51
|
Chen KY, Kung WM, Kuo LT, Huang APH. Ultrarapid Endoscopic-Aided Hematoma Evacuation in Patients with Thalamic Hemorrhage. Behav Neurol 2021; 2021:8886004. [PMID: 33542768 PMCID: PMC7843189 DOI: 10.1155/2021/8886004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
Thalamic hemorrhage bears the worst outcome among supratentorial intracerebral hemorrhage (ICH). Minimally invasive endoscopic-aided surgery (MIS) has been proved to be safe and effective in evacuating ICH. However, the ideal timing of MIS is still a controversy. In this study, we present our experience in the treatment of patients with thalamic hemorrhage by ultrarapid MIS evacuation. This retrospective analysis enrolled seven patients treated with ultrarapid MIS evacuation of thalamic hemorrhage. Seven patients treated with EVD with similar ICH score were included as match control. Primary endpoints included rebleeding, morbidity, and mortality. Hematoma evacuation rate was evaluated by comparing the pre- and postoperative computed tomography (CT) scans. Glasgow Outcome Scale Extended (GOSE) and modified Rankin Score (mRS) were noted at the 6-month and 1-year postoperative follow-up. Among the seven patients, six were accompanied with intraventricular hemorrhage. All patients received surgery within 6 hours after the onset of stroke. The mean hematoma volume was 35 mL, and the mean operative time was 116.4 minutes. The median hematoma evacuation rate was 74.9%. There was no rebleeding or death reported after the surgery. The median GOSE and mRS were 3 and 5, respectively, at 6 months postoperatively. Further, 1-year postoperative median GOSE and mRS were 3 and 5, respectively. The data suggest that the ultrarapid MIS technique is a safe and effective way in the management of selected cases with thalamic hemorrhage, with favorable long-term functional outcomes. However, a large, prospective, randomized-controlled trial is needed to confirm these findings.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Abel Po-Hao Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
52
|
Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat Commun 2021; 12:145. [PMID: 33420008 PMCID: PMC7794559 DOI: 10.1038/s41467-020-20243-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
Radiation therapy can potentially induce immunogenic cell death, thereby priming anti-tumor adaptive immune responses. However, radiation-induced systemic immune responses are very rare and insufficient to meet clinical needs. Here, we demonstrate a synergetic strategy for boosting radiation-induced immunogenic cell death by constructing gadolinium-hemin based nanoscale coordination polymers to simultaneously perform X-ray deposition and glutathione depletion. Subsequently, immunogenic cell death is induced by sensitized radiation to potentiate checkpoint blockade immunotherapies against primary and metastatic tumors. In conclusion, nanoscale coordination polymers-sensitized radiation therapy exhibits biocompatibility and therapeutic efficacy in preclinical cancer models, and has the potential for further application in cancer radio-immunotherapy.
Collapse
|
53
|
Derry PJ, Vo ATT, Gnanansekaran A, Mitra J, Liopo AV, Hegde ML, Tsai AL, Tour JM, Kent TA. The Chemical Basis of Intracerebral Hemorrhage and Cell Toxicity With Contributions From Eryptosis and Ferroptosis. Front Cell Neurosci 2020; 14:603043. [PMID: 33363457 PMCID: PMC7755086 DOI: 10.3389/fncel.2020.603043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a particularly devastating event both because of the direct injury from space-occupying blood to the sequelae of the brain exposed to free blood components from which it is normally protected. Not surprisingly, the usual metabolic and energy pathways are overwhelmed in this situation. In this review article, we detail the complexity of red blood cell degradation, the contribution of eryptosis leading to hemoglobin breakdown into its constituents, the participants in that process, and the points at which injury can be propagated such as elaboration of toxic radicals through the metabolism of the breakdown products. Two prominent products of this breakdown sequence, hemin, and iron, induce a variety of pathologies including free radical damage and DNA breakage, which appear to include events independent from typical oxidative DNA injury. As a result of this confluence of damaging elements, multiple pathways of injury, cell death, and survival are likely engaged including ferroptosis (which may be the same as oxytosis but viewed from a different perspective) and senescence, suggesting that targeting any single cause will likely not be a sufficient strategy to maximally improve outcome. Combination therapies in addition to safe methods to reduce blood burden should be pursued.
Collapse
Affiliation(s)
- Paul J Derry
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Anh Tran Tram Vo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Aswini Gnanansekaran
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX, United States
| | - Anton V Liopo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX, United States
| | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, United States.,Department of Computer Science, George R. Brown School of Engineering, Rice University, Houston, TX, United States.,Department of Materials Science and NanoEngineering, George R. Brown School of Engineering, Rice University, Houston, TX, United States
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States.,Department of Chemistry, Rice University, Houston, TX, United States.,Stanley H. Appel Department of Neurology, Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
54
|
Bai Q, Liu J, Wang G. Ferroptosis, a Regulated Neuronal Cell Death Type After Intracerebral Hemorrhage. Front Cell Neurosci 2020; 14:591874. [PMID: 33304242 PMCID: PMC7701249 DOI: 10.3389/fncel.2020.591874] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a term that describes one form of regulated non-apoptotic cell death. It is triggered by the iron-dependent accumulation of lipid peroxides. Emerging evidence suggests a link between ferroptosis and the pathophysiological processes of neurological disorders, including stroke, degenerative diseases, neurotrauma, and cancer. Hemorrhagic stroke, also known as intracerebral hemorrhage (ICH), belongs to a devastating illness for its high level in morbidity and mortality. Currently, there are few established treatments and limited knowledge about the mechanisms of post-ICH neuronal death. The secondary brain damage after ICH is mainly attributed to oxidative stress and hemoglobin lysate, including iron, which leads to irreversible damage to neurons. Therefore, ferroptosis is becoming a common trend in research of neuronal death after ICH. Accumulative data suggest that the inhibition of ferroptosis may effectively prevent neuronal ferroptosis, thereby reducing secondary brain damage after ICH in animal models. Ferroptosis has a close relationship with oxidative damage and iron metabolism. This review reveals the pathological pathways and regulation mechanism of ferroptosis following ICH and then offers potential intervention strategies to mitigate neuron death and dysfunction after ICH.
Collapse
Affiliation(s)
- Qinqin Bai
- Shanxi Medical University, Neurology, Taiyuan, China
| | - Jiachen Liu
- Xiangya Medical College of Central South University, Clinical Medicine, Changsha, China
| | - Gaiqing Wang
- Shanxi Medical University, Neurology, Taiyuan, China.,Department of Neurology, Sanya Central Hospital (HaiNan Third People's Hospital), Sanya, China
| |
Collapse
|
55
|
Wang C, Cao C, Wang N, Wang X, Wang X, Zhang XC. Cryo-electron microscopy structure of human ABCB6 transporter. Protein Sci 2020; 29:2363-2374. [PMID: 33007128 DOI: 10.1002/pro.3960] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023]
Abstract
Human ATP-binding cassette transporter 6 of subfamily B (ABCB6) is an ABC transporter involved in the translocation toxic metals and anti-cancer drugs. Using cryo-electron microscopy, we determined the molecular structure of full-length ABCB6 in an apo state. The structure of ABCB6 unravels the architecture of a full-length ABCB transporter that harbors two N-terminal transmembrane domains which is indispensable for its ATPase activity in our in vitro assay. A slit-like substrate binding pocket of ABCB6 may accommodate the planar shape of porphyrins, and the existence of a secondary cavity near the mitochondrial intermembrane space side would further facilitate substrate release. Furthermore, the ATPase activity of ABCB6 stimulated with a variety of porphyrin substrates showed different profiles in the presence of glutathione (GSH), suggesting the action of a distinct substrate translocation mechanism depending on the use of GSH as a cofactor.
Collapse
Affiliation(s)
- Chunyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianping Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
56
|
Mukherjee S, Sikdar SK. Intracellular activation of full-length human TREK-1 channel by hypoxia, high lactate, and low pH denotes polymodal integration by ischemic factors. Pflugers Arch 2020; 473:167-183. [PMID: 33025137 DOI: 10.1007/s00424-020-02471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
TREK-1, a two-pore domain potassium channel, responds to ischemic levels of intracellular lactate and acidic pH to provide neuroprotection. There are two splice variants of hTREK1: the shorter splice variant having a shorter N-terminus compared with the full-length hTREK1 with similar C-terminus sequence that is widely expressed in the brain. The shorter variant was reported to be irresponsive to hypoxia-a condition attributed to ischemia, which has put the neuroprotective role of hTREK-1 channel into question. Since interaction between N- and C-terminus of different ion channels shapes their gating, we re-examined the sensitivity of the full-length as well as the shorter hTREK-1 channel to intracellular hypoxia along with lactate. Single-channel data obtained from the excised inside-out patches of the full-length channel expressed in HEK293 cells indicated an increase in activity as opposed to a decrease in activity in the shorter isoform. However, both the isoforms showed an increase in activity under combined hypoxia, 20mM lactate, and low pH 6 condition, albeit with subtle differences in their individual actions, confirming the neuroprotective role played by hTREK-1 irrespective of the differences in the N-terminus among the splice variants. Furthermore, E321A mutant that disrupts the interaction of the C-terminus with the membrane showed a decrease in activity with hypoxia indicating the importance of the C-terminus in the hypoxic response of the full-length hTREK-1. We propose an increase in activity of both the splice variants of hTREK-1 in combined hypoxia, high lactate, and low pH conditions typically associated with ischemia provides neuroprotection.
Collapse
Affiliation(s)
- Sourajit Mukherjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
57
|
Casares L, Unciti-Broceta JD, Prados ME, Caprioglio D, Mattoteia D, Higgins M, Apendino G, Dinkova-Kostova AT, Muñoz E, de la Vega L. Isomeric O-methyl cannabidiolquinones with dual BACH1/NRF2 activity. Redox Biol 2020; 37:101689. [PMID: 32863231 PMCID: PMC7476313 DOI: 10.1016/j.redox.2020.101689] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress and inflammation in the brain are two key hallmarks of neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Huntington's and multiple sclerosis. The axis NRF2-BACH1 has anti-inflammatory and anti-oxidant properties that could be exploited pharmacologically to obtain neuroprotective effects. Activation of NRF2 or inhibition of BACH1 are, individually, promising therapeutic approaches for NDs. Compounds with dual activity as NRF2 activators and BACH1 inhibitors, could therefore potentially provide a more robust antioxidant and anti-inflammatory effects, with an overall better neuroprotective outcome. The phytocannabinoid cannabidiol (CBD) inhibits BACH1 but lacks significant NRF2 activating properties. Based on this scaffold, we have developed a novel CBD derivative that is highly effective at both inhibiting BACH1 and activating NRF2. This new CBD derivative provides neuroprotection in cell models of relevance to Huntington's disease, setting the basis for further developments in vivo.
