51
|
El-Far M, Durand M, Turcotte I, Larouche-Anctil E, Sylla M, Zaidan S, Chartrand-Lefebvre C, Bunet R, Ramani H, Sadouni M, Boldeanu I, Chamberland A, Lesage S, Baril JG, Trottier B, Thomas R, Gonzalez E, Filali-Mouhim A, Goulet JP, Martinson JA, Kassaye S, Karim R, Kizer JR, French AL, Gange SJ, Ancuta P, Routy JP, Hanna DB, Kaplan RC, Chomont N, Landay AL, Tremblay CL. Upregulated IL-32 Expression And Reduced Gut Short Chain Fatty Acid Caproic Acid in People Living With HIV With Subclinical Atherosclerosis. Front Immunol 2021; 12:664371. [PMID: 33936102 PMCID: PMC8083984 DOI: 10.3389/fimmu.2021.664371] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), people living with HIV (PLWH) are still at higher risk for cardiovascular diseases (CVDs) that are mediated by chronic inflammation. Identification of novel inflammatory mediators with the inherent potential to be used as CVD biomarkers and also as therapeutic targets is critically needed for better risk stratification and disease management in PLWH. Here, we investigated the expression and potential role of the multi-isoform proinflammatory cytokine IL-32 in subclinical atherosclerosis in PLWH (n=49 with subclinical atherosclerosis and n=30 without) and HIV- controls (n=25 with subclinical atherosclerosis and n=24 without). While expression of all tested IL-32 isoforms (α, β, γ, D, ϵ, and θ) was significantly higher in peripheral blood from PLWH compared to HIV- controls, IL-32D and IL-32θ isoforms were further upregulated in HIV+ individuals with coronary artery atherosclerosis compared to their counterparts without. Upregulation of these two isoforms was associated with increased plasma levels of IL-18 and IL-1β and downregulation of the atheroprotective protein TRAIL, which together composed a unique atherosclerotic inflammatory signature specific for PLWH compared to HIV- controls. Logistic regression analysis demonstrated that modulation of these inflammatory variables was independent of age, smoking, and statin treatment. Furthermore, our in vitro functional data linked IL-32 to macrophage activation and production of IL-18 and downregulation of TRAIL, a mechanism previously shown to be associated with impaired cholesterol metabolism and atherosclerosis. Finally, increased expression of IL-32 isoforms in PLWH with subclinical atherosclerosis was associated with altered gut microbiome (increased pathogenic bacteria; Rothia and Eggerthella species) and lower abundance of the gut metabolite short-chain fatty acid (SCFA) caproic acid, measured in fecal samples from the study participants. Importantly, caproic acid diminished the production of IL-32, IL-18, and IL-1β in human PBMCs in response to bacterial LPS stimulation. In conclusion, our studies identified an HIV-specific atherosclerotic inflammatory signature including specific IL-32 isoforms, which is regulated by the SCFA caproic acid and that may lead to new potential therapies to prevent CVD in ART-treated PLWH.
