51
|
Serum of myeloproliferative neoplasms stimulates hematopoietic stem and progenitor cells. PLoS One 2018; 13:e0197233. [PMID: 29851963 PMCID: PMC5979002 DOI: 10.1371/journal.pone.0197233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Background Myeloproliferative neoplasms (MPN)—such as polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF)—are typically diseases of the elderly caused by acquired somatic mutations. However, it is largely unknown how the malignant clone interferes with normal hematopoiesis. In this study, we analyzed if serum of MPN patients comprises soluble factors that impact on hematopoietic stem and progenitor cells (HPCs). Methods CD34+ HPCs were cultured in medium supplemented with serum samples of PV, ET, or MF patients, or healthy controls. The impact on proliferation, maintenance of immature hematopoietic surface markers, and colony forming unit (CFU) potential was systematically analyzed. In addition, we compared serum of healthy young (<25 years) and elderly donors (>50 years) to determine how normal aging impacts on the hematopoiesis-supportive function of serum. Results Serum from MF, PV and ET patients significantly increased proliferation as compared to controls. In addition, serum from MF and ET patients attenuated the loss of a primitive immunophenotype during in vitro culture. The CFU counts were significantly higher if HPCs were cultured with serum of MPN patients as compared to controls. Furthermore, serum of healthy young versus old donors did not evoke significant differences in proliferation or immunophenotype of HPCs, whereas the CFU frequency was significantly increased by serum from elderly patients. Conclusion Our results indicate that serum derived from patients with MPN comprises activating feedback signals that stimulate the HPCs–and this stimulatory signal may result in a viscous circle that further accelerates development of the disease.
Collapse
|
52
|
Zacharaki D, Ghazanfari R, Li H, Lim HC, Scheding S. Effects of JAK1/2 inhibition on bone marrow stromal cells of myeloproliferative neoplasm (MPN) patients and healthy individuals. Eur J Haematol 2018; 101:57-67. [DOI: 10.1111/ejh.13079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Dimitra Zacharaki
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
| | - Roshanak Ghazanfari
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
| | - Hongzhe Li
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
| | - Hooi Ching Lim
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
| | - Stefan Scheding
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
- Department of Hematology; Skåne University Hospital Lund; Lund Sweden
| |
Collapse
|
53
|
Asada N. Regulation of Malignant Hematopoiesis by Bone Marrow Microenvironment. Front Oncol 2018; 8:119. [PMID: 29740536 PMCID: PMC5924781 DOI: 10.3389/fonc.2018.00119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSCs) that give rise to all kinds of hematopoietic lineage cells on various demands throughout life are maintained in a specialized microenvironment called “niche” in the bone marrow (BM). Defining niche cells and unveiling its function have been the subject of intense study, and it is becoming increasingly clear how niche cells regulate HSCs in normal hematopoiesis. Leukemia stem cells (LSCs), which are able to produce leukemic cells and maintain leukemic clones, are assumed to share common features with healthy HSCs. Accumulating evidence suggests that LSCs reside in a specialized BM microenvironment; moreover, LSCs could control and rebuild the microenvironment to enhance their progression and survival. This article discusses the recent advances in our knowledge of the microenvironment supporting malignant hematopoiesis, including LSC niche.
Collapse
Affiliation(s)
- Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
54
|
The identification of fibrosis-driving myofibroblast precursors reveals new therapeutic avenues in myelofibrosis. Blood 2018; 131:2111-2119. [PMID: 29572380 DOI: 10.1182/blood-2018-02-834820] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Myofibroblasts are fibrosis-driving cells and are well characterized in solid organ fibrosis, but their role and cellular origin in bone marrow fibrosis remains obscure. Recent work has demonstrated that Gli1+ and LepR+ mesenchymal stromal cells (MSCs) are progenitors of fibrosis-causing myofibroblasts in the bone marrow. Genetic ablation of Gli1+ MSCs or pharmacologic targeting of hedgehog (Hh)-Gli signaling ameliorated fibrosis in mouse models of myelofibrosis (MF). Moreover, pharmacologic or genetic intervention in platelet-derived growth factor receptor α (Pdgfrα) signaling in Lepr+ stromal cells suppressed their expansion and ameliorated MF. Improved understanding of cellular and molecular mechanisms in the hematopoietic stem cell niche that govern the transition of MSCs to myofibroblasts and myofibroblast expansion in MF has led to new paradigms in the pathogenesis and treatment of MF. Here, we highlight the central role of malignant hematopoietic clone-derived megakaryocytes in reprogramming the hematopoietic stem cell niche in MF with potential detrimental consequences for hematopoietic reconstitution after allogenic stem cell transplantation, so far the only therapeutic approach in MF considered to be curative. We and others have reported that targeting Hh-Gli signaling is a therapeutic strategy in solid organ fibrosis. Data indicate that targeting Gli proteins directly inhibits Gli1+ cell proliferation and myofibroblast differentiation, which results in reduced fibrosis severity and improved organ function. Although canonical Hh inhibition (eg, smoothened [Smo] inhibition) failed to improve pulmonary fibrosis, kidney fibrosis, or MF, the direct inhibition of Gli proteins ameliorated fibrosis. Therefore, targeting Gli proteins directly might be an interesting and novel therapeutic approach in MF.
Collapse
|
55
|
Sarkaria SM, Decker M, Ding L. Bone Marrow Micro-Environment in Normal and Deranged Hematopoiesis: Opportunities for Regenerative Medicine and Therapies. Bioessays 2018; 40:10.1002/bies.201700190. [PMID: 29384206 PMCID: PMC5872840 DOI: 10.1002/bies.201700190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/24/2017] [Indexed: 12/11/2022]
Abstract
Various cell types cooperate to create a highly organized and dynamic micro-environmental niche in the bone marrow. Over the past several years, the field has increasingly recognized the critical roles of the interplay between bone marrow environment and hematopoietic cells in normal and deranged hematopoiesis. These advances rely on several new technologies that have allowed us to characterize the identity and roles of these niches in great detail. Here, we review the progress of the last several years, list some of the outstanding questions in the field and propose ways to target the diseased environment to better treat hematologic diseases. Understanding the extrinsic regulation by the niche will help boost hematopoiesis for regenerative medicine. Based on natural development of hematologic malignancies, we propose that combinatory targeting the niche and hematopoietic intrinsic mechanisms in early stages of hematopoietic malignancies may help eliminate minimal residual disease and have the highest efficacy.