Collapse
Affiliation(s)
- Laura Casares
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | | | | | - Diego Caprioglio
- Dipartimento di Scienze Del Farmaco, Università Del Piemonte Orientale, Novara, Italy
| | - Daiana Mattoteia
- Dipartimento di Scienze Del Farmaco, Università Del Piemonte Orientale, Novara, Italy
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Giovanni Apendino
- Dipartimento di Scienze Del Farmaco, Università Del Piemonte Orientale, Novara, Italy
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK.
| |
Collapse
|
58
|
Catalán M, Ferreira J, Carrasco-Pozo C. The Microbiota-Derived Metabolite of Quercetin, 3,4-Dihydroxyphenylacetic Acid Prevents Malignant Transformation and Mitochondrial Dysfunction Induced by Hemin in Colon Cancer and Normal Colon Epithelia Cell Lines. Molecules 2020; 25:E4138. [PMID: 32927689 PMCID: PMC7571211 DOI: 10.3390/molecules25184138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Meat diet plays a pivotal role in colorectal cancer (CRC). Hemin, a metabolite of myoglobin, produced after meat intake, has been involved in CRC initiation. The compound, 3,4-dihydroxyphenylacetic acid (3,4HPAA) is a scarcely studied microbiota-derived metabolite of the flavonoid quercetin (QUE), which exert antioxidant properties. The aim of this study was to determine the protective effect of 3,4HPAA against malignant transformation (increased cell proliferation, decreased apoptosis, DNA oxidative damage and augmented reactive oxidative species (ROS) levels) and mitochondrial dysfunction induced by hemin in normal colon epithelial cells and colon cancer cells. The effect of 3,4HPAA was assessed in comparison to its precursor, QUE and to a known CRC protective agent, sulforaphane (SFN). The results showed that both, tumor and normal cells, exposed to hemin, presented increased cell proliferation, decreased caspase 3 activity and cytochrome c release, as well as augmented production of intracellular and mitochondrial ROS. In addition, hemin decreased the mitochondrial membrane potential (MMP) and the activity of complexes I and II of the electron transport chain. These effects of hemin were prevented by the action of 3,4HPAA. The metabolite showed to be more active than QUE and slightly less active than SFN. In conclusion, 3,4HPAA administration could represent a promising strategy for preventing malignant transformation and mitochondrial dysfunction in colon epithelia induced by hemin.
Collapse
Affiliation(s)
- Mabel Catalán
- Programa de Farmacología Moleculary Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500000, Chile; (M.C.); (J.F.)
| | - Jorge Ferreira
- Programa de Farmacología Moleculary Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500000, Chile; (M.C.); (J.F.)
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Queensland, Australia
| |
Collapse
|
59
|
Two Faces of Heme Catabolic Pathway in Newborns: A Potential Role of Bilirubin and Carbon Monoxide in Neonatal Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7140496. [PMID: 32908636 PMCID: PMC7450323 DOI: 10.1155/2020/7140496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
In an infant's body, all the systems undergo significant changes in order to adapt to the new, extrauterine environment and challenges which it poses. Fragile homeostasis can be easily disrupted as the defensive mechanisms are yet imperfect. The activity of antioxidant enzymes, i.e., superoxide dismutase, catalase, and glutathione peroxidase, is low; therefore, neonates are especially vulnerable to oxidative stress. Free radical burden significantly contributes to neonatal illnesses such as sepsis, retinopathy of premature, necrotizing enterocolitis, bronchopulmonary dysplasia, or leukomalacia. However, newborns have an important ally-an inducible heme oxygenase-1 (HO-1) which expression rises rapidly in response to stress stimuli. HO-1 activity leads to production of carbon monoxide (CO), free iron ion, and biliverdin; the latter is promptly reduced to bilirubin. Although CO and bilirubin used to be considered noxious by-products, new interesting properties of those compounds are being revealed. Bilirubin proved to be an efficient free radicals scavenger and modulator of immune responses. CO affects a vast range of processes such as vasodilatation, platelet aggregation, and inflammatory reactions. Recently, developed nanoparticles consisting of PEGylated bilirubin as well as several kinds of molecules releasing CO have been successfully tested on animal models of inflammatory diseases. This paper focuses on the role of heme metabolites and their potential utility in prevention and treatment of neonatal diseases.
Collapse
|
60
|
Adenoviral transfer of hemopexin gene attenuates oxidative stress and apoptosis in cultured primary cortical neuron cell exposed to blood clot. Neuroreport 2020; 31:1065-1071. [PMID: 32804709 DOI: 10.1097/wnr.0000000000001510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A growing body of experimental evidence suggests that hemin released from heme is a potent oxidant and accumulates in intracranial hematomas. Hemopexin (Hpx) decreases hemin accumulation and catabolism by nerve cells. In previous study, we observed that Hpx gene knockout aggravated striatal injury and worsened behavioral deficits of mice subjected to intracerebral hemorrhage. AIM To examine the effect of Hpx on oxidative damage and apoptosis in cultured nerve cells with blood clot. METHODS Neuron and glial cells were transfected with adenoviral Hpx gene. Transfected primary neuron-glial cells were co-cultured with 50 μl of arterial blood clot using insert transwells. The sham group was co-coulture with 50 μl of DMEM/F12, which contained 28 μl of serum; the control group was transfected with adenoviral vector. At 12 and 24 h, the level of malonaldehyde (MDA), surperoxide dismutase (SOD) concentration, glutathione (GSH), apoptosis, expression of HO-1 and caspase-3 were detected. RESULTS MDA level was decreased (P < 0.01) whereas SOD and GSH concentration were increased in the Hpx group (P < 0.05 and P < 0.01, respectively). Results of flow cytometry revealed no significant difference in apoptosis between the Hpx group and model group at 12 h. However, the percentage of cells undergoing apoptosis in the Hpx group was decreased at 24 h compared with the model group (P < 0.01). HO-1 expression decreased in the Hpx group at 24 h (P < 0.01) while caspase-3 expression decreased at both 12 and 24 h (P < 0.011 and P < 0.05, respectively) compared with the model group. CONCLUSION Hpx protected nerve cells exposed to blood from injury by anti-oxidation and a decrease in the expression of HO-1 and caspase-3.
Collapse
|
61
|
α 1-Microglobulin (A1M) Protects Human Proximal Tubule Epithelial Cells from Heme-Induced Damage In Vitro. Int J Mol Sci 2020; 21:ijms21165825. [PMID: 32823731 PMCID: PMC7461577 DOI: 10.3390/ijms21165825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is associated with many renal disorders, both acute and chronic, and has also been described to contribute to the disease progression. Therefore, oxidative stress is a potential therapeutic target. The human antioxidant α1-microglobulin (A1M) is a plasma and tissue protein with heme-binding, radical-scavenging and reductase activities. A1M can be internalized by cells, localized to the mitochondria and protect mitochondrial function. Due to its small size, A1M is filtered from the blood into the glomeruli, and taken up by the renal tubular epithelial cells. A1M has previously been described to reduce renal damage in animal models of preeclampsia, radiotherapy and rhabdomyolysis, and is proposed as a pharmacological agent for the treatment of kidney damage. In this paper, we examined the in vitro protective effects of recombinant human A1M (rA1M) in human proximal tubule epithelial cells. Moreover, rA1M was found to protect against heme-induced cell-death both in primary cells (RPTEC) and in a cell-line (HK-2). Expression of stress-related genes was upregulated in both cell cultures in response to heme exposure, as measured by qPCR and confirmed with in situ hybridization in HK-2 cells, whereas co-treatment with rA1M counteracted the upregulation. Mitochondrial respiration, analyzed with the Seahorse extracellular flux analyzer, was compromised following exposure to heme, but preserved by co-treatment with rA1M. Finally, heme addition to RPTE cells induced an upregulation of the endogenous cellular expression of A1M, via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-pathway. Overall, data suggest that A1M/rA1M protects against stress-induced damage to tubule epithelial cells that, at least partly, can be attributed to maintaining mitochondrial function.
Collapse
|
62
|
Burton MJ, Cresser-Brown J, Thomas M, Portolano N, Basran J, Freeman SL, Kwon H, Bottrill AR, Llansola-Portoles MJ, Pascal AA, Jukes-Jones R, Chernova T, Schmid R, Davies NW, Storey NM, Dorlet P, Moody PCE, Mitcheson JS, Raven EL. Discovery of a heme-binding domain in a neuronal voltage-gated potassium channel. J Biol Chem 2020; 295:13277-13286. [PMID: 32723862 DOI: 10.1074/jbc.ra120.014150] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The EAG (ether-à-go-go) family of voltage-gated K+ channels are important regulators of neuronal and cardiac action potential firing (excitability) and have major roles in human diseases such as epilepsy, schizophrenia, cancer, and sudden cardiac death. A defining feature of EAG (Kv10-12) channels is a highly conserved domain on the N terminus, known as the eag domain, consisting of a Per-ARNT-Sim (PAS) domain capped by a short sequence containing an amphipathic helix (Cap domain). The PAS and Cap domains are both vital for the normal function of EAG channels. Using heme-affinity pulldown assays and proteomics of lysates from primary cortical neurons, we identified that an EAG channel, hERG3 (Kv11.3), binds to heme. In whole-cell electrophysiology experiments, we identified that heme inhibits hERG3 channel activity. In addition, we expressed the Cap and PAS domain of hERG3 in Escherichia coli and, using spectroscopy and kinetics, identified the PAS domain as the location for heme binding. The results identify heme as a regulator of hERG3 channel activity. These observations are discussed in the context of the emerging role for heme as a regulator of ion channel activity in cells.