Collapse
Affiliation(s)
- Mohamed El-Far
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Madeleine Durand
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Turcotte
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | | | - Mohamed Sylla
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Sarah Zaidan
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Carl Chartrand-Lefebvre
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Radiologie, Radio-oncologie et Médecine Nucléaire, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Rémi Bunet
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Hardik Ramani
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Manel Sadouni
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Irina Boldeanu
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Annie Chamberland
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Sylvie Lesage
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Jean-Guy Baril
- Centre de médecine urbaine du Quartier latin, Montréal, QC, Canada
| | - Benoit Trottier
- Centre de médecine urbaine du Quartier latin, Montréal, QC, Canada
| | | | - Emmanuel Gonzalez
- Department of Human Genetics, Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada.,Microbiome Platform Research, McGill Interdisciplinary Initiative in Infection and Immunity, McGill University, Montreal, QC, Canada
| | - Ali Filali-Mouhim
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | | | - Jeffrey A Martinson
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Seble Kassaye
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Roksana Karim
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States.,Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Audrey L French
- Division of Infectious Diseases, Stroger Hospital of Cook County, Chicago IL, United States
| | - Stephen J Gange
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Petronela Ancuta
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jean-Pierre Routy
- Research Institute of McGill University Health Centre, Montréal, QC, Canada
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States.,Divsion of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Nicolas Chomont
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Cécile L Tremblay
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
52
|
Lu J, Zhang P, Hu R, Qi S, Zhao Y, Miao Y, Han Y, Zhou L, Yang Q. Gut microbiota characterization in Chinese patients with alopecia areata. J Dermatol Sci 2021; 102:109-115. [PMID: 33893030 DOI: 10.1016/j.jdermsci.2021.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The gut microbiota is known to play a key role in autoimmune diseases. OBJECTIVES To identify and compare the characteristics in the gut microbial composition of patients with alopecia areata (AA) and healthy controls (HCs). METHODS In a cross-sectional discovery cohort, we enrolled 33 patients with AA and 35 HCs from the same geographic location in Shanghai, China. The 16S rRNA gene sequencing and bioinformatic analyses were conducted to analyze DNA extracted from the subjects. RESULTS The α-diversity of the AA group demonstrated no statistically significant differences compared with the HC group (P > 0.05). However, the overall gut microbial communities in the AA group were distinct from the HCs (P = 0.0096). We also adopted a random forest model to select three AA-associated OTU biomarkers: OTU1237(Achromobacter), OTU257(Megasphaera), and OTU1784(Lachnospiraceae Incertae Sedis). CONCLUSION The overall gut microbial composition for AA was distinct from that of HCs. The gut microbial markers we identified may potentially be used for earlier diagnosis and as therapeutic targets.
Collapse
Affiliation(s)
- Jinghao Lu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Pan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruiming Hu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Sisi Qi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Miao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yumei Han
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijuan Zhou
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qinping Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
53
|
Billy V, Lhotská Z, Jirků M, Kadlecová O, Frgelecová L, Parfrey LW, Pomajbíková KJ. Blastocystis Colonization Alters the Gut Microbiome and, in Some Cases, Promotes Faster Recovery From Induced Colitis. Front Microbiol 2021; 12:641483. [PMID: 33897648 PMCID: PMC8058373 DOI: 10.3389/fmicb.2021.641483] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Protists are a normal component of mammalian intestinal ecosystems that live alongside, and interact with, bacterial microbiota. Blastocystis, one of the most common intestinal eukaryotes, is reported as a pathogen that causes inflammation and disease, though health consequences likely vary depending on host health, the gut ecosystem, and genetic diversity. Accumulating evidence suggests that Blastocystis is by and large commensal. Blastocystis is more common in healthy individuals than those with immune mediated diseases such as Inflammatory Bowel Diseases (IBD). Blastocystis presence is also associated with altered composition and higher richness of the bacterial gut microbiota. It is not clear whether Blastocystis directly promotes a healthy gut and microbiome or is more likely to colonize and persist in a healthy gut environment. We test this hypothesis by measuring the effect of Blastocystis ST3 colonization on the health and microbiota in a rat experimental model of intestinal inflammation using the haptenizing agent dinitrobenzene sulfonic acid (DNBS). We experimentally colonized rats with Blastocystis ST3 obtained from a healthy, asymptomatic human donor and then induced colitis after 3 weeks (short term exposure experiment) or after 13 weeks (long term exposure experiment) and compared these colonized rats to a colitis-only control group. Across experiments Blastocystis ST3 colonization alters microbiome composition, but not richness, and induces only mild gut inflammation but no clinical symptoms. Our results showed no effect of short-term exposure to Blastocystis ST3 on gut inflammation following colitis induction. In contrast, long-term Blastocystis exposure appears to promote a faster recovery from colitis. There was a significant reduction in inflammatory markers, pathology 2 days after colitis induction in the colonized group, and clinical scores also improved in this group. Blastocystis colonization resulted in a significant reduction in tumor necrosis factor alpha (TNFα) and IL-1β relative gene expression, while expression of IFNγ and IL17re/17C were elevated. We obtained similar results in a previous pilot study. We further found that bacterial richness rebounded in rats colonized by Blastocystis ST3. These results suggest that Blastocystis sp. may alter the gut ecosystem in a protective manner and promote faster recovery from disturbance.