Collapse
Affiliation(s)
| | | | - Lei Ding
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
56
|
Ling T, Crispino JD, Zingariello M, Martelli F, Migliaccio AR. GATA1 insufficiencies in primary myelofibrosis and other hematopoietic disorders: consequences for therapy. Expert Rev Hematol 2018; 11:169-184. [PMID: 29400094 PMCID: PMC6108178 DOI: 10.1080/17474086.2018.1436965] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION GATA1, the founding member of a family of transcription factors, plays important roles in the development of hematopoietic cells of several lineages. Although loss of GATA1 has been known to impair hematopoiesis in animal models for nearly 25 years, the link between GATA1 defects and human blood diseases has only recently been realized. Areas covered: Here the current understanding of the functions of GATA1 in normal hematopoiesis and how it is altered in disease is reviewed. GATA1 is indispensable mainly for erythroid and megakaryocyte differentiation. In erythroid cells, GATA1 regulates early stages of differentiation, and its deficiency results in apoptosis. In megakaryocytes, GATA1 controls terminal maturation and its deficiency induces proliferation. GATA1 alterations are often found in diseases involving these two lineages, such as congenital erythroid and/or megakaryocyte deficiencies, including Diamond Blackfan Anemia (DBA), and acquired neoplasms, such as acute megakaryocytic leukemia (AMKL) and the myeloproliferative neoplasms (MPNs). Expert commentary: Since the first discovery of GATA1 mutations in AMKL, the number of diseases that are associated with impaired GATA1 function has increased to include DBA and MPNs. With respect to the latter, we are only just now appreciating the link between enhanced JAK/STAT signaling, GATA1 deficiency and disease pathogenesis.
Collapse
Affiliation(s)
- Te Ling
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - John D. Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | | | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | - Anna Rita Migliaccio
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| |
Collapse
|
57
|
Migliaccio AR. A vicious interplay between genetic and environmental insults in the etiology of blood cancers. Exp Hematol 2017; 59:9-13. [PMID: 29248611 DOI: 10.1016/j.exphem.2017.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023]
Abstract
Over the years, the etiology of cancer has been attributed alternatively to genetic and environmental insults. According to the genetic hypothesis, cancer cells arise from the acquisition of mutations that dysregulate the intrinsic mechanisms controlling normal cell growth and survival. In contrast, the environmental hypothesis holds that cancer can be caused by multiple extrinsic challenges that alter normal tissue homeostasis, but may not necessarily involve mutations. It is, however, quite possible that these two mechanisms are not mutually exclusive. According to this third hypothesis, environmental challenges, by mechanisms still poorly understood, may act by imposing a selection pressure that confers a proliferative advantage on cells carrying specific driver mutations, leading to disease initiation. The authors of a brief report published in this journal (Exp Hematol. 2017;56:1-6) tested this third hypothesis experimentally and provide new evidence that chronic inflammation, by increasing tumor necrosis factor (TNF)-α, may positively select malignant hematopoietic stem cells (HSCs) carrying loss-of-function TET2 mutations that switch the TNF-α signaling responses to activate proliferation rather than inducing quiescence. Furthermore, these mutations skew hematopoietic differentiation toward the myelomonocytic lineage and the output of macrophages producing TNF-α constitutively, promoting further environment-independent expansion of the malignant HSCs. These findings support a model in which the formation of a malignant population is triggered by a vicious interplay between genetic (TET2 mutations) and environmental (inflammation) insults, suggesting the need for strategies that target both the malignant cells and their environment.
Collapse
Affiliation(s)
- Anna Rita Migliaccio
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York.
| |
Collapse
|
58
|
Lussana F, Rambaldi A. Inflammation and myeloproliferative neoplasms. J Autoimmun 2017; 85:58-63. [DOI: 10.1016/j.jaut.2017.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 01/14/2023]
|
59
|
Loberg LI, Logan M, Barnhart K, Fossey S, Whitney K. Bone Marrow Findings Secondary to Antineoplastic Compounds: Hematopoietic, Bone, and Cytokine Cross Talk. Toxicol Pathol 2017; 45:879-883. [PMID: 28990496 DOI: 10.1177/0192623317735317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
New medullary bone formation has been observed in rats administered a variety of antineoplastic compounds. Similar effects reported in rats administered granulocyte colony-stimulating factor (G-CSF) were attributed to exaggerated pharmacology of G-CSF as a cytokine and growth factor, resulting in stromal proliferation in addition to the intended hematopoietic effects. Similar phenomena of marrow stromal change are reported among other species in association with various growth factors. Case study summaries of test item-related histopathologic changes in bone marrow, reflecting trabecular and/or endosteal new bone formation, are presented. In each of these cases, it was concluded that the new medullary bone and stromal proliferation did not reflect a primary target-related toxicity; rather, the mesenchymal changes were attributed to nonspecific, secondary effects of cytokines elaborated in response to primary cytotoxic effects on hematopoietic cells with subsequent impact on circulating blood cells. The common features associated with marrow stromal changes in the case studies, as well as with a variety of pharmacologic compounds across several species described in the literature, are hematologic effects and/or changes in growth factor levels and cytokine expression.