Collapse
Affiliation(s)
- Mark J Burton
- Department of Chemistry, University of Leicester, Leicester, United Kingdom; Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| | | | - Morgan Thomas
- Department of Chemistry, University of Leicester, Leicester, United Kingdom; Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| | - Nicola Portolano
- Department of Chemistry, University of Leicester, Leicester, United Kingdom; Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| | - Jaswir Basran
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Samuel L Freeman
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Hanna Kwon
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Andrew R Bottrill
- Protein Nucleic Acid Chemistry Laboratory, University of Leicester, Leicester, United Kingdom
| | - Manuel J Llansola-Portoles
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Andrew A Pascal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Rebekah Jukes-Jones
- Medical Research Council Toxicology Unit, University of Cambridge, Leicester, United Kingdom
| | - Tatyana Chernova
- Medical Research Council Toxicology Unit, University of Cambridge, Leicester, United Kingdom
| | - Ralf Schmid
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Noel W Davies
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Nina M Storey
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Pierre Dorlet
- CNRS, Aix Marseille Université, Laboratoire de Bioenergetique et d'Ingenierie des Protéines, Marseille, France
| | - Peter C E Moody
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - John S Mitcheson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Emma L Raven
- School of Chemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
63
|
Levin RA, Carnegie MH, Celermajer DS. Pulse Pressure: An Emerging Therapeutic Target for Dementia. Front Neurosci 2020; 14:669. [PMID: 32670015 PMCID: PMC7327093 DOI: 10.3389/fnins.2020.00669] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Elevated pulse pressure can cause blood-brain barrier dysfunction and subsequent adverse neurological changes that may drive or contribute to the development of dementia with age. In short, elevated pulse pressure dysregulates cerebral endothelial cells and increases cellular production of oxidative and inflammatory molecules. The resulting cerebral microvascular damage, along with excessive pulsatile mechanical force, can induce breakdown of the blood-brain barrier, which in turn triggers brain cell impairment and death. We speculate that elevated pulse pressure may also reduce the efficacy of other therapeutic strategies for dementia. For instance, BACE1 inhibitors and anti-amyloid-β biologics reduce amyloid-β deposits in the brain that are thought to be a cause of Alzheimer’s disease, the most prevalent form of dementia. However, upregulation of oxidative and inflammatory molecules and increased amyloid-β secretion by cerebral endothelial cells exposed to elevated pulse pressure may hinder cognitive improvements with these drugs. Additionally, stem or progenitor cell therapy has the potential to repair blood-brain barrier damage, but chronic oxidative and inflammatory stress due to elevated pulse pressure can inhibit stem and progenitor cell regeneration. Finally, we discuss current efforts to repurpose blood pressure medications to prevent or treat dementia. We propose that new drugs or devices should be developed to safely reduce elevated pulse pressure specifically to the brain. Such novel technologies may alleviate an entire downstream pathway of cellular dysfunction, oxidation, inflammation, and amyloidogenesis, thereby preventing pulse-pressure-induced cognitive decline. Furthermore, these technologies may also enhance efficacy of other dementia therapeutics when used in combination.
Collapse
Affiliation(s)
- Rachel A Levin
- The Brain Protection Company, Sydney, NSW, Australia.,M.H. Carnegie & Co., Sydney, NSW, Australia
| | - Mark H Carnegie
- The Brain Protection Company, Sydney, NSW, Australia.,M.H. Carnegie & Co., Sydney, NSW, Australia
| | - David S Celermajer
- The Brain Protection Company, Sydney, NSW, Australia.,The Heart Research Institute, Sydney, NSW, Australia
| |
Collapse
|
64
|
Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors. SENSORS 2020; 20:s20133692. [PMID: 32630267 PMCID: PMC7374321 DOI: 10.3390/s20133692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022]
Abstract
Heme peroxidases are widely used as biological recognition elements in electrochemical biosensors for hydrogen peroxide and phenolic compounds. Various nature-derived and fully synthetic heme peroxidase mimics have been designed and their potential for replacing the natural enzymes in biosensors has been investigated. The use of semiconducting materials as transducers can thereby offer new opportunities with respect to catalyst immobilization, reaction stimulation, or read-out. This review focuses on approaches for the construction of electrochemical biosensors employing natural heme peroxidases as well as various mimics immobilized on semiconducting electrode surfaces. It will outline important advances made so far as well as the novel applications resulting thereof.
Collapse
|
65
|
Geraghty JR, Lara-Angulo MN, Spegar M, Reeh J, Testai FD. Severe cognitive impairment in aneurysmal subarachnoid hemorrhage: Predictors and relationship to functional outcome. J Stroke Cerebrovasc Dis 2020; 29:105027. [PMID: 32807442 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105027] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cognitive impairment is common after aneurysmal subarachnoid hemorrhage (SAH). However, compared to predictors of functional outcome, meaningful predictors of cognitive impairment are lacking. OBJECTIVE Our goal was to assess which factors during hospitalization can predict severe cognitive impairment in SAH patients, especially those who might otherwise be expected to have good functional outcomes. We hypothesized that the degree of early brain injury (EBI), vasospasm, and delayed neurological deterioration (DND) would predict worse cognitive outcomes. METHODS We retrospectively reviewed SAH patient records from 2013 to 2019 to collect baseline information, clinical markers of EBI (Fisher, Hunt-Hess, and Glasgow Coma scores), vasospasm, and DND. Cognitive outcome was assessed by Montreal Cognitive Assessment (MoCA) and functional outcomes by modified Rankin Scale (mRS) at hospital discharge. SAH patients were compared to non-neurologic hospitalized controls. Among SAH patients, logistic regression analysis was used to identify predictors of severe cognitive impairment defined as a MoCA score <22. RESULTS We screened 288 SAH and 80 control patients. Cognitive outcomes assessed via MoCA at discharge were available in 105 SAH patients. Most of these patients had good functional outcome at discharge with a mean mRS of 1.8±1.3. Approximately 56.2% of SAH patients had MoCA scores <22 compared to 28.7% of controls. Among SAH patients, modified Fisher scale was an independent predictor of cognitive impairment after adjustment for baseline differences (OR 1.638, p=0.043). MoCA score correlated inversely with mRS (r=-0.3299, p=0.0006); however, among those with good functional outcome (mRS 0-2), 48.7% still exhibited cognitive impairment. CONCLUSIONS Severe cognitive impairment is highly prevalent after SAH, even among patients with good functional outcome. Higher modified Fisher scale on admission is an independent risk factor for severe cognitive impairment. Cognitive screening is warranted in all SAH patients, regardless of functional outcome.
Collapse
Affiliation(s)
- Joseph R Geraghty
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL 60612, United States; Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, United States.
| | - Melissa N Lara-Angulo
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL 60612, United States.
| | - Milen Spegar
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL 60612, United States.
| | - Jenna Reeh
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL 60612, United States.
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL 60612, United States.
| |
Collapse
|
66
|
miR-331-3p Inhibits Inflammatory Response after Intracerebral Hemorrhage by Directly Targeting NLRP6. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6182464. [PMID: 32596340 PMCID: PMC7298275 DOI: 10.1155/2020/6182464] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/18/2020] [Indexed: 01/02/2023]
Abstract
Background The mechanism of inflammatory reaction after intracerebral hemorrhage remains unclear, which to some extent restrains the therapeutic development of hemorrhagic stroke. The present study attempts to verify whether NLRP6 plays an important role in inflammatory reaction after intracerebral hemorrhage and identify the critical microRNA during the process. Methods Suitable simulated cerebral hemorrhage environments were established in vitro and in vivo. BV2 cells were treated with hemin to induce cell damage. Collagenase was used to establish a model of mouse cerebral hemorrhage. The relationship among NLRP6, miR-331-3p, and the corresponding inflammatory expression was closely observed during this process. Techniques, such as western blot, real-time quantitative PCR, immunofluorescence, and immunocytochemistry, were used to detect the expression of relative genes and molecules in the in vitro and in vivo models. Results Downregulated miR-331-3p increased the expression of NLRP6 and alleviated the expression of TNF-α and IL-6. The neurological function recovery of mice was promoted after intracerebral hemorrhage. Conclusion miR-331-3p regulated the inflammatory response after cerebral hemorrhage by negatively regulating the expression of NLRP6.
Collapse
|
67
|
Hang H, Wang L, Wu G, Ren S. Up-regulation of PPARγ, Nrf2 and HO-1 in microglia activated by thrombin. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
68
|
Effects of Molecular Crowding on G-Quadruplex-hemin Mediated Peroxidase Activity. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
69
|
Dharmalingam P, Talakatta G, Mitra J, Wang H, Derry PJ, Nilewski LG, McHugh EA, Fabian RH, Mendoza K, Vasquez V, Hegde PM, Kakadiaris E, Roy T, Boldogh I, Hegde VL, Mitra S, Tour JM, Kent TA, Hegde ML. Pervasive Genomic Damage in Experimental Intracerebral Hemorrhage: Therapeutic Potential of a Mechanistic-Based Carbon Nanoparticle. ACS NANO 2020; 14:2827-2846. [PMID: 32049495 PMCID: PMC7850811 DOI: 10.1021/acsnano.9b05821] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Therapy for intracerebral hemorrhage (ICH) remains elusive, in part dependent on the severity of the hemorrhage itself as well as multiple deleterious effects of blood and its breakdown products such as hemin and free iron. While oxidative injury and genomic damage have been seen following ICH, the details of this injury and implications remain unclear. Here, we discovered that, while free iron produced mostly reactive oxygen species (ROS)-related single-strand DNA breaks, hemin unexpectedly induced rapid and persistent nuclear and mitochondrial double-strand breaks (DSBs) in neuronal and endothelial cell genomes and in mouse brains following experimental ICH comparable to that seen with γ radiation and DNA-complexing chemotherapies. Potentially as a result of persistent DSBs and the DNA damage response, hemin also resulted in senescence phenotype in cultured neurons and endothelial cells. Subsequent resistance to ferroptosis reported in other senescent cell types was also observed here in neurons. While antioxidant therapy prevented senescence, cells became sensitized to ferroptosis. To address both senescence and resistance to ferroptosis, we synthesized a modified, catalytic, and rapidly internalized carbon nanomaterial, poly(ethylene glycol)-conjugated hydrophilic carbon clusters (PEG-HCC) by covalently bonding the iron chelator, deferoxamine (DEF). This multifunctional nanoparticle, DEF-HCC-PEG, protected cells from both senescence and ferroptosis and restored nuclear and mitochondrial genome integrity in vitro and in vivo. We thus describe a potential molecular mechanism of hemin/iron-induced toxicity in ICH that involves a rapid induction of DSBs, senescence, and the consequent resistance to ferroptosis and provide a mechanistic-based combinatorial therapeutic strategy.
Collapse
Affiliation(s)
- Prakash Dharmalingam
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Girish Talakatta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Paul J Derry
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | | | - Emily A McHugh
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Roderic H Fabian
- Department of Neurology, Baylor College of Medicine, and Michael E. DeBakey VA Medical Center, Houston, Texas 77030, United States
| | - Kimberly Mendoza
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Eugenia Kakadiaris
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Trenton Roy
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Venkatesh L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Weill Medical College of Cornell University, New York, New York 10065, United States
| | - James M Tour
- Departments of Chemistry, Computer Science, Materials Science and NanoEngineering, Smalley-Curl Institute and the NanoCarbon Center, Rice University, Houston, Texas 77005, United States
| | - Thomas A Kent
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas 77030, United States
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Weill Medical College of Cornell University, New York, New York 10065, United States
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist, Houston, Texas 77030, United States
| |
Collapse
|
70
|
Derry PJ, Hegde ML, Jackson GR, Kayed R, Tour JM, Tsai AL, Kent TA. Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's disease from a ferroptosis perspective. Prog Neurobiol 2020; 184:101716. [PMID: 31604111 PMCID: PMC7850812 DOI: 10.1016/j.pneurobio.2019.101716] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/12/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The complexity of Alzheimer's disease (AD) complicates the search for effective treatments. While the key roles of pathologically modified proteins has occupied a central role in hypotheses of the pathophysiology, less attention has been paid to the potential role for transition metals overload, subsequent oxidative stress, and tissue injury. The association of transition metals, the major focus heretofore iron and amyloid, the same can now be said for the likely pathogenic microtubular associated tau (MAPT). This review discusses the interplay between iron, pathologically modified tau and oxidative stress, and connects many related discoveries. Basic principles of the transition to pathological MAPT are discussed. Iron, its homeostatic mechanisms, the recently described phenomenon of ferroptosis and purported, although still controversial roles in AD are reviewed as well as considerations to overcome existing hurdles of iron-targeted therapeutic avenues that have been attempted in AD. We summarize the involvement of multiple pathological pathways at different disease stages of disease progression that supports the potential for a combinatorial treatment strategy targeting multiple factors.