Collapse
Affiliation(s)
- Vincent Billy
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zuzana Lhotská
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Medical Biology, Faculty of Science, University of South-Bohemia, České Budějovice, Czechia
| | - Milan Jirků
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Oldřiška Kadlecová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Lucia Frgelecová
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia
| | - Laura Wegener Parfrey
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Kateřina Jirků Pomajbíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Medical Biology, Faculty of Science, University of South-Bohemia, České Budějovice, Czechia
| |
Collapse
|
54
|
Zaiss MM, Joyce Wu HJ, Mauro D, Schett G, Ciccia F. The gut-joint axis in rheumatoid arthritis. Nat Rev Rheumatol 2021; 17:224-237. [PMID: 33674813 DOI: 10.1038/s41584-021-00585-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disorder that primarily affects the joints. One hypothesis for the pathogenesis of RA is that disease begins at mucosal sites as a consequence of interactions between the mucosal immune system and an aberrant local microbiota, and then transitions to involve the synovial joints. Alterations in the composition of the microbial flora in the lungs, mouth and gut in individuals with preclinical and established RA suggest a role for mucosal dysbiosis in the development and perpetuation of RA, although establishing whether these alterations are the specific consequence of intestinal involvement in the setting of a systemic inflammatory process, or whether they represent a specific localization of disease, is an ongoing challenge. Data from mouse models of RA and investigations into the preclinical stages of disease also support the hypothesis that these alterations to the microbiota predate the onset of disease. In addition, several therapeutic options widely used for the treatment of RA are associated with alterations in intestinal microbiota, suggesting that modulation of intestinal microbiota and/or intestinal barrier function might be useful in preventing or treating RA.
Collapse
Affiliation(s)
- Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, Arizona Arthritis Center, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Daniele Mauro
- Dipartimento di Medicina di Precisione, University della Campania L. Vanvitelli, Naples, Italy
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, University della Campania L. Vanvitelli, Naples, Italy.
| |
Collapse
|
55
|
Kragsnaes MS, Sødergren ST, Kjeldsen J, Horn HC, Munk HL, Pedersen JK, Klinkby CS, de Wit M, Ahlmark NG, Tjørnhøj-Thomsen T, Ellingsen T. Experiences and perceptions of patients with psoriatic arthritis participating in a trial of faecal microbiota transplantation: a nested qualitative study. BMJ Open 2021; 11:e039471. [PMID: 34006020 PMCID: PMC7942243 DOI: 10.1136/bmjopen-2020-039471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Patients' first-hand experiences of faecal microbiota transplantation (FMT) performed in a rheumatological care setting have yet to be elucidated. The objectives were to explore participants' perceptions of being part of an FMT trial thereby identifying potential trial participation effects and enlightening the patient perspective on the outlook for future FMT trials in rheumatic diseases. DESIGN In a qualitative study nested within a double-blind, randomised, placebo-controlled trial (RCT) testing FMT as a potential new antirheumatic treatment, semistructured telephone interviews were conducted following the trial participants' final 26-week visit. Qualitative researchers, who did not take part in the main trial, performed the interviews and the primary analysis. The experiences explored related to the conduct of the RCT and changes in the participants' everyday life. The analysis was carried out using a thematic approach. SETTING A Danish rheumatology university outpatient clinic with nationwide inclusion. PARTICIPANTS The study included 10 patients with psoriatic arthritis (PsA) who were unaware of their treatment allocation (FMT/sham transplantation) and completed the final 26-week trial visit. RESULTS Participation in the RCT influenced the patients' understanding of PsA and induced positive changes in their everyday life. Renewed hopes for the future in addition to a feeling of enhanced care contributed to significant trial participation effects. FMT was deemed a tolerable and safe treatment. CONCLUSIONS Discrepancies between the clinical and the research setting should be considered when discussing the clinical relevance of the results of the RCT. Overall, patients with PsA who have participated in an RCT testing FMT find the treatment acceptable and safe encouraging more research into the field of microbiota-targeted interventions in rheumatic diseases. TRIAL REGISTRATION NUMBER NCT03058900; Pre-results.