Collapse
Affiliation(s)
- Lise I Loberg
- 1 Preclinical Safety, AbbVie, Inc., North Chicago, Illinois, USA
| | - Michael Logan
- 1 Preclinical Safety, AbbVie, Inc., North Chicago, Illinois, USA
| | - Kirstin Barnhart
- 1 Preclinical Safety, AbbVie, Inc., North Chicago, Illinois, USA
| | - Stacey Fossey
- 2 Preclinical Safety, AbbVie, Inc., Worcester, Massachusetts, USA
| | | |
Collapse
|
60
|
Endothelial-to-Mesenchymal Transition in Bone Marrow and Spleen of Primary Myelofibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1879-1892. [PMID: 28728747 DOI: 10.1016/j.ajpath.2017.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022]
Abstract
Primary myelofibrosis is characterized by the development of fibrosis in the bone marrow that contributes to ineffective hematopoiesis. Bone marrow fibrosis is the result of a complex and not yet fully understood interaction among megakaryocytes, myeloid cells, fibroblasts, and endothelial cells. Here, we report that >30% of the endothelial cells in the small vessels of the bone marrow and spleen of patients with primary myelofibrosis have a mesenchymal phenotype, which is suggestive of the process known as endothelial-to-mesenchymal transition (EndMT). EndMT can be reproduced in vitro by incubation of cultured endothelial progenitor cells or spleen-derived endothelial cells with inflammatory cytokines. Megakaryocytes appear to be implicated in this process, because EndMT mainly occurs in the microvessels close to these cells, and because megakaryocyte-derived supernatant fluid can reproduce the EndMT switch in vitro. Furthermore, EndMT is an early event in a JAK2-V617F knock-in mouse model of primary myelofibrosis. Overall, these data show for the first time that microvascular endothelial cells in the bone marrow and spleen of patients with primary myelofibrosis show functional and morphologic changes that are associated to the mesenchymal phenotype.
Collapse
|
61
|
Padrnos L, Mesa RA. Myeloproliferative Neoplasms: Translating New Discoveries Into Better Outcomes, Better Quality of Life. ONCOLOGY (WILLISTON PARK, N.Y.) 2017; 31:521-529. [PMID: 28712096 PMCID: PMC8148884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite the identification of JAK mutations and the development of targeted inhibitors, there remain significant unmet needs for patients with myeloproliferative neoplasms. Identification of the myeloproliferative neoplasm populations not currently benefiting from JAK inhibitor therapy highlights the therapeutic deficits still present in this heterogeneous stem cell malignancy. While JAK inhibition has provided significant benefits for patients with intermediate-2 or high-risk myelofibrosis and in patients with polycythemia vera in the second-line setting, JAK inhibitor monotherapy is not approved and not appropriate for all patients with myeloproliferative neoplasms. Continued investigation into additional JAK inhibitors, combination therapy, and novel pathway therapeutics remains key to improving outcomes for all patients with myeloproliferative neoplasms. While therapeutic advances in the JAK inhibitor arena or involving alternative pathways are crucial to improving outcomes in myeloproliferative neoplasms, it is also important to reconsider the role of constitutional symptoms in affected patients as an indication for treatment with agents, such as JAK inhibitors, that can mitigate these debilitating symptoms. In this review, we demonstrate the evolving landscape of clinical investigations that address the important therapeutic needs of patients with myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Leslie Padrnos
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, Arizona
| | - Ruben A. Mesa
- Professor and Chair, Division of Hematology and Medical Oncology; Deputy Director, Mayo Clinic Cancer Center; Mayo Clinic, Phoenix, Arizona
| |
Collapse
|
62
|
Hmga2 promotes the development of myelofibrosis in Jak2 V617F knockin mice by enhancing TGF-β1 and Cxcl12 pathways. Blood 2017. [PMID: 28637665 DOI: 10.1182/blood-2016-12-757344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Myelofibrosis (MF) is a devastating blood disorder. The JAK2V617F mutation has been detected in ∼50% cases of MF. Elevated expression of high-mobility group AT hook 2 (HMGA2) has also been frequently observed in patients with MF. Interestingly, upregulation of HMGA2 expression has been found in association with the JAK2V617F mutation in significant cases of MF. However, the contribution of HMGA2 in the pathogenesis of MF remains elusive. To determine the effects of concurrent expression of HMGA2 and JAK2V617F mutation in hematopoiesis, we transduced bone marrow cells from Jak2V617F knockin mice with lentivirus expressing Hmga2 and performed bone marrow transplantation. Expression of Hmga2 enhanced megakaryopoiesis, increased extramedullary hematopoiesis, and accelerated the development of MF in mice expressing Jak2V617F Mechanistically, the data show that expression of Hmga2 enhances the activation of transforming growth factor-β1 (TGF-β1) and Cxcl12 pathways in mice expressing Jak2V617F In addition, expression of Hmga2 causes upregulation of Fzd2, Ifi27l2a, and TGF-β receptor 2. Forced expression of Cxcl12, Fzd2, or Ifi27l2a increases megakaryocytic differentiation and proliferation in the bone marrow of Jak2V617F mice, whereas TGF-β1 or Cxcl12 stimulation induces collagen deposition in the bone marrow mesenchymal stromal cells. Together, these findings demonstrate that expression of Hmga2 cooperates with Jak2V617F in the pathogenesis of MF.
Collapse
|
63
|
The thrombopoietin/MPL axis is activated in the Gata1 low mouse model of myelofibrosis and is associated with a defective RPS14 signature. Blood Cancer J 2017. [PMID: 28622305 PMCID: PMC5520398 DOI: 10.1038/bcj.2017.51] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Myelofibrosis (MF) is characterized by hyperactivation of thrombopoietin (TPO) signaling, which induces a RPS14 deficiency that de-regulates GATA1 in megakaryocytes by hampering its mRNA translation. As mice carrying the hypomorphic Gata1low mutation, which reduces the levels of Gata1 mRNA in megakaryocytes, develop MF, we investigated whether the TPO axis is hyperactive in this model. Gata1low mice contained two times more Tpo mRNA in liver and TPO in plasma than wild-type littermates. Furthermore, Gata1low LSKs expressed levels of Mpl mRNA (five times greater than normal) and protein (two times lower than normal) similar to those expressed by LSKs from TPO-treated wild-type mice. Gata1low marrow and spleen contained more JAK2/STAT5 than wild-type tissues, an indication that these organs were reach of TPO-responsive cells. Moreover, treatment of Gata1low mice with the JAK inhibitor ruxolitinib reduced their splenomegaly. Also in Gata1low mice activation of the TPO/MPL axis was associated with a RSP14 deficiency and a discordant microarray ribosome signature (reduced RPS24, RPS26 and SBDS expression). Finally, electron microscopy revealed that Gata1low megakaryocytes contained poorly developed endoplasmic reticulum with rare polysomes. In summary, Gata1low mice are a bona fide model of MF, which recapitulates the hyperactivation of the TPO/MPL/JAK2 axis observed in megakaryocytes from myelofibrotic patients.