Collapse
Affiliation(s)
- Paul J Derry
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Muralidhar L Hegde
- Institute for Academic Medicine, Houston Methodist, Weill Cornell Medical College, Houston, TX, United States
| | - George R Jackson
- Department of Neurology Baylor College of Medicine, Houston, TX, United States; Parkinson's Disease Research, Education and Clinical Center (PADRECC), Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disorders, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - James M Tour
- Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, TX, United States
| | - Ah-Lim Tsai
- Department of Biochemistry and Hematology, McGovern School of Medicine, UT Health Science Center, Houston, TX, United States
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States; Department of Chemistry, Rice University, Houston, TX, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States.
| |
Collapse
|
71
|
Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 2019; 15:671-692. [PMID: 31455889 DOI: 10.1038/s41581-019-0181-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron - potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) - and potentially HO2 - represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.
| | - Erfan Nur
- Department of Haematology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
72
|
Rudin D, Roos NJ, Duthaler U, Krähenbühl S. Toxicity of metamizole on differentiating HL60 cells and human neutrophil granulocytes. Toxicology 2019; 426:152254. [PMID: 31356851 DOI: 10.1016/j.tox.2019.152254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 12/18/2022]
Abstract
Metamizole is an analgesic and antipyretic with a superior analgesic efficacy than paracetamol. Since metamizole can cause neutropenia and agranulocytosis, it is currently used in only few countries. In a previous study, we have shown that N-methyl-4-aminoantipyrine (MAA), the active metamizole metabolite, reacts with hemin and forms an electrophilic metabolite that is toxic for HL60 cells, but not for mature neutrophil granulocytes. In the current study, we investigated the toxicity of hemin (12.5 μM) and MAA (100 μM) on differentiating HL60 cells. In undifferentiated HL60 cells, hemin decreased the viability and this effect was significantly increased by MAA. Similarly, hemin/MAA was more toxic than hemin alone on human cord blood cells. At 3 days (metamyelocyte stage) and 5 days of differentiation (mature neutrophils), hemin/MAA was not toxic on HL60 cells, whereas hemin alone was still toxic. No toxicity was observed on freshly isolated human neutrophils. The protein expression of enzymes responsible for hemin metabolism increased with HL60 cell differentiation. Inhibition of heme oxygenase-1 or cytochrome P450 reductase increased the toxicity of hemin and hemin/MAA in undifferentiated, but only for hemin in differentiated HL60 cells. Similar to the enzymes involved in hemin metabolism, the protein expression of enzymes involved in antioxidative defense and the cellular glutathione pool increased with HL60 cell differentiation. In conclusion, HL60 cells become resistant to the toxicity of hemin/MAA and partly also of hemin during their differentiation. This resistance is associated with the development of heme metabolism and of the antioxidative defense system including the cellular glutathione pool.
Collapse
Affiliation(s)
- Deborah Rudin
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Schanzenstrasse 55, 4031, Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Noëmi Johanna Roos
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Schanzenstrasse 55, 4031, Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Schanzenstrasse 55, 4031, Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Schanzenstrasse 55, 4031, Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Missionsstrasse 64, 4055, Basel, Switzerland.
| |
Collapse
|
73
|
Bonsack F, Sukumari-Ramesh S. Differential Cellular Expression of Galectin-1 and Galectin-3 After Intracerebral Hemorrhage. Front Cell Neurosci 2019; 13:157. [PMID: 31156388 PMCID: PMC6530358 DOI: 10.3389/fncel.2019.00157] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating sub-type of stroke with no proven treatment. Given the emerging role of Galectin-1 and Galectin-3 in neuroimmune responses, the objective of the current manuscript is to elucidate hemorrhagic-injury induced modulation and cellular expression of Galectin-1 and Galectin-3 in the brain in a pre-clinical model of ICH. To address this, ICH was induced in male CD1 mice by collagenase injection method. Western blotting as well as Immunofluorescence staining was performed to characterize the temporal expression pattern as well as cellular localization of Galectin-1 and Galectin-3 after ICH. Further, genetic studies were conducted to assess the functional role of Galectin-1 and Galectin-3 in inflammatory response employing a murine macrophage cell line, RAW 264.7. Galectin-1 and Galectin-3 exhibited very profound and increased expression from day 3 to day 7-post-injury, in the perihematomal brain region after ICH in comparison to Sham. Further, Galectin-1 expression was mostly observed in GFAP-positive astrocytes whereas Galectin-3 expression was observed mostly in Iba1-positive microglia/macrophages as well as CD16/32 (M1 microglial/macrophage marker)-positive cells. Moreover, genetic studies revealed a negative regulatory role of both Galectin-1 and Galectin-3 in the release of a proinflammatory cytokine, IL-6 from RAW 264.7 cells depending on the stimulus. Altogether, the present manuscript demonstrates for the first time, increased expression as well as cellular localization of Galectin-1 and Galectin-3 in the perihematomal brain regions after ICH. In addition, the manuscript raises the potential of Galectin-1 and Galectin-3 in modulating glial responses and thereby brain injury after ICH, warranting further investigation.
Collapse
Affiliation(s)
- Frederick Bonsack
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
74
|
Deferoxamine therapy reduces brain hemin accumulation after intracerebral hemorrhage in piglets. Exp Neurol 2019; 318:244-250. [PMID: 31078524 DOI: 10.1016/j.expneurol.2019.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Hemopexin (Hpx) is critical for hemin scavenging after the erythrocyte lysis that occurs following intracerebral hemorrhage (ICH). Low-density lipoprotein receptor-related protein-1 (LRP1, also called CD91) is an important receptor through which the hemin-Hpx complex can undergo endocytosis. This study investigated changes in the hemin-Hpx-CD91 axis in both hematoma and perihematomal tissue in a large animal ICH model. The effect of deferoxamine (DFX) on hemin-Hpx-CD91 was also examined. The study consisted of two parts. First, piglets had an injection of autologous blood into the right frontal lobe of brain and were euthanized from day 1 to day 7. Hematoma and perihematomal tissue of brains were used for hemin assay, immunohistochemistry, and immunofluorescence. Second, piglets with ICH were treated with deferoxamine or vehicle, and were euthanized for hemin measurement and Hpx and CD91 immunohistochemistry. We found that there was an increase of hemin levels within the hematoma and perihematomal brain tissue after ICH. Hpx and CD91-positive cells were present in the clot and perihematomal tissue from day 1. Hpx and CD91 positive cells were Iba1 positive. After DFX therapy, hemin dropped markedly in the hematoma and perihematomal brain tissue. Furthermore, DFX treatment decreased the number of Hpx and CD91 positive cells in and around the hematoma. In conclusion, hemin accumulation occurs in and around the hematoma. Increases in Hpx and CD91 may be important in scavenging that hemin. DFX treatment decreased hemin release from the hematoma and reduced the expression of Hpx and CD91.
Collapse
|
75
|
Zhang Y, Deng H, Hu Y, Pan C, Wu G, Li Q, Tang Z. Adipose-derived mesenchymal stem cells stereotactic transplantation alleviate brain edema from intracerebral hemorrhage. J Cell Biochem 2019; 120:14372-14382. [PMID: 30963640 DOI: 10.1002/jcb.28693] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
Adipose-derived mesenchymal stromal cells (ADSCs) exhibited high potential in tissue repair and regeneration, and it has been proved that ADSCs could protect brain cells from apoptosis and maintaining blood-brain barrier stability after cerebral vascular disease. In this study, we evaluated the therapeutic potential and mechanism of ADSCs stereotactic transplantation in intracerebral hemorrhage (ICH) mice model and hemin-treated astrocytes. Mice were divided into three groups: sham group, ICH + PBS group, and ICH + ADSC group. Mice in ICH + ADSC group received ADSCs cell suspension stereotactic transplantation into the area beside the bleeding region. Astrocytes were divided into three groups: control group, hemin group, and hemin + ADSC group. Astrocytes in hemin + ADSC group were cultured in ADSCs-astrocyte no-contact coculture system and treated with 30 μM hemin solution. The results showed that ADSCs stereotactic transplantation improved functional outcomes and reduced cell apoptosis after ICH. Moreover, ADSCs stereotactic transplantation could alleviate brain edema and inflammation and AQP4 protein expression contributed to the alleviation of brain edema. In addition, mitogen-activated protein kinase (MAPK) pathways, including p38/MAPK pathway and c-Jun N-terminal kinase pathway, were involved in AQP4 modulation by ADSCs transplantation in ICH. In conclusion, ADSCs transplantation could alleviate the nervous tissue injury, reduce cell apoptosis, and relieve brain edema in ICH. And the edema regulation effect of ADSCs transplantation is associated with inhibition of inflammation and AQP4 protein expression.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hong Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yang Hu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
76
|
Abdul Y, Abdelsaid M, Li W, Webb RC, Sullivan JC, Dong G, Ergul A. Inhibition of Toll-Like Receptor-4 (TLR-4) Improves Neurobehavioral Outcomes After Acute Ischemic Stroke in Diabetic Rats: Possible Role of Vascular Endothelial TLR-4. Mol Neurobiol 2019; 56:1607-1617. [PMID: 29909454 PMCID: PMC6295357 DOI: 10.1007/s12035-018-1184-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
Diabetes increases the risk of occurrence and poor functional recovery after ischemic stroke injury. Previously, we have demonstrated greater hemorrhagic transformation (HT), edema, and more severe functional deficits after stroke in diabetic animals that also presented with cerebral vasoregression and endothelial cell death in the recovery period. Given that Toll-like receptor 4 (TLR-4) activation in microvascular endothelial cells triggers a robust inflammatory response, we hypothesized that inhibition of TLR-4 signaling prevents endothelial cell death and improves outcomes after stroke. Animals were treated with vehicle or TLR-4 inhibitor TAK242 (3 mg/kg; i.p.) following middle cerebral artery occlusion (MCAO). Neurobehavioral deficits were measured at baseline and day 3 after ischemic stroke. Primary brain microvascular endothelial cells (BMVECs) from diabetic animals were subjected to oxygen glucose deprivation re-oxygenation (OGDR) and treated with 0.1 mM iron(III)sulfate hydrate (iron) (to mimic the post-stroke bleeding) and TLR-4 inhibitors. Ischemic stroke increased the expression of TLR-4 in both hemispheres and in the microvasculature of diabetic animals. Cerebral infarct, edema, HT, and functional deficits were greater in diabetic compared to control animals. Inhibition of TLR-4 significantly reduced the neurovascular injury and improved functional outcomes. OGDR and iron reduced the cell viability and increased the expression of TLR-4 associated proteins (RIP3, MyD88, phospho-NF-kB, and release of IL-6) in BMVECs from diabetic animals. In conclusion, TLR-4 is highly upregulated in the microvasculature and that beneficial effects of TLR-4 inhibition are more profound in diabetes. This suggests that inhibition of vascular TLR-4 may provide therapeutic benefits for stroke recovery in diabetes.