Collapse
Affiliation(s)
| | - Shaun Theodor Sødergren
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Jens Kjeldsen
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | | | | | - Jens Kristian Pedersen
- Department of Medicine, Svendborg Hospital, Odense University Hospital, Svendborg, Denmark
| | | | | | - Nanna Gram Ahlmark
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Tine Tjørnhøj-Thomsen
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Torkell Ellingsen
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
56
|
Mangalam AK, Yadav M, Yadav R. The Emerging World of Microbiome in Autoimmune Disorders: Opportunities and Challenges. INDIAN JOURNAL OF RHEUMATOLOGY 2021; 16:57-72. [PMID: 34531642 PMCID: PMC8442979 DOI: 10.4103/injr.injr_210_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trillions of commensal bacteria colonizing humans (microbiome) have emerged as essential player(s) in human health. The alteration of the same has been linked with diseases including autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and ankylosing spondylitis. Gut bacteria are separated from the host through a physical barrier such as skin or gut epithelial lining. However, the perturbation in the healthy bacterial community (gut dysbiosis) can compromise gut barrier integrity, resulting in translocation of bacterial contents across the epithelial barrier (leaky gut). Bacterial contents such as lipopolysaccharide and bacterial antigens can induce a systemic inflammatory environment through activation and induction of immune cells. The biggest question in the field is whether inflammation causes gut dysbiosis or dysbiosis leads to disease induction or propagation, i.e., it is inside out or outside in or both. In this review, we first discuss the microbiome profiling studies in various autoimmune disorders, followed by a discussion of potential mechanisms through which microbiome is involved in the pathobiology of diseases. A better understanding of the role of the microbiome in health and disease will help us harness the power of commensal bacteria for the development of novel therapeutic agents to treat autoimmune disorders.
Collapse
Affiliation(s)
| | - Meeta Yadav
- Department of Pathology, University of Iowa, Iowa, IA,
USA
| | - Rajwardhan Yadav
- Department of Rheumatology, St Francis Hospital, Hartford,
CT, USA
| |
Collapse
|
57
|
Toner A, Lewis JS, Stanhope J, Maric F. Prescribing active transport as a planetary health intervention – benefits, challenges and recommendations. PHYSICAL THERAPY REVIEWS 2021. [DOI: 10.1080/10833196.2021.1876598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adam Toner
- Physiotherapy Department, Midlands Regional Hospital, Tullamore, Co. Offaly, Ireland
- Rehabilitation Services, UW Health, Madison, WI, USA
| | - Jeremy S. Lewis
- School of Health and Social Work, University of Hertfordshire, Hatfield, Hertfordshire, UK
- Therapy Department, Central London Community Healthcare National Health Service Trust, London, UK
| | - Jessica Stanhope
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, South Australia, Australia
| | - Filip Maric
- Institute of Health and Care Sciences, Unviersity of Tromsø, Norway
- Environmental Physiotherapy Association (EPA), Tromsø, Norway
| |
Collapse
|
58
|
Lam SY, Radjabzadeh D, Eppinga H, Nossent YRA, van der Zee HH, Kraaij R, Konstantinov SR, Fuhler GM, Prens EP, Thio HB, Peppelenbosch MP. A microbiome study to explore the gut-skin axis in hidradenitis suppurativa. J Dermatol Sci 2021; 101:218-220. [PMID: 33423845 DOI: 10.1016/j.jdermsci.2020.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Suk Yee Lam
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Djawad Radjabzadeh
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Hester Eppinga
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, The Netherlands; Department of Dermatology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Yoena Roos Anna Nossent
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, The Netherlands
| | | | - Robert Kraaij
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, The Netherlands
| | | | - Gwenny Manel Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Errol Prospero Prens
- Department of Dermatology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Hok Bing Thio
- Department of Dermatology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Maikel Petrus Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
59
|
Miguens Blanco J, Borghese F, McHugh N, Kelleher P, Sengupta R, Marchesi JR, Abraham S. Longitudinal profiling of the gut microbiome in patients with psoriatic arthritis and ankylosing spondylitis: a multicentre, prospective, observational study. BMC Rheumatol 2020; 4:60. [PMID: 33292821 PMCID: PMC7653819 DOI: 10.1186/s41927-020-00155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/09/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disease of the skin affecting 2-3% of UK population. 30% of people affected by psoriasis will develop a distinct form of arthritis within 10 years of the skin condition onset. Although the pathogenesis of psoriatic arthritis is still unknown, there is a genetic predisposition triggered by environmental factors. Limited but convincing evidence link the gut microbiome to psoriatic arthritis. The Microbiome in Psoriatic ARThritis (Mi-PART) study propose is to characterise the microbiome-metabolic interface in patients affected by psoriatic arthritis to deepen our understanding of the pathogenesis of the disease. METHODS This is a multicentre, prospective, observational study. Psoriatic arthritis (n = 65) and ankylosing spondylitis (n = 30) patients will be recruited in addition to a control group of healthy volunteers (n = 30). Patients eligibility will be evaluated against the Criteria for Psoriatic Arthritis (CASPAR), the Bath Ankylosing Spondylitis Activity Index (BASDAI) and the healthy volunteers who fulfil study inclusion and exclusion criteria. Information regarding their medical and medication history, demographics, diet and lifestyle will be collected. All the participants in the study will be asked to complete a 7-day food diary, to provide stool samples and to complete quality of life questionnaires. Routine clinical laboratory tests will be performed on blood and urine samples. Patients and healthy volunteers with gastrointestinal symptoms, previous history of cancer, gastrointestinal surgery in the previous 6 months or alcohol abuse will be excluded from the study. DISCUSSION The aim of this trial is to characterise the microbiome of psoriatic arthritis patients and to compare it with microbiome of healthy volunteers and of patient with ankylosing spondylitis in order to define if different rheumatologic conditions are associated with characteristic microbiome profiles. Investigating the role of the microbiome in the development of psoriatic arthritis could deepen our understanding of the pathogenesis of the disease and potentially open the way to new therapies.
Collapse
Affiliation(s)
- Jesus Miguens Blanco
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W2 1NY UK
| | - Federica Borghese
- NIHR/Wellcome Trust Imperial CRF, Imperial Centre for Translational and Experimental Medicine, Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London, W12 0HS UK
| | - Neil McHugh
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - Peter Kelleher
- Chelsea and Westminster Hospital, Department of Medicine, Imperial College London, London, W2 1NY UK
| | - Raj Sengupta
- Royal National Hospital for Rheumatic diseases, Bath, BA1 1RL UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W2 1NY UK
| | - Sonya Abraham
- NIHR/Wellcome Trust Imperial CRF, Imperial Centre for Translational and Experimental Medicine, Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London, W12 0HS UK
| |
Collapse
|
60
|
The Effectiveness of Multi-Session FMT Treatment in Active Ulcerative Colitis Patients: A Pilot Study. Biomedicines 2020; 8:biomedicines8080268. [PMID: 32756350 PMCID: PMC7459721 DOI: 10.3390/biomedicines8080268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The modification of the microbiome through fecal microbiota transplantation (FMT) is becoming a very promising therapeutic option for inflammatory bowel disease (IBD) patients. Our pilot study aimed to assess the effectiveness of multi-session FMT treatment in active ulcerative colitis (UC) patients. Ten patients with UC were treated with multi-session FMT (200 mL) from healthy donors, via colonoscopy/gastroscopy. Patients were evaluated as follows: at baseline, at week 7, and after 6 months, routine blood tests (including C reactive protein (CRP) and calprotectin) were performed. 16S rRNA gene (V3V4) sequencing was used for metagenomic analysis. The severity of UC was classified based on the Truelove–Witts index. The assessment of microbial diversity showed significant differences between recipients and healthy donors. FMT contributed to long-term, significant clinical and biochemical improvement. Metagenomic analysis revealed an increase in the amount of Lactobacillaceaea, Micrococcaceae, Prevotellaceae, and TM7 phylumsp.oral clone EW055 during FMT, whereas Staphylococcaceae and Bacillaceae declined significantly. A positive increase in the proportion of the genera Bifidobacterium, Lactobacillus, Rothia, Streptococcus, and Veillonella and a decrease in Bacillus, Bacteroides, and Staphylococcus were observed based on the correlation between calprotectin and Bacillus and Staphylococcus; ferritin and Lactobacillus, Veillonella, and Bifidobacterium abundance was indicated. A positive change in the abundance of Firmicutes was observed during FMT and after 6 months. The application of multi-session FMT led to the restoration of recipients’ microbiota and resulted in the remission of patients with active UC.
Collapse
|