Collapse
|
64
|
Yue L, Bartenstein M, Zhao W, Ho WT, Han Y, Murdun C, Mailloux AW, Zhang L, Wang X, Budhathoki A, Pradhan K, Rapaport F, Wang H, Shao Z, Ren X, Steidl U, Levine RL, Zhao ZJ, Verma A, Epling-Burnette PK. Efficacy of ALK5 inhibition in myelofibrosis. JCI Insight 2017; 2:e90932. [PMID: 28405618 DOI: 10.1172/jci.insight.90932] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myelofibrosis (MF) is a bone marrow disorder characterized by clonal myeloproliferation, aberrant cytokine production, extramedullary hematopoiesis, and bone marrow fibrosis. Although somatic mutations in JAK2, MPL, and CALR have been identified in the pathogenesis of these diseases, inhibitors of the Jak2 pathway have not demonstrated efficacy in ameliorating MF in patients. TGF-β family members are profibrotic cytokines and we observed significant TGF-β1 isoform overexpression in a large cohort of primary MF patient samples. Significant overexpression of TGF-β1 was also observed in murine clonal MPLW515L megakaryocytic cells. TGF-β1 stimulated the deposition of excessive collagen by mesenchymal stromal cells (MSCs) by activating the TGF-β receptor I kinase (ALK5)/Smad3 pathway. MSCs derived from MPLW515L mice demonstrated sustained overproduction of both collagen I and collagen III, effects that were abrogated by ALK5 inhibition in vitro and in vivo. Importantly, use of galunisertib, a clinically active ALK5 inhibitor, significantly improved MF in both MPLW515L and JAK2V617F mouse models. These data demonstrate the role of malignant hematopoietic stem cell (HSC)/TGF-β/MSC axis in the pathogenesis of MF, and provide a preclinical rationale for ALK5 blockade as a therapeutic strategy in MF.
Collapse
Affiliation(s)
- Lanzhu Yue
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Matthias Bartenstein
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Wanke Zhao
- Department of Pathology, Peggy and Stephenson Cancer Center, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Wanting Tina Ho
- Department of Pathology, Peggy and Stephenson Cancer Center, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ying Han
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Cem Murdun
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Adam W Mailloux
- Translational Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Anjali Budhathoki
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Kith Pradhan
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Franck Rapaport
- Leukemia Center, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Ross L Levine
- Leukemia Center, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Zhizhuang Joe Zhao
- Department of Pathology, Peggy and Stephenson Cancer Center, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | | |
Collapse
|
65
|
GATA factor mutations in hematologic disease. Blood 2017; 129:2103-2110. [PMID: 28179280 DOI: 10.1182/blood-2016-09-687889] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
GATA family proteins play essential roles in development of many cell types, including hematopoietic, cardiac, and endodermal lineages. The first three factors, GATAs 1, 2, and 3, are essential for normal hematopoiesis, and their mutations are responsible for a variety of blood disorders. Acquired and inherited GATA1 mutations contribute to Diamond-Blackfan anemia, acute megakaryoblastic leukemia, transient myeloproliferative disorder, and a group of related congenital dyserythropoietic anemias with thrombocytopenia. Conversely, germ line mutations in GATA2 are associated with GATA2 deficiency syndrome, whereas acquired mutations are seen in myelodysplastic syndrome, acute myeloid leukemia, and in blast crisis transformation of chronic myeloid leukemia. The fact that mutations in these genes are commonly seen in blood disorders underscores their critical roles and highlights the need to develop targeted therapies for transcription factors. This review focuses on hematopoietic disorders that are associated with mutations in two prominent GATA family members, GATA1 and GATA2.
Collapse
|
66
|
Leiva O, Ng SK, Chitalia S, Balduini A, Matsuura S, Ravid K. The role of the extracellular matrix in primary myelofibrosis. Blood Cancer J 2017; 7:e525. [PMID: 28157219 PMCID: PMC5386340 DOI: 10.1038/bcj.2017.6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm that arises from clonal proliferation of hematopoietic stem cells and leads to progressive bone marrow (BM) fibrosis. While cellular mutations involved in the development of PMF have been heavily investigated, noteworthy is the important role the extracellular matrix (ECM) plays in the progression of BM fibrosis. This review surveys ECM proteins contributors of PMF, and highlights how better understanding of the control of the ECM within the BM niche may lead to combined therapeutic options in PMF.