Collapse
Affiliation(s)
- Yasir Abdul
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-2094, Augusta, GA, 30912, USA
| | | | - Weiguo Li
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-2094, Augusta, GA, 30912, USA
| | - R Clinton Webb
- Department of Physiology, Augusta University, 1120 15th Street CA-2094, Augusta, GA, 30912, USA
| | - Jennifer C Sullivan
- Department of Physiology, Augusta University, 1120 15th Street CA-2094, Augusta, GA, 30912, USA
| | - Guangkuo Dong
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-2094, Augusta, GA, 30912, USA
| | - Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA.
- Department of Physiology, Augusta University, 1120 15th Street CA-2094, Augusta, GA, 30912, USA.
| |
Collapse
|
77
|
Rudin D, Lanzilotto A, Bachmann F, Housecroft CE, Constable EC, Drewe J, Haschke M, Krähenbühl S. Non-immunological toxicological mechanisms of metamizole-associated neutropenia in HL60 cells. Biochem Pharmacol 2019; 163:345-356. [PMID: 30653950 DOI: 10.1016/j.bcp.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 01/15/2023]
Abstract
Metamizole is an analgesic and antipyretic, but can cause neutropenia and agranulocytosis. We investigated the toxicity of the metabolites N-methyl-4-aminoantipyrine (MAA), 4-aminoantipyrine (AA), N-formyl-4-aminoantipyrine (FAA) and N-acetyl-4-aminoantipyrine (AAA) on neutrophil granulocytes and on HL60 cells (granulocyte precursor cell line). MAA, FAA, AA, and AAA (up to 100 µM) alone were not toxic for HL60 cells or granulocytes. In the presence of the myeloperoxidase substrate H2O2, MAA reduced cytotoxicity for HL60 cells at low concentrations (<50 µM), but increased cytotoxicity at 100 µM H2O2. Neutrophil granulocytes were resistant to H2O2 and MAA. Fe2+ and Fe3+ were not toxic to HL60 cells, irrespective of the presence of H2O2 and MAA. Similarly, MAA did not increase the toxicity of lactoferrin, hemoglobin or methemoglobin for HL60 cells. Hemin (hemoglobin degradation product containing a porphyrin ring and Fe3+) was toxic on HL60 cells and cytotoxicity was increased by MAA. EDTA, N-acetylcystein and glutathione prevented the toxicity of hemin and hemin/MAA. The absorption spectrum of hemin changed concentration-dependently after addition of MAA, suggesting an interaction between Fe3+ and MAA. NMR revealed the formation of a stable MAA reaction product with a reaction pathway involving the formation of an electrophilic intermediate. In conclusion, MAA, the principle metabolite of metamizole, increased cytotoxicity of hemin by a reaction involving the formation of an electrophilic metabolite. Accordingly, cytotoxicity of MAA/hemin could be prevented by the iron chelator EDTA and by the electron donors NAC and glutathione. Situations with increased production of hemin may represent a risk factor for metamizole-associated granulocytopenia.
Collapse
Affiliation(s)
- Deborah Rudin
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | | | - Fabio Bachmann
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | | | | | - Jürgen Drewe
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland
| | - Manuel Haschke
- Division of Clinical Pharmacology & Toxicology, Inselspital, Bern, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland; Swiss Centre of Applied Human Toxicology (SCAHT), Basel, Switzerland.
| |
Collapse
|
78
|
Zhang XX, Liu JJ, Cai Y, Zhao S, Wu ZY. A field amplification enhanced paper-based analytical device with a robust chemiluminescence detection module. Analyst 2019; 144:498-503. [DOI: 10.1039/c8an01859f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A field amplification enhanced paper-based analytical device was established with a miniaturized optical detection module for chemiluminescence detection.
Collapse
Affiliation(s)
- Xiu-Xiu Zhang
- Research Center for Analytical Sciences
- Chemistry Department
- College of Sciences Northeastern University
- Shenyang
- China
| | - Jia-Juan Liu
- Research Center for Analytical Sciences
- Chemistry Department
- College of Sciences Northeastern University
- Shenyang
- China
| | - Yu Cai
- Research Center for Analytical Sciences
- Chemistry Department
- College of Sciences Northeastern University
- Shenyang
- China
| | - Shuang Zhao
- Chemistry Department
- College of Sciences Northeastern University
- Shenyang
- China
| | - Zhi-Yong Wu
- Research Center for Analytical Sciences
- Chemistry Department
- College of Sciences Northeastern University
- Shenyang
- China
| |
Collapse
|
79
|
Palmer WC, Vishnu P, Sanchez W, Aqel B, Riegert-Johnson D, Seaman LAK, Bowman AW, Rivera CE. Diagnosis and Management of Genetic Iron Overload Disorders. J Gen Intern Med 2018; 33:2230-2236. [PMID: 30225768 PMCID: PMC6258594 DOI: 10.1007/s11606-018-4669-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/23/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Iron overload disorders lead to excess iron deposition in the body, which can occur as a result of genetic or secondary causes. Genetic iron overload, referred to as hereditary hemochromatosis, may present as a common autosomal recessive mutation or as one of several uncommon mutations. Secondary iron overload may result from frequent blood transfusions, exogenous iron intake, or certain hematological diseases such as dyserythropoietic syndrome or chronic hemolytic anemia. Iron overload may be asymptomatic, or may present with significant diseases of the liver, heart, endocrine glands, joints, or other organs. If treated appropriately prior to end-organ damage, life expectancy has been shown to be similar compared to matched populations. Alongside clinical assessment, diagnostic studies involve blood tests, imaging, and in some cases liver biopsy. The mainstay of therapy is periodic phlebotomy, although oral chelation is an option for selected patients.
Collapse
Affiliation(s)
- William C Palmer
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA.
| | - Prakash Vishnu
- Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - William Sanchez
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Bashar Aqel
- Department of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Doug Riegert-Johnson
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Candido E Rivera
- Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
80
|
Tyrosine residues of bovine serum albumin play an important role in protecting SH-SY5Y cells against heme/H2O2/NO2−-induced damage. Mol Cell Biochem 2018; 454:57-66. [DOI: 10.1007/s11010-018-3452-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023]
|
81
|
Li QQ, Li LJ, Wang XY, Sun YY, Wu J. Research Progress in Understanding the Relationship Between Heme Oxygenase-1 and Intracerebral Hemorrhage. Front Neurol 2018; 9:682. [PMID: 30177908 PMCID: PMC6109777 DOI: 10.3389/fneur.2018.00682] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a fatal acute cerebrovascular disease, with a high morbidity and mortality. Following ICH, erythrocytes release heme and several of its metabolites, thereby contributing to brain edema and secondary brain damage. Heme oxygenase is the initial and rate-limiting enzyme of heme catabolism, and the expression of heme oxygenase-1 (HO-1) is rapidly induced following acute brain injury. As HO-1 exerts it effects via various metabolites, its role during ICH remains complex. Therefore, in-depth studies regarding the role of HO-1 in secondary brain damage following ICH may provide a theoretical basis for neuroprotective function after ICH. The present review aims to summarize recent key studies regarding the effects of HO-1 following ICH, as well as its influence on ICH prognosis.
Collapse
Affiliation(s)
- Qian-Qian Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lan-Jun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xin-Yu Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu-Ying Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
82
|
Raz L, Bhaskar K, Weaver J, Marini S, Zhang Q, Thompson JF, Espinoza C, Iqbal S, Maphis NM, Weston L, Sillerud LO, Caprihan A, Pesko JC, Erhardt EB, Rosenberg GA. Hypoxia promotes tau hyperphosphorylation with associated neuropathology in vascular dysfunction. Neurobiol Dis 2018; 126:124-136. [PMID: 30010004 DOI: 10.1016/j.nbd.2018.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hypertension-induced microvascular brain injury is a major vascular contributor to cognitive impairment and dementia. We hypothesized that chronic hypoxia promotes the hyperphosphorylation of tau and cell death in an accelerated spontaneously hypertensive stroke prone rat model of vascular cognitive impairment. METHODS Hypertensive male rats (n = 13) were fed a high salt, low protein Japanese permissive diet and were compared to Wistar Kyoto control rats (n = 5). RESULTS Using electron paramagnetic resonance oximetry to measure in vivo tissue oxygen levels and magnetic resonance imaging to assess structural brain damage, we found compromised gray (dorsolateral cortex: p = .018) and white matter (corpus callosum: p = .016; external capsule: p = .049) structural integrity, reduced cerebral blood flow (dorsolateral cortex: p = .005; hippocampus: p < .001; corpus callosum: p = .001; external capsule: p < .001) and a significant drop in cortical oxygen levels (p < .05). Consistently, we found reduced oxygen carrying neuronal neuroglobin (p = .008), suggestive of chronic cerebral hypoperfusion in high salt-fed rats. We also observed a corresponding increase in free radicals (NADPH oxidase: p = .013), p-Tau (pThr231) in dorsolateral cortex (p = .011) and hippocampus (p = .003), active interleukin-1β (p < .001) and neurodegeneration (dorsolateral cortex: p = .043, hippocampus: p = .044). Human patients with subcortical ischemic vascular disease, a type of vascular dementia (n = 38; mean age = 68; male/female ratio = 23/15) showed reduced hippocampal volumes and cortical shrinking (p < .05) consistent with the neuronal cell death observed in our hypertensive rat model as compared to healthy controls (n = 47; mean age = 63; male/female ratio = 18/29). CONCLUSIONS Our data support an association between hypertension-induced vascular dysfunction and the sporadic occurrence of phosphorylated tau and cell death in the rat model, correlating with patient brain atrophy, which is relevant to vascular disease.
Collapse
Affiliation(s)
- Limor Raz
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Kiran Bhaskar
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States; Department of Molecular Genetics and Microbiology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - John Weaver
- BRaIN Imaging Center, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Sandro Marini
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Department of Neurology, Augusta University, 1120 15th Street, Augusta, GA 30912, United States.
| | - Jeffery F Thompson
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Candice Espinoza
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Sulaiman Iqbal
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Nicole M Maphis
- Department of Molecular Genetics and Microbiology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Lea Weston
- Department of Molecular Genetics and Microbiology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Laurel O Sillerud
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States; MIND Research Network, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Arvind Caprihan
- MIND Research Network, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - John C Pesko
- Department of Mathematics and Statistics, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Erik B Erhardt
- Department of Mathematics and Statistics, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Gary A Rosenberg
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
83
|
Sankar SB, Donegan RK, Shah KJ, Reddi AR, Wood LB. Heme and hemoglobin suppress amyloid β-mediated inflammatory activation of mouse astrocytes. J Biol Chem 2018; 293:11358-11373. [PMID: 29871926 DOI: 10.1074/jbc.ra117.001050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/24/2018] [Indexed: 11/06/2022] Open
Abstract
Glial immune activity is a key feature of Alzheimer's disease (AD). Given that the blood factors heme and hemoglobin (Hb) are both elevated in AD tissues and have immunomodulatory roles, here we sought to interrogate their roles in modulating β-amyloid (Aβ)-mediated inflammatory activation of astrocytes. We discovered that heme and Hb suppress immune activity of primary mouse astrocytes by reducing expression of several proinflammatory cytokines (e.g. RANTES (regulated on activation normal T cell expressed and secreted)) and the scavenger receptor CD36 and reducing internalization of Aβ(1-42) by astrocytes. Moreover, we found that certain soluble (>75-kDa) Aβ(1-42) oligomers are primarily responsible for astrocyte activation and that heme or Hb association with these oligomers reverses inflammation. We further found that heme up-regulates phosphoprotein signaling in the phosphoinositide 3-kinase (PI3K)/Akt pathway, which regulates a number of immune functions, including cytokine expression and phagocytosis. The findings in this work suggest that dysregulation of Hb and heme levels in AD brains may contribute to impaired amyloid clearance and that targeting heme homeostasis may reduce amyloid pathogenesis. Altogether, we propose heme as a critical molecular link between amyloid pathology and AD risk factors, such as aging, brain injury, and stroke, which increase Hb and heme levels in the brain.
Collapse
Affiliation(s)
- Sitara B Sankar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Kajol J Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332.
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332.
| |
Collapse
|
84
|
Leclerc JL, Santiago-Moreno J, Dang A, Lampert AS, Cruz PE, Rosario AM, Golde TE, Doré S. Increased brain hemopexin levels improve outcomes after intracerebral hemorrhage. J Cereb Blood Flow Metab 2018; 38:1032-1046. [PMID: 27864463 PMCID: PMC5999006 DOI: 10.1177/0271678x16679170] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Following intracerebral hemorrhage (ICH), extracellular heme precipitates secondary brain injury, which results in irreversible brain damage and enduring neurological deficits. Hemopexin (Hpx) is an endogenous protein responsible for scavenging heme, thereby modulating its intrinsic proxidant/proinflammatory properties. Although Hpx is present in the brain, the endogenous levels are insufficient to combat the massive heme overload following ICH. We hypothesized that increasing brain Hpx levels would improve ICH outcomes. Unique recombinant adeno-associated viral vectors were designed to specifically overexpress Hpx within the mouse brain. Western blotting, ELISA, and immunohistochemistry of brain homogenates/sections, CSF, and serum were performed. As compared to controls, Hpx mice have increased Hpx protein levels in all three types of biospecimens evaluated, which results in 45.6 ± 6.9% smaller lesions and improved functional recovery after ICH (n=14-19/group, p < 0.05). Local mechanistic analyses show significantly less tissue injury, trends toward smaller hematoma volumes, unchanged heme oxygenase 1 and iron levels, and significantly increased microgliosis and decreased astrogliosis and lipid peroxidation. Peripheral levels of heme-related markers indicate a positive modulation of iron-binding capacity. These findings reveal that high local Hpx levels improve ICH outcomes, likely through both central and peripheral clearance mechanisms, and establish the potential for therapeutically administering clinical-grade Hpx for ICH.
Collapse
Affiliation(s)
- Jenna L Leclerc
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA.,2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | | | - Alex Dang
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Andrew S Lampert
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Pedro E Cruz
- 2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Awilda M Rosario
- 2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- 2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA.,2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,3 Departments of Neurology, Psychology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
85
|
Dai J, Wu P, Xu S, Li Y, Zhu Y, Wang L, Wang C, Zhou P, Shi H. Changes in mitochondrial ultrastructure in SH-SY5Y cells during apoptosis induced by hemin. Neuroreport 2018; 28:551-554. [PMID: 28489664 DOI: 10.1097/wnr.0000000000000790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hemorrhagic stroke is associated with high morbidity and mortality. Hemin is a decomposition product of hemoglobin that is related to neuronal apoptosis after hemorrhage, although the molecular basis for this association remains unclear. To address this issue, the present study investigated hemin-induced changes in the apoptotic index and mitochondrial ultrastructure in SH-SY5Y cells. Cell viability was evaluated using Cell Counting Kit-8 and by terminal transferase dUTP nick-end labeling, western blotting, and flow cytometry. Changes in mitochondrial ultrastructure were examined by super-resolution three-dimensional structured illumination microscopy. We found that cleaved-caspase-3 expression and the number of apoptotic cells increased in a time-dependent manner upon hemin treatment, which was associated with mitochondrial fragmentation. Our data suggest that hemin induces apoptosis and mitochondrial fission in neuronal cells. Thus, therapeutic strategies that target hemin could mitigate the damage caused by hemorrhagic stroke.
Collapse
Affiliation(s)
- Jiaxing Dai
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Hsu CC, Serio A, Amdursky N, Besnard C, Stevens MM. Fabrication of Hemin-Doped Serum Albumin-Based Fibrous Scaffolds for Neural Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5305-5317. [PMID: 29381329 PMCID: PMC5814958 DOI: 10.1021/acsami.7b18179] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/12/2018] [Indexed: 05/06/2023]
Abstract
Neural tissue engineering (TE) represents a promising new avenue of therapy to support nerve recovery and regeneration. To recreate the complex environment in which neurons develop and mature, the ideal biomaterials for neural TE require a number of properties and capabilities including the appropriate biochemical and physical cues to adsorb and release specific growth factors. Here, we present neural TE constructs based on electrospun serum albumin (SA) fibrous scaffolds. We doped our SA scaffolds with an iron-containing porphyrin, hemin, to confer conductivity, and then functionalized them with different recombinant proteins and growth factors to ensure cell attachment and proliferation. We demonstrated the potential for these constructs combining topographical, biochemical, and electrical stimuli by testing them with clinically relevant neural populations derived from human induced pluripotent stem cells (hiPSCs). Our scaffolds could support the attachment, proliferation, and neuronal differentiation of hiPSC-derived neural stem cells (NSCs), and were also able to incorporate active growth factors and release them over time, which modified the behavior of cultured cells and substituted the need for growth factor supplementation by media change. Electrical stimulation on the doped SA scaffold positively influenced the maturation of neuronal populations, with neurons exhibiting more branched neurites compared to controls. Through promotion of cell proliferation, differentiation, and neurite branching of hiPSC-derived NSCs, these conductive SA fibrous scaffolds are of broad application in nerve regeneration strategies.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Andrea Serio
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Nadav Amdursky
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Cyril Besnard
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| |
Collapse
|
87
|
Su X, Wang H, Lin Y, Chen F. RIP1 and RIP3 mediate hemin-induced cell death in HT22 hippocampal neuronal cells. Neuropsychiatr Dis Treat 2018; 14:3111-3119. [PMID: 30532542 PMCID: PMC6247969 DOI: 10.2147/ndt.s181074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a devastating neurological injury associated with significant mortality. Necroptosis is a newly identified type of programmed necrosis initiated by the activation of tumor necrosis factor alpha. Evidences had demonstrated the importance of necroptosis in neuronal cell death. Necrostatin-1 is a specific inhibitor of necroptosis. The present study was carried out to explore whether RIP1/RIP3 pathways participate in hemin induced cell death in HT-22 hippocampal neuronal cells and investigate the potential neuroprotection of necrostatin-1 in hemin induced cell death in HT-22. METHODS First, different concentrations of hemin (0, 25, 50, 100 μmol/L) were added to HT-22 cells. Propidium iodide (PI) positive cells and cell viability were measured at 24 hours after hemin treatment. Then, necrostatin-1, pan-caspase inhibitor Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-fmk) and reactive oxygen species (ROS) scavenger butylated hydroxyanisole (BHA) were applied to hemin-treated HT-22 cells. PI positive cells and cell viability were measured at 24 hours after hemin treatment. MitoSox Red was used to indicate ROS level. Last, the effect of RIP3 in hemin induced HT-22 cell death was explored through RIP3 knockdown using siRNA. PI positive cells, cell viability and ROS lever were measured at 24 h after hemin treatment. RESULTS Hemin could induce a dose dependent cell death in HT22 neural cells. RIP1 specific inhibitor necrostatin-1 significantly inhibited cell death induced by hemin in HT-22 cells, greatly reducing PI positive cells, dramatically improving cell viability and decreasing ROS accumulation. BHA could significantly inhibit PI positive cells induced by hemin in HT-22 cells. Furthermore, silencing of RIP3 using siRNA attenuated hemin induced cell death in HT-22 cells, greatly reducing PI positive cells, dramatically improving cell viability and decreasing ROS accumulation. CONCLUSION These data revealed that RIP1/RIP3 might mediate hemin induced cell death in HT-22 cells, and necrostatin-1 played a neuroprotection role in hemin induced cell death in HT-22. RIP1 and RIP3 might represent novel therapeutic targets for ICH.
Collapse
Affiliation(s)
- Xingfen Su
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, People's Republic of China,
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, People's Republic of China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, People's Republic of China,
| | - Fuxiang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, People's Republic of China,
| |
Collapse
|
88
|
Sayeed MSB, Alhadidi Q, Shah ZA. Cofilin signaling in hemin-induced microglial activation and inflammation. J Neuroimmunol 2017; 313:46-55. [PMID: 29153608 PMCID: PMC11956890 DOI: 10.1016/j.jneuroim.2017.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
Intracerebral hemorrhage (ICH) is the most severe form of stroke and is further exacerbated by the secondary injury involving inflammatory response due to the activation of microglia. This secondary injury is partly due to the toxic effects of hemin, an endogenous breakdown product of hemoglobin. Cofilin, an actin depolymerizing factor, controls actin dynamics and has been previously shown to be involved in mediating neuronal cell death in ischemic conditions and during bacterial lipopolysaccharide induced microglial activation. There are limited studies regarding the deleterious effects of extremely high concentrations of hemin released during ICH and its effects on microglia and subsequent cofilin response. Therefore, investigations were conducted to study the effects of hemin on microglial activation induced inflammation and the critical role of cofilin in mediating the response. We observed that hemin treated microglia had a concentration dependent increase in cofilin expression and NO production. There were increased levels of iNOS, TNF-α, HO1, Nrf2, Wfs-1, XBP-1 and spliced XBP-1 observed in response to hemin treatment and the signaling was found to be partly mediated by cofilin. Acute hemin treatment did not evoke Ca2+ signaling and long-term treatment of hemin also resulted in the failure of microglial response to acetylcholine-evoked Ca2+ signaling. Knockdown of cofilin by siRNA also reduced acetylcholine-evoked Ca2+ signaling. These studies demonstrate that cofilin signaling is important in hemin-induced inflammation, oxidative stress, ER stress, microglial migration, and the ability to evoke Ca2+ signaling. Therefore, cofilin inhibition could be a potential therapy in brain injuries triggered by hemin toxicity in conditions like ICH.
Collapse
Affiliation(s)
- Muhammad Shahdaat Bin Sayeed
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A Shah
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
89
|
Yang Y, Xi Z, Xue Y, Ren J, Sun Y, Wang B, Zhong Z, Yang GY, Sun Q, Bian L. Hemoglobin pretreatment endows rat cortical astrocytes resistance to hemin-induced toxicity via Nrf2/HO-1 pathway. Exp Cell Res 2017; 361:217-224. [PMID: 29074371 DOI: 10.1016/j.yexcr.2017.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 11/27/2022]
Abstract
Oxidative stress mediated secondary injury contributes to neurological deterioration after intracerebral hemorrhage (ICH). Astrocytes, the most dominant cells in the central nervous system (CNS), play key roles in maintaining redox homeostasis by providing oxidative stress defense. Hemoglobin (Hb), the primary component released by hemolysis, is an effective activator of astrocytes. Hemin, the product of Hb degradation, is highly toxic due to the induction of reactive oxygen species (ROS). We speculate that Hb-activated astrocytes are resistant to hemin-induced toxicity. To verify our speculation, Hb-pretreated astrocytes were exposed to hemin, intracellular ROS accumulation and cell apoptosis were evaluated. Heme oxygenase 1 (HO-1) and nuclear transcription factor-erythroid 2 related factor (Nrf2) expression were observed to explore the potential mechanism. The results demonstrated that Hb induced upregulation and nuclear translocation of Nrf2 in astrocytes, resulted in HO-1 upregulation, which contributed to reduced ROS accumulation and apoptosis rate. Knocking down Nrf2 expression by siRNA suppressed Hb-induced upregulation of HO-1 expression and increased the susceptibility of Hb-pretreated astrocytes to hemin-induced toxicity. Taken together, Hb-activated astrocytes acquired resistance to hemin-induced toxicity via Nrf2/HO-1 pathway. This phenomenon can be considered as the adaptive self-defense in the pathological process of ICH. Hb pre-warned astrocytes and enhanced their capability of handling the coming hemin "flood". Nrf2/HO-1 may be employed as a target for neuroprotection after ICH.
Collapse
Affiliation(s)
- Yong Yang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Zhiyu Xi
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuan Xue
- Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212000, China
| | - Jie Ren
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Department of Neurosurgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| |
Collapse
|
90
|
Silymarin prevents NLRP3 inflammasome activation and protects against intracerebral hemorrhage. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
91
|
The novel heme-dependent inducible protein, SRRD regulates heme biosynthesis and circadian rhythms. Arch Biochem Biophys 2017; 631:19-29. [PMID: 28802827 DOI: 10.1016/j.abb.2017.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022]
Abstract
Heme plays a role in the regulation of the expression of genes related to circadian rhythms and heme metabolism. In order to identify new heme-regulated proteins, an RNA sequence analysis using mouse NIH3T3 cells treated without or with 5-aminolevulinic acid (ALA) was performed. Among the changes observed in the levels of various mRNAs including heme oxygenase-1 (HO-1) and ALA synthase-1 (ALAS1), a mouse homologue of the plant circadian-regulating protein SRR1, SRR1 domain containing (SRRD) was induced by the ALA treatment. The expression of SRRD was dependent on heme biosynthesis, and increased the production of heme. SRRD was expressed under circadian rhythms, and influenced the expression of clock genes including PER2, BMAL1, and CLOCK. The knockout of SRRD arrested the growth of cells, indicating that SRRD plays roles in heme-regulated circadian rhythms and cell proliferation.
Collapse
|
92
|
Babadjouni RM, Radwanski RE, Walcott BP, Patel A, Durazo R, Hodis DM, Emanuel BA, Mack WJ. Neuroprotective strategies following intraparenchymal hemorrhage. J Neurointerv Surg 2017; 9:1202-1207. [PMID: 28710084 DOI: 10.1136/neurintsurg-2017-013197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022]
Abstract
Intracerebral hemorrhage and, more specifically, intraparenchymal hemorrhage, are devastating disease processes with poor clinical outcomes. Primary injury to the brain results from initial hematoma expansion while secondary hemorrhagic injury occurs from blood-derived products such as hemoglobin, heme, iron, and coagulation factors that overwhelm the brains natural defenses. Novel neuroprotective treatments have emerged that target primary and secondary mechanisms of injury. Nonetheless, translational application of neuroprotectants from preclinical to clinical studies has yet to show beneficial clinical outcomes. This review summarizes therapeutic agents and neuroprotectants in ongoing clinical trials aimed at targeting primary and secondary mechanisms of injury after intraparenchymal hemorrhage.
Collapse
Affiliation(s)
- Robin Moshe Babadjouni
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ryan E Radwanski
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brian P Walcott
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Arati Patel
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ramon Durazo
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Drew M Hodis
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Benjamin A Emanuel
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - William J Mack
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
93
|
Zhou YF, Zhang C, Yang G, Qian ZM, Zhang MW, Ma J, Zhang FL, Ke Y. Hepcidin Protects Neuron from Hemin-Mediated Injury by Reducing Iron. Front Physiol 2017; 8:332. [PMID: 28588503 PMCID: PMC5440571 DOI: 10.3389/fphys.2017.00332] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/08/2017] [Indexed: 01/05/2023] Open
Abstract
Hemin plays a key role in mediating secondary neuronal injury after intracerebral hemorrhage (ICH) and the cell toxicity of hemin is thought to be due to iron that is liberated when hemin is degraded. In a recent study, we demonstrated the iron regulatory hormone hepcidin reduces brain iron in iron-overloaded rats. Therefore, we hypothesized that hepcidin might be able to reduce iron and then protect neurons from hemin or iron-mediated neurotoxicity in hemin-treated neuronal cells. Here, we tested the hypothesis and demonstrated that ad-hepcidin and hepcidin peptide both have the ability to suppress the hemin-induced increase in LDH release and apoptotic cell numbers, to reduce cell iron and ferritin contents, and to inhibit expression of transferrin receptor 1, divalent metal transporter 1, and ferroportin 1 in hemin-treated neurons. We conclude that hepcidin protects neuron from hemin-mediated injury by reducing iron via inhibition of expression of iron transport proteins.
Collapse
Affiliation(s)
- Yu-Fu Zhou
- Laboratory of Neuropharmacology, School of Pharmacy, Fudan UniversityShanghai, China
| | - Chao Zhang
- Laboratory of Neuropharmacology, School of Pharmacy, Fudan UniversityShanghai, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| | - Guang Yang
- Laboratory of Neuropharmacology, School of Pharmacy, Fudan UniversityShanghai, China
| | - Zhong-Ming Qian
- Laboratory of Neuropharmacology, School of Pharmacy, Fudan UniversityShanghai, China
| | - Meng-Wan Zhang
- Laboratory of Neuropharmacology, School of Pharmacy, Fudan UniversityShanghai, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| | - Juan Ma
- Laboratory of Neuropharmacology, School of Pharmacy, Fudan UniversityShanghai, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| | - Fa-Li Zhang
- Laboratory of Neuropharmacology, School of Pharmacy, Fudan UniversityShanghai, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| | - Ya Ke
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| |
Collapse
|
94
|
Fouda MA, Abdel-Rahman AA. Endothelin Confers Protection against High Glucose-Induced Neurotoxicity via Alleviation of Oxidative Stress. J Pharmacol Exp Ther 2017; 361:130-139. [PMID: 28179472 PMCID: PMC5363775 DOI: 10.1124/jpet.116.238659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/06/2017] [Indexed: 11/22/2022] Open
Abstract
Recent findings linked the inhibition in the neuromodulator peptide endothelin-1 (ET-1) level to the high glucose-evoked neurotoxicity. However, definitive neuroprotective role for ET-1 and the major neuronal ET (ET-3) against high glucose-evoked toxicity and the implicated neurochemical responses triggered by their ET-A and ET-B receptors remain unknown. Here, we tested the hypothesis that ET-B activation alleviates high glucose-evoked oxidative stress and cell death. High glucose (100 mM for 48 hours)-evoked cell death was associated with elevation in reactive oxygen species, inhibition of catalase activity, and a paradoxical upregulation of hemeoxygenase-1 expression along with ET-A and ET-B receptors were downregulated and upregulated, respectively. ET-1 or ET-3, in concentrations that had no effect on PC12 cell viability in normal glucose medium, alleviated all high glucose-evoked neurochemical responses, except for the reduction in ET-A receptor expression. Prior (4 hours) incubation with a selective ET-A (BQ123) or ET-B (BQ788) receptor blocker abrogated the neuroprotection conferred by ET-1 or ET-3. However, the ET-B receptor played a greater role because BQ788 abrogated the favorable ET-1- or ET-3-mediated reversal of the ERK1/2 phosphorylation and the inhibition in catalase activity caused by high glucose. These findings suggest that endothelin exerts ET-B receptor-dependent favorable redox and neuroprotective effects against high glucose-evoked oxidative damage and neurotoxicity.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Pharmacology, Brody School of Medicine, East Carolina University, North Carolina
| | - Abdel A Abdel-Rahman
- Department of Pharmacology, Brody School of Medicine, East Carolina University, North Carolina
| |
Collapse
|
95
|
Liu R, Cao S, Hua Y, Keep RF, Huang Y, Xi G. CD163 Expression in Neurons After Experimental Intracerebral Hemorrhage. Stroke 2017; 48:1369-1375. [PMID: 28360115 DOI: 10.1161/strokeaha.117.016850] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE CD163, a receptor for hemoglobin, is involved in hemoglobin clearance after intracerebral hemorrhage (ICH). In contrast to microglial/macrophage CD163, neuronal CD163 hemoglobin has not been well studied. This study examined the expression of neuronal CD163 in a pig model of ICH and in vitro rat cortical neurons and the impact of deferoxamine on that expression. METHODS There were 2 parts to this study. In the in vivo part, piglets had injection of autologous blood into the right frontal lobe. The time course of CD163 expression and the effect of deferoxamine on the expression of CD163 after ICH were determined in the grey matter. In the in vitro part, the levels of CD163 and neuronal death and the effect of deferoxamine were examined in rat cortical neurons culture treated with hemoglobin. RESULTS CD163-positive cells were found, and the CD163 protein levels were upregulated in the ipsilateral grey matter after ICH. The CD163 levels peaked at days 1 and 3. The CD163-positive cells were colocated with NeuN-positive, heme oxygenase-2-positive, and terminal deoxynucleatidyl transferase dUTP nick end labeling-positive cells. Deferoxamine treatment attenuated ICH-induced CD163 upregulation and significantly reduced both brain CD163 and hemoglobin levels at day 3. Treating neuronal cultures with hemoglobin for 24 hours resulted in CD163 upregulation and increased cell death. Deferoxamine significantly attenuated the hemoglobin-induced neuronal death and CD163 upregulation. CONCLUSIONS CD163 is expressed in neurons and upregulated after ICH. Deferoxamine reduced ICH-induced CD163 upregulation and brain cell death in vivo and hemoglobin-induced CD163 upregulation and neuronal death in vitro.
Collapse
Affiliation(s)
- Ran Liu
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (R.L., S.C., Y.H., R.F.K., G.X.); and Department of Neurology, Peking University First Hospital, Beijing, China (R.L., Y.H.)
| | - Shenglong Cao
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (R.L., S.C., Y.H., R.F.K., G.X.); and Department of Neurology, Peking University First Hospital, Beijing, China (R.L., Y.H.)
| | - Ya Hua
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (R.L., S.C., Y.H., R.F.K., G.X.); and Department of Neurology, Peking University First Hospital, Beijing, China (R.L., Y.H.)
| | - Richard F Keep
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (R.L., S.C., Y.H., R.F.K., G.X.); and Department of Neurology, Peking University First Hospital, Beijing, China (R.L., Y.H.)
| | - Yining Huang
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (R.L., S.C., Y.H., R.F.K., G.X.); and Department of Neurology, Peking University First Hospital, Beijing, China (R.L., Y.H.)
| | - Guohua Xi
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (R.L., S.C., Y.H., R.F.K., G.X.); and Department of Neurology, Peking University First Hospital, Beijing, China (R.L., Y.H.).
| |
Collapse
|
96
|
Wang YJ, Peng QY, Deng SY, Chen CX, Wu L, Huang L, Zhang LN. Hemin protects against oxygen-glucose deprivation-induced apoptosis activation via neuroglobin in SH-SY5Y cells. Neurochem Res 2017; 42:2208-2217. [PMID: 28316021 DOI: 10.1007/s11064-017-2230-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/28/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
This study aimed to investigate the mechanism underlying the neuroprotective effect of hemin in oxygen-glucose deprivation (OGD)-treated neurons. OGD-treated SH-SY5Y cells (human neuroblastoma cells) were used in the study. The cellular viability of SH-SY5Y cells was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell apoptosis rate was determined by flow cytometry analysis with Annexin V-fluorescein isothiocyanate and propidium iodide staining with or without hemin pretreatment. Cell viability and apoptotic activation were detected after hemin administration combined with neuroglobin (Nqb), thioredoxin-1, peroxiredoxin-2, or heme oxygenase-1 siRNA transient transfection. The release of cytochrome c from mitochondria and the interaction between Ngb and cytochrome c were examined with hemin pretreatment. Hemin had a neuroprotective effect in OGD-treated SH-SY5Y cells, which was mainly mediated by the upregulation of Ngb. Moreover, the release of cytochrome c from mitochondria was inhibited by hemin-induced Ngb expression through facilitating the interaction of Ngb with cytochrome c in mitochondria. The present findings provided new insights into the neuroprotective mechanisms of hemin. It was concluded that low-dose hemin pretreatment had a neuroprotective effect in OGD-treated SH-SY5Y cells, through inhibiting cell apoptosis. The neuroprotective effects of hemin following hypoxic-ischemic neuronal damage were mainly mediated by Ngb. One underlying mechanism was hemin-induced overexpression of mitochondrial Ngb, which inhibited endogenous apoptosis via the association with cytochrome c.
Collapse
Affiliation(s)
- Yun-Jia Wang
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, No 87, Xiangya Road, Changsha, 410008, China
| | - Qian-Yi Peng
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, No 87, Xiangya Road, Changsha, 410008, China
| | - Song-Yun Deng
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, No 87, Xiangya Road, Changsha, 410008, China
| | - Cai-Xia Chen
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, No 87, Xiangya Road, Changsha, 410008, China
| | - Long Wu
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, No 87, Xiangya Road, Changsha, 410008, China
| | - Li Huang
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, No 87, Xiangya Road, Changsha, 410008, China
| | - Li-Na Zhang
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, No 87, Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
97
|
Bamm VV, Geist AM, Harauz G. Correlation of geographic distributions of haptoglobin alleles with prevalence of multiple sclerosis (MS) - a narrative literature review. Metab Brain Dis 2017; 32:19-34. [PMID: 27807673 DOI: 10.1007/s11011-016-9923-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022]
Abstract
We have proposed that the myelin damage observed in multiple sclerosis (MS) may be partly mediated through the long-term release and degradation of extracellular hemoglobin (Hb) and the products of its oxidative degradation [Cellular and Molecular Life Sciences, 71, 1789-1798, 2014]. The protein haptoglobin (Hpt) binds extracellular Hb as a first line of defense, and can serve as a vascular antioxidant. Humans have two different Hpt alleles: Hpt1 and Hpt2, giving either homozygous Hpt1-1 or Hpt2-2 phenotypes, or a heterozygous Hpt1-2 phenotype. We questioned whether those geographic regions with higher frequency of the Hpt2 allele (conversely, lower frequency of Hpt1 allele) would correlate with an increased incidence of MS, because different Hpt phenotypes will have variable anti-oxidative potentials in protecting myelin from damage inflicted by extracellular Hb and its degradation products. To test this hypothesis, we undertook a systematic analysis of the literature on reported geographic distributions of Hpt alleles to compare them with data reported in the World Health Organization Atlas of worldwide MS prevalence. We found the frequency of the Hpt1 allele to be low in European and North American countries with a high prevalence of MS, consistent with our hypothesis. However, this correlation was not observed in China and India, countries with the lowest Hpt1 frequencies, yet low reported prevalence of MS. Nevertheless, this work shows the need for continued refinement of geographic patterns of MS prevalence, including data on ethnic or racial origin, and for new clinical studies to probe the observed correlation and evaluate Hpt phenotype as a predictor of disease variability and progression, severity, and/or comorbidity with cardiovascular disorders.
Collapse
Affiliation(s)
- Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Arielle M Geist
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
98
|
Visualization of the role of host heme on the virulence of the heme auxotroph Streptococcus agalactiae. Sci Rep 2017; 7:40435. [PMID: 28091535 PMCID: PMC5238366 DOI: 10.1038/srep40435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Heme is essential for several cellular key functions but is also toxic. Whereas most bacterial pathogens utilize heme as a metabolic cofactor and iron source, the impact of host heme during bacterial infection remains elusive. The opportunist pathogen Streptococcus agalactiae does not synthesize heme but still uses it to activate a respiration metabolism. Concomitantly, heme toxicity is mainly controlled by the HrtBA efflux transporter. Here we investigate how S. agalactiae manages heme toxicity versus benefits in the living host. Using bioluminescent bacteria and heme-responsive reporters for in vivo imaging, we show that the capacity of S. agalactiae to overcome heme toxicity is required for successful infection, particularly in blood-rich organs. Host heme is simultaneously required, as visualized by a generalized infection defect of a respiration-negative mutant. In S. agalactiae, HrtBA expression responds to an intracellular heme signal via activation of the two-component system HssRS. A hssRS promoter-driven intracellular luminescent heme sensor was designed to identify host compartments that supply S. agalactiae with heme. S. agalactiae acquires heme in heart, kidneys, and liver, but not in the brain. We conclude that S. agalactiae response to heme is organ-dependent, and its efflux may be particularly relevant in late stages of infection.
Collapse
|
99
|
|
100
|
Tripathi AK, Singh N. Prion Protein-Hemin Interaction Upregulates Hemoglobin Synthesis: Implications for Cerebral Hemorrhage and Sporadic Creutzfeldt-Jakob Disease. J Alzheimers Dis 2016; 51:107-21. [PMID: 26836195 DOI: 10.3233/jad-151039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hemin is known to induce endocytosis of prion-protein (PrP(C)) from the neuronal plasma membrane, potentially limiting propagation of the disease causing PrP-scrapie (PrP(Sc)) isoform. Hemin is therefore an attractive disease-modifying option for sporadic Creutzfeldt-Jakob disease (sCJD), a human prion disorder with no effective treatment. The hemin-PrP(C) interaction is also of interest in cerebral-hemorrhage (CH), a condition where potentially toxic hemin molecules come in contact with neuronal PrP(C). Interestingly, PrP(C) is upregulated in penumbric neurons surrounding CH and is known to confer neuroprotection in a dose-dependent manner. The underlying mechanism, however, is not clear. Here, we report that hemin binds PrP(C) on diverse cell lines, resulting in its aggregation or degradation in a cell-type specific manner. Surprisingly, the hemin-PrP(C) interaction upregulates Hb synthesis in hematopoietic cells, a response reversed by deleting the hemin-binding octa-peptide repeat region of PrP(C). A similar response is noted in brain organotypic cultures where exposure to hemin induces significantly more α-globin in wild-type (PrP(+/+)) relative to PrP-knock-out (PrP(-/-)) samples. Furthermore, red blood cells and brain tissue from PrP(-/-) mice show significantly less α-globin relative to PrP(+/+) controls, indicating a positive effect of PrP(C) on Hb synthesis under physiological conditions as well. Surprisingly, levels of α-globin are significantly higher in sCJD brain tissue relative to controls, suggesting compensatory upregulation of Hb synthesis by surviving neurons or misregulation in diseased brains. These observations reveal a unique function of PrP(C) that is likely to impact the therapeutic management of CH and sCJD.
Collapse
|