction may find applications in the prevention and treatment of a range of neurological disorders.
Collapse
Affiliation(s)
- Vikneswaran Murugaiyah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
80
|
Baumeister D, Tojo LM, Tracy DK. Legal highs: staying on top of the flood of novel psychoactive substances. Ther Adv Psychopharmacol 2015; 5:97-132. [PMID: 26240749 PMCID: PMC4521440 DOI: 10.1177/2045125314559539] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There has been growing clinical, public, and media awareness and concern about the availability and potential harmfulness of so-called 'legal highs', which are more appropriately called new or novel psychoactive substances (NPS). A cat-and-mouse process has emerged wherein unknown chemists and laboratories are producing new, and as yet nonproscribed, compounds for human consumption; and as soon as they are banned, which they inevitably are, slightly modified analogues are produced to circumvent new laws. This rapidly changing environment, 81 new substances were identified in 2013 alone, has led to confusion for clinicians, psychopharmacologists, and the public at large. Our difficulties in keeping up with the process has had a two-fold negative effect: the danger of ignoring what is confusing; and the problem that some of the newer synthesized compounds appear ever more potent. This review aims to circumscribe a quick moving and growing field, and to categorize NPS into five major groups based upon their 'parent' compounds: stimulants similar to cocaine, amphetamines and ecstasy; cannabinoids; benzodiazepine based drugs; dissociatives similar to ketamine and phencyclidine (PCP); and those modelled after classic hallucinogens such as LSD and psilocybin. Pharmacodynamic actions, subjective and physical effects, harmfulness, risk of dependency and, where appropriate, putative clinical potentials are described for each class. Clinicians might encounter NPS in various ways: anecdotal reportage; acute intoxication; as part of a substance misuse profile; and as a precipitant or perpetuating factor for longer-term physical and psychological ill health. Current data are overall limited, and much of our knowledge and treatment strategies are based upon those of the 'parent' compound. There is a critical need for more research in this field, and for professionals to make themselves more aware of this growing issue and how it might affect those we see clinically and try to help: a brave new world of so-called 'psychonauts' consuming NPS will also need informed 'psychotherapeutonauts'. The paper should serve as a primer for clinicians and interested readers, as well as provide a framework into which to place the new substances that will inevitably be synthesized in the future.
Collapse
Affiliation(s)
- David Baumeister
- Department of Psychology, Institute of Psychiatry, King's College, London, UK
| | - Luis M Tojo
- Stress, Psychiatry and Immunology Lab, Department of Psychological Medicine, Institute of Psychiatry, King's College, London, UK
| | - Derek K Tracy
- Consultant Psychiatrist and Associate Clinical Director, Oxleas NHS Foundation Trust, Princess Royal University Hospital, and Cognition, Schizophrenia and Imaging Laboratory, Department of Psychosis Studies, Institute of Psychiatry, King's College, London BR6 8NY, UK
| |
Collapse
|
81
|
Zhuk O, Jasicka-Misiak I, Poliwoda A, Kazakova A, Godovan VV, Halama M, Wieczorek PP. Research on acute toxicity and the behavioral effects of methanolic extract from psilocybin mushrooms and psilocin in mice. Toxins (Basel) 2015; 7:1018-29. [PMID: 25826052 PMCID: PMC4417952 DOI: 10.3390/toxins7041018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/19/2022] Open
Abstract
The pharmacological activities and acute toxicity of the psilocin (PC) and dried residues of the crude extracts of psychotropic mushrooms were investigated in mice. The hallucinogenic substances were effectively isolated, by using methanol, from the species of Psilocybe semilanceata and Pholiotina cyanopus, that were collected in the north-east region of Poland. The chemical analysis of these extracts, which was performed by liquid chromatography with mass spectrometry detection (LC-MS), indicated the presence of psilocin and other hallucinogenic substances, including indolealkylamines and their phosphorylated analogues. When the pure psilocin or fungal extracts were used, slight differences in determined LD50 values were observed. However, the application of PC evoked the highest level of toxicity (293.07 mg/kg) compared to the activity of extracts from Ph. cyanopus and P. semilanceata, where the level of LD50 was 316.87 mg/kg and 324.37 mg/kg, respectively. Furthermore, the behavioral test, which considered the head-twitching response (HTR), was used to assess the effects of the studied psychotropic factors on the serotonergic system. Both, the fungal extracts and psilocin evoked characteristic serotoninergic effects depending on the dose administered to mice, acting as an agonist/partial agonist on the serotonergic system. A dose of 200 mg/kg 5-hydroxytryptophan (5-HTP) induced spontaneous head-twitching in mice (100% effect), as a result of the formation of 5-hydroxytryptamine (5-HT) in the brain. Compared to the activity of 5-HTP, the intraperitoneal administration of 1mg/kg of psilocin or hallucinogenic extracts of studied mushrooms (Ph. cyanopus and P. semilanceata) reduced the number of head-twitch responses of about 46% and 30%, respectively. In contrast, the administration of PC exhibited a reduction of about 60% in HTR numbers.
Collapse
Affiliation(s)
- Olga Zhuk
- Department of Biotechnology and Molecular Biology, Opole University, 45-040 Opole, Poland.
| | | | - Anna Poliwoda
- Faculty of Chemistry, Opole University, 45-040 Opole, Poland.
| | - Anastasia Kazakova
- Department of General and Clinical Pharmacology, Odessa National Medical University, 65000 Odessa, Ukraine.
| | - Vladlena V Godovan
- Department of General and Clinical Pharmacology, Odessa National Medical University, 65000 Odessa, Ukraine.
| | - Marek Halama
- Museum of Natural History, University of Wrocław, 50-335 Wrocław, Poland.
| | | |
Collapse
|
82
|
Hendricks PS, Thorne CB, Clark CB, Coombs DW, Johnson MW. Classic psychedelic use is associated with reduced psychological distress and suicidality in the United States adult population. J Psychopharmacol 2015; 29:280-8. [PMID: 25586402 DOI: 10.1177/0269881114565653] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mental health problems are endemic across the globe, and suicide, a strong corollary of poor mental health, is a leading cause of death. Classic psychedelic use may occasion lasting improvements in mental health, but the effects of classic psychedelic use on suicidality are unknown. We evaluated the relationships of classic psychedelic use with psychological distress and suicidality among over 190,000 USA adult respondents pooled from the last five available years of the National Survey on Drug Use and Health (2008-2012) while controlling for a range of covariates. Lifetime classic psychedelic use was associated with a significantly reduced odds of past month psychological distress (weighted odds ratio (OR)=0.81 (0.72-0.91)), past year suicidal thinking (weighted OR=0.86 (0.78-0.94)), past year suicidal planning (weighted OR=0.71 (0.54-0.94)), and past year suicide attempt (weighted OR=0.64 (0.46-0.89)), whereas lifetime illicit use of other drugs was largely associated with an increased likelihood of these outcomes. These findings indicate that classic psychedelics may hold promise in the prevention of suicide, supporting the view that classic psychedelics' most highly restricted legal status should be reconsidered to facilitate scientific study, and suggesting that more extensive clinical research with classic psychedelics is warranted.
Collapse
Affiliation(s)
- Peter S Hendricks
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher B Thorne
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Brendan Clark
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David W Coombs
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew W Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
83
|
Johansen PØ, Krebs TS. Psychedelics not linked to mental health problems or suicidal behavior: a population study. J Psychopharmacol 2015; 29:270-9. [PMID: 25744618 DOI: 10.1177/0269881114568039] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A recent large population study of 130,000 adults in the United States failed to find evidence for a link between psychedelic use (lysergic acid diethylamide, psilocybin or mescaline) and mental health problems. Using a new data set consisting of 135,095 randomly selected United States adults, including 19,299 psychedelic users, we examine the associations between psychedelic use and mental health. After adjusting for sociodemographics, other drug use and childhood depression, we found no significant associations between lifetime use of psychedelics and increased likelihood of past year serious psychological distress, mental health treatment, suicidal thoughts, suicidal plans and suicide attempt, depression and anxiety. We failed to find evidence that psychedelic use is an independent risk factor for mental health problems. Psychedelics are not known to harm the brain or other body organs or to cause addiction or compulsive use; serious adverse events involving psychedelics are extremely rare. Overall, it is difficult to see how prohibition of psychedelics can be justified as a public health measure.
Collapse
Affiliation(s)
| | - Teri Suzanne Krebs
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|