Collapse
Affiliation(s)
- O Leiva
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - S K Ng
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - S Chitalia
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - A Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - S Matsuura
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - K Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
67
|
Emerging treatments for classical myeloproliferative neoplasms. Blood 2016; 129:693-703. [PMID: 28028027 DOI: 10.1182/blood-2016-10-695965] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/03/2016] [Indexed: 12/17/2022] Open
Abstract
There has been a major revolution in the management of patients with myeloproliferative neoplasms (MPN), and in particular those with myelofibrosis and extensive splenomegaly and symptomatic burden, after the introduction of the JAK1 and JAK2 inhibitor ruxolitinib. The drug also has been approved as second-line therapy for polycythemia vera (PV). However, the therapeutic armamentarium for MPN is still largely inadequate for coping with patients' major unmet needs, which include normalization of life span (myelofibrosis and some patients with PV), reduction of cardiovascular complications (mainly PV and essential thrombocythemia), prevention of hematological progression, and improved quality of life (all MPN). In fact, none of the available drugs has shown clear evidence of disease-modifying activity, even if some patients treated with interferon and ruxolitinib showed reduction of mutated allele burden, and ruxolitinib might extend survival of patients with higher-risk myelofibrosis. Raised awareness of the molecular abnormalities and cellular pathways involved in the pathogenesis of MPN is facilitating the development of clinical trials with novel target drugs, either alone or in combination with ruxolitinib. Although for most of these molecules a convincing preclinical rationale was provided, the results of early phase 1 and 2 clinical trials have been quite disappointing to date, and toxicities sometimes have been limiting. In this review, we critically illustrate the current landscape of novel therapies that are under evaluation for patients with MPN on the basis of current guidelines, patient risk stratification criteria, and previous experience, looking ahead to the chance of a cure for these disorders.
Collapse
|
68
|
Ceglia I, Dueck AC, Masiello F, Martelli F, He W, Federici G, Petricoin EF, Zeuner A, Iancu-Rubin C, Weinberg R, Hoffman R, Mascarenhas J, Migliaccio AR. Preclinical rationale for TGF-β inhibition as a therapeutic target for the treatment of myelofibrosis. Exp Hematol 2016; 44:1138-1155.e4. [PMID: 27592389 PMCID: PMC5778911 DOI: 10.1016/j.exphem.2016.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 01/20/2023]
Abstract
To assess the role of abnormal transforming growth factor-beta (TGF-β) signaling in the pathogenesis of primary myelofibrosis (PMF), the effects of the TGF-β receptor-1 kinase inhibitor SB431542 on ex vivo expansion of hematopoietic cells in cultures from patients with JAK2V617+-polycythemia vera (PV) or PMF (JAK2V617F+, CALRpQ365f+, or unknown) and from normal sources (adult blood, AB, or cord blood, CB) were compared. In cultures of normal sources, SB431542 significantly increased by 2.5-fold the number of progenitor cells generated by days 1-2 (CD34+) and 6 (colony-forming cells) (CB) and that of precursor cells, mostly immature erythroblasts, by days 14-17 (AB and CB). In cultures of JAK2V617F+-PV, SB431542 increased by twofold the numbers of progenitor cells by day 10 and had no effect on that of precursors cells by days 12-17 (∼fourfold increase in all cases). In contrast, SB431542 had no effect on the number of either progenitor or precursor cells in cultures of JAK2V617F+ and CALR pQ365fs+ PMF. These ontogenetic- and disease-specific effects were associated with variegation in the ability of SB431542 to induce CD34+ cells from AB (increased), CB (decreased), or PV and PMF (unaffected) into cycle and erythroblasts in proliferation (increased for AB and PV and unaffected for CB and PMF). Differences in expansion of erythroblasts from AB, CB, and PV were associated with differences in activation of TGF-β signaling (SHCY317, SMAD2S245/250/255, and SMAD1S/S/SMAD5S/S/SMAD8S/S) detectable in these cells by phosphoproteomic profiling. In conclusion, treatment with TGF-β receptor-1 kinase inhibitors may reactivate normal hematopoiesis in PMF patients, providing a proliferative advantage over the unresponsive malignant clone.
Collapse
Affiliation(s)
- Ilaria Ceglia
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Francesca Masiello
- Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Martelli
- Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Wu He
- Flow Cytometry Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulia Federici
- Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy; Regina Elena National Cancer Institute, Rome, Italy
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Ann Zeuner
- Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Camelia Iancu-Rubin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy.
| |
Collapse
|
69
|
Lucero HA, Patterson S, Matsuura S, Ravid K. Quantitative histological image analyses of reticulin fibers in a myelofibrotic mouse. J Biol Methods 2016; 3. [PMID: 28008415 PMCID: PMC5172452 DOI: 10.14440/jbm.2016.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone marrow (BM) reticulin fibrosis (RF), revealed by silver staining of tissue sections, is associated with myeloproliferative neoplasms, while tools for quantitative assessment of reticulin deposition throughout a femur BM are still in need. Here, we present such a method, allowing via analysis of hundreds of composite images to identify a patchy nature of RF throughout the BM during disease progression in a mouse model of myelofibrosis. To this end, initial conversion of silver stained BM color images into binary images identified two limitations: variable color, owing to polychromatic staining of reticulin fibers, and variable background in different sections of the same batch, limiting application of the color deconvolution method, and use of constant threshold, respectively. By blind coding image identities, to allow for threshold input (still within a narrow range), and using shape filtering to further eliminate background we were able to quantitate RF in myelofibrotic Gata-1low (experimental) and wild type (control) mice as a function of animal age. Color images spanning the whole femur BM were batch-analyzed using ImageJ software, aided by our two newly added macros. The results show heterogeneous RF density in different areas of the marrow of Gata-1low mice, with degrees of heterogeneity reduced upon aging. This method can be applied uniformly across laboratories in studies assessing RF remodeling induced by aging or other conditions in animal models.
Collapse
Affiliation(s)
- Hector A Lucero
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shenia Patterson
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shinobu Matsuura
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Katya Ravid
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
70
|
Sashida G, Wang C, Tomioka T, Oshima M, Aoyama K, Kanai A, Mochizuki-Kashio M, Harada H, Shimoda K, Iwama A. The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition. J Exp Med 2016; 213:1459-77. [PMID: 27401345 PMCID: PMC4986523 DOI: 10.1084/jem.20151121] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/29/2016] [Indexed: 12/12/2022] Open
Abstract
Loss of Ezh2 in the presence of activating mutation in JAK2 (JAK2V617F) cooperatively alters transcriptional programs of hematopoiesis, activates specific oncogenes, and promotes the development of myelofibrosis. EZH2 is a component of polycomb repressive complex 2 (PRC2) and functions as an H3K27 methyltransferase. Loss-of-function mutations in EZH2 are associated with poorer outcomes in patients with myeloproliferative neoplasms (MPNs), particularly those with primary myelofibrosis (MF [PMF]). To determine how EZH2 insufficiency is involved in the pathogenesis of PMF, we generated mice compound for an Ezh2 conditional deletion and activating mutation in JAK2 (JAK2V617F) present in patients with PMF. The deletion of Ezh2 in JAK2V617F mice markedly promoted the development of MF, indicating a tumor suppressor function for EZH2 in PMF. The loss of Ezh2 in JAK2V617F hematopoietic cells caused significant reductions in H3K27 trimethylation (H3K27me3) levels, resulting in an epigenetic switch to H3K27 acetylation (H3K27ac). These epigenetic switches were closely associated with the activation of PRC2 target genes including Hmga2, an oncogene implicated in the pathogenesis of PMF. The treatment of JAK2V617F/Ezh2-null mice with a bromodomain inhibitor significantly attenuated H3K27ac levels at the promoter regions of PRC2 targets and down-regulated their expression, leading to the abrogation of MF-initiating cells. Therefore, an EZH2 insufficiency not only cooperated with active JAK2 to induce MF, but also conferred an oncogenic addiction to the H3K27ac modification in MF-initiating cells that was capable of being restored by bromodomain inhibition.
Collapse
Affiliation(s)
- Goro Sashida
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan International Research Center for Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Changshan Wang
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Takahisa Tomioka
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Motohiko Oshima
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Kazumasa Aoyama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima 734-8553, Japan
| | - Makiko Mochizuki-Kashio
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Hironori Harada
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kazuya Shimoda
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
71
|
Zahr AA, Salama ME, Carreau N, Tremblay D, Verstovsek S, Mesa R, Hoffman R, Mascarenhas J. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica 2016. [PMID: 27252511 DOI: 10.3324/haematol.2015.141283.pmid:27252511;pmcid:pmc5013940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Bone marrow fibrosis is a central pathological feature and World Health Organization major diagnostic criterion of myelofibrosis. Although bone marrow fibrosis is seen in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the myelofibrosis hematopoietic stem/progenitor cell, contributing to an impaired microenvironment favoring malignant over normal hematopoiesis. Increased expression of inflammatory cytokines, lysyl oxidase, transforming growth factor-β, impaired megakaryocyte function, and aberrant JAK-STAT signaling have all been implicated in the pathogenesis of bone marrow fibrosis. A number of studies indicate that bone marrow fibrosis is an adverse prognostic variable in myeloproliferative neoplasms. However, modern myelofibrosis prognostication systems utilized in risk-adapted treatment approaches do not include bone marrow fibrosis as a prognostic variable. The specific effect on bone marrow fibrosis of JAK2 inhibition, and other rationally based therapies currently being evaluated in myelofibrosis, has yet to be fully elucidated. Hematopoietic stem cell transplantation remains the only curative therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with myelofibrosis. Here we review the pathogenesis, biological consequences, and prognostic impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting the clonal hematopoietic stem/progenitor cell, aberrant signaling pathways, fibrogenic cytokines, and the tumor microenvironment.
Collapse
Affiliation(s)
- Abdallah Abou Zahr
- Division of Hematology Oncology, Mount Sinai Beth Israel, New York, NY, USA
| | - Mohamed E Salama
- Associated Regional University Pathologists Laboratories, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Nicole Carreau
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Srdan Verstovsek
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Ruben Mesa
- Division of Hematology & Medical Oncology, Mayo Clinic Cancer Center, Scottsdale, AZ, USA
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
72
|
Zahr AA, Salama ME, Carreau N, Tremblay D, Verstovsek S, Mesa R, Hoffman R, Mascarenhas J. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica 2016; 101:660-71. [PMID: 27252511 PMCID: PMC5013940 DOI: 10.3324/haematol.2015.141283] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Bone marrow fibrosis is a central pathological feature and World Health Organization major diagnostic criterion of myelofibrosis. Although bone marrow fibrosis is seen in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the myelofibrosis hematopoietic stem/progenitor cell, contributing to an impaired microenvironment favoring malignant over normal hematopoiesis. Increased expression of inflammatory cytokines, lysyl oxidase, transforming growth factor-β, impaired megakaryocyte function, and aberrant JAK-STAT signaling have all been implicated in the pathogenesis of bone marrow fibrosis. A number of studies indicate that bone marrow fibrosis is an adverse prognostic variable in myeloproliferative neoplasms. However, modern myelofibrosis prognostication systems utilized in risk-adapted treatment approaches do not include bone marrow fibrosis as a prognostic variable. The specific effect on bone marrow fibrosis of JAK2 inhibition, and other rationally based therapies currently being evaluated in myelofibrosis, has yet to be fully elucidated. Hematopoietic stem cell transplantation remains the only curative therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with myelofibrosis. Here we review the pathogenesis, biological consequences, and prognostic impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting the clonal hematopoietic stem/progenitor cell, aberrant signaling pathways, fibrogenic cytokines, and the tumor microenvironment.
Collapse
Affiliation(s)
- Abdallah Abou Zahr
- Division of Hematology Oncology, Mount Sinai Beth Israel, New York, NY, USA
| | - Mohamed E Salama
- Associated Regional University Pathologists Laboratories, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Nicole Carreau
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Srdan Verstovsek
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Ruben Mesa
- Division of Hematology & Medical Oncology, Mayo Clinic Cancer Center, Scottsdale, AZ, USA
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
73
|
Meinders M, Hoogenboezem M, Scheenstra MR, De Cuyper IM, Papadopoulos P, Németh T, Mócsai A, van den Berg TK, Kuijpers TW, Gutiérrez L. Repercussion of Megakaryocyte-Specific Gata1 Loss on Megakaryopoiesis and the Hematopoietic Precursor Compartment. PLoS One 2016; 11:e0154342. [PMID: 27152938 PMCID: PMC4859556 DOI: 10.1371/journal.pone.0154342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cKOMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches.
Collapse
Affiliation(s)
- Marjolein Meinders
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Mark Hoogenboezem
- Dept. of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, the Netherlands
| | - Maaike R. Scheenstra
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Iris M. De Cuyper
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Petros Papadopoulos
- Dept. of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Tamás Németh
- Dept. of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE “Lendület” Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Dept. of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE “Lendület” Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Timo K. van den Berg
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Taco W. Kuijpers
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
- Emma Children’s Hospital, Academic Medical Centre (AMC), UvA, Amsterdam, the Netherlands
| | - Laura Gutiérrez
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
- Dept. of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- * E-mail:
| |
Collapse
|
74
|
Loss of Ezh2 cooperates with Jak2V617F in the development of myelofibrosis in a mouse model of myeloproliferative neoplasm. Blood 2016; 127:3410-23. [PMID: 27081096 DOI: 10.1182/blood-2015-11-679431] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/01/2016] [Indexed: 01/08/2023] Open
Abstract
An activating JAK2V617F mutation has been found in ∼50% patients with myelofibrosis (MF). Inactivating mutations in histone methyltransferase enhancer of zeste homolog 2 (EZH2) also have been observed in patients with MF. Interestingly, inactivating EZH2 mutations are often associated with JAK2V617F mutation in MF, although their contributions in the pathogenesis of MF remain elusive. To determine the effects of concomitant loss of EZH2 and JAK2V617F mutation in hematopoiesis, we generated Ezh2-deficient Jak2V617F-expressing mice. Whereas expression of Jak2V617F alone induced a polycythemia vera-like disease, concomitant loss of Ezh2 significantly reduced the red blood cell and hematocrit parameters but increased the platelet counts in Jak2V617F knock-in mice. Flow cytometric analysis showed impairment of erythroid differentiation and expansion of megakaryocytic precursors in Ezh2-deficient Jak2V617F mice. Moreover, loss of Ezh2 enhanced the repopulation capacity of Jak2V617F-expressing hematopoietic stem cells. Histopathologic analysis revealed extensive fibrosis in the bone marrow (BM) and spleen of Ezh2-deleted Jak2V617F mice. Transplantation of BM from Ezh2-deleted Jak2V617F mice into wild-type animals resulted in even faster progression to MF. Gene expression profiling and chromatin immunoprecipitation sequence analysis revealed that S100a8, S100a9, Ifi27l2a, and Hmga2 were transcriptionally derepressed, and the H3K27me3 levels in these gene promoters were significantly reduced on Ezh2 deletion in hematopoietic progenitors of Jak2V617F mice. Furthermore, overexpression of S100a8, S100a9, Ifi27l2a, or Hmga2 significantly increased megakaryocytic colonies in the BM of Jak2V617F mice, indicating a role for these Ezh2 target genes in altered megakaryopoiesis involved in MF. Overall, our results suggest that loss of Ezh2 cooperates with Jak2V617F in the development of MF in Jak2V617F-expressing mice.
Collapse
|
75
|
TGF-β Inhibition Rescues Hematopoietic Stem Cell Defects and Bone Marrow Failure in Fanconi Anemia. Cell Stem Cell 2016; 18:668-81. [PMID: 27053300 DOI: 10.1016/j.stem.2016.03.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/10/2015] [Accepted: 03/03/2016] [Indexed: 11/22/2022]
Abstract
Fanconi anemia (FA) is an inherited DNA repair disorder characterized by progressive bone marrow failure (BMF) from hematopoietic stem and progenitor cell (HSPC) attrition. A greater understanding of the pathogenesis of BMF could improve the therapeutic options for FA patients. Using a genome-wide shRNA screen in human FA fibroblasts, we identify transforming growth factor-β (TGF-β) pathway-mediated growth suppression as a cause of BMF in FA. Blocking the TGF-β pathway improves the survival of FA cells and rescues the proliferative and functional defects of HSPCs derived from FA mice and FA patients. Inhibition of TGF-β signaling in FA HSPCs results in elevated homologous recombination (HR) repair with a concomitant decrease in non-homologous end-joining (NHEJ), accounting for the improvement in cellular growth. Together, our results suggest that elevated TGF-β signaling contributes to BMF in FA by impairing HSPC function and may be a potential therapeutic target for the treatment of FA.
Collapse
|
76
|
Patel AB, Vellore NA, Deininger MW. New Strategies in Myeloproliferative Neoplasms: The Evolving Genetic and Therapeutic Landscape. Clin Cancer Res 2016; 22:1037-47. [PMID: 26933174 PMCID: PMC4826348 DOI: 10.1158/1078-0432.ccr-15-0905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The classical BCR-ABL1-negative myeloproliferative neoplasms (MPN) include essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF). Although these clonal disorders share certain clinical and genetic features, MF in particular is distinct for its complex mutational landscape, severe disease phenotype, and poor prognosis. The genetic complexity inherent to MF has made this disease extremely challenging to treat. Pharmacologic JAK inhibition has proven to be a transformative therapy in MPNs, alleviating symptom burden and improving survival, but has been hampered by off-target toxicities and, as monotherapy, has shown limited effects on mutant allele burden. In this review, we discuss the genetic heterogeneity contributing to the pathogenesis of MPNs, focusing on novel driver and epigenetic mutations and how they relate to combination therapeutic strategies. We discuss results from ongoing studies of new JAK inhibitors and report on new drugs and drug combinations that have demonstrated success in early preclinical and clinical trials, including type II JAK inhibitors, antifibrotic agents, and telomerase inhibitors.
Collapse
Affiliation(s)
- Ami B. Patel
- University of Utah Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112-5550
| | - Nadeem A. Vellore
- University of Utah Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112-5550
| | - Michael W. Deininger
- Chief of Hematology, University of Utah Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112-5550
| |
Collapse
|
77
|
Agarwal A, Morrone K, Bartenstein M, Zhao ZJ, Verma A, Goel S. Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem Cell Investig 2016; 3:5. [PMID: 27358897 DOI: 10.3978/j.issn.2306-9759.2016.02.03] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Primary myelofibrosis (PMF) is a Philadelphia chromosome negative myeloproliferative neoplasm (MPN) with adverse prognosis and is associated with bone marrow fibrosis and extramedullary hematopoiesis. Even though the discovery of the Janus kinase 2 (JAK2), thrombopoietin receptor (MPL) and calreticulin (CALR) mutations have brought new insights into the complex pathogenesis of MPNs, the etiology of fibrosis is not well understood. Furthermore, since JAK2 inhibitors do not lead to reversal of fibrosis further understanding of the biology of fibrotic process is needed for future therapeutic discovery. Transforming growth factor beta (TGF-β) is implicated as an important cytokine in pathogenesis of bone marrow fibrosis. Various mouse models have been developed and have established the role of TGF-β in the pathogenesis of fibrosis. Understanding the molecular alterations that lead to TGF-β mediated effects on bone marrow microenvironment can uncover newer therapeutic targets against myelofibrosis. Inhibition of the TGF-β pathway in conjunction with other therapies might prove useful in the reversal of bone marrow fibrosis in PMF.
Collapse
Affiliation(s)
- Archana Agarwal
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kerry Morrone
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matthias Bartenstein
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zhizhuang Joe Zhao
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amit Verma
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Swati Goel
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
78
|
Zingariello M, Ruggeri A, Martelli F, Marra M, Sancillo L, Ceglia I, Rana RA, Migliaccio AR. A novel interaction between megakaryocytes and activated fibrocytes increases TGF-β bioavailability in the Gata1(low) mouse model of myelofibrosis. AMERICAN JOURNAL OF BLOOD RESEARCH 2015; 5:34-61. [PMID: 27069753 PMCID: PMC4769347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Despite numerous circumstantial evidences, the pathogenic role of TGF-β in primary myelofibrosis (PMF), the most severe of the Philadelphia-negative myeloproliferative neoplasms, is still unclear because of the modest (2-fold) increases in its plasma levels observed in PMF patients and in the Gata1(low) mouse model. Whether myelofibrosis is associated with increased bioavailability of TGF-β bound to fibrotic fibres is unknown. Transmission electron-microscopy (TEM) observations identified that spleen from PMF patients and Gata1(low) mice contained megakaryocytes with abnormally high levels of TGF-β and collagen fibres embedded in their cytoplasm. Additional immuno-TEM observations of spleen from Gata1(low) mice revealed the presence of numerous activated fibrocytes establishing with their protrusions a novel cellular interaction, defined as peripolesis, with megakaryocytes. These protrusions infiltrated the megakaryocyte cytoplasm releasing collagen that was eventually detected in its mature polymerized form. Megakaryocytes, engulfed with mature collagen fibres, acquired the morphology of para-apoptotic cells and, in the most advanced cases, were recognized as polylobated heterochromatic nuclei surrounded by collagen fibres strictly associated with TGF-β. These areas contained concentrations of TGF-β-gold particles ~1000-fold greater than normal and numerous myofibroblasts, an indication that TGF-β was bioactive. Loss-of-function studies indicated that peripolesis between megakaryocytes and fibrocytes required both TGF-β, possibly for inducing fibrocyte activation, and P-selectin, possibly for mediating interaction between the two cell types. Loss-of-function of TGF-β and P-selectin also prevented fibrosis. These observations identify that myelofibrosis is associated with pathological increases of TGF-β bioavailability and suggest a novel megakaryocyte-mediated mechanism that may increase TGF-β bioavailability in chronic inflammation.
Collapse
Affiliation(s)
- Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, Campus Bio-Medico University RomeItaly
| | - Alessandra Ruggeri
- Biomedical and Neuromotory Sciences, Alma Mater UniversityBologna, Italy
| | - Fabrizio Martelli
- Hematology, Oncology and Molecular Medicine and Department of Cell Biology and Neuroscience, Istituto Superiore di SanitàRome, Italy
| | - Manuela Marra
- Hematology, Oncology and Molecular Medicine and Department of Cell Biology and Neuroscience, Istituto Superiore di SanitàRome, Italy
| | - Laura Sancillo
- Medicine and Aging Science, University G. D’Annunzio of Chieti-PescaraItaly
| | - Ilaria Ceglia
- Tisch Cancer Institute, Ichan School of Medicine at Mount SinaiNew York, NY, USA
| | - Rosa Alba Rana
- Medicine and Aging Science, University G. D’Annunzio of Chieti-PescaraItaly
| | - Anna Rita Migliaccio
- Biomedical and Neuromotory Sciences, Alma Mater UniversityBologna, Italy
- Tisch Cancer Institute, Ichan School of Medicine at Mount SinaiNew York, NY, USA
| |
Collapse
|
79
|
Spangrude GJ, Lewandowski D, Martelli F, Marra M, Zingariello M, Sancillo L, Rana RA, Migliaccio AR. P-Selectin Sustains Extramedullary Hematopoiesis in the Gata1 low Model of Myelofibrosis. Stem Cells 2015; 34:67-82. [PMID: 26439305 DOI: 10.1002/stem.2229] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/07/2015] [Accepted: 08/28/2015] [Indexed: 01/03/2023]
Abstract
Splenomegaly is a major manifestation of primary myelofibrosis (PMF) contributing to clinical symptoms and hematologic abnormalities. The spleen from PMF patients contains increased numbers of hematopoietic stem cells (HSC) and megakaryocytes (MK). These MK express high levels of P-selectin (P-sel) that, by triggering neutrophil emperipolesis, may cause TGF-β release and disease progression. This hypothesis was tested by deleting the P-sel gene in the myelofibrosis mouse model carrying the hypomorphic Gata1(low) mutation that induces megakaryocyte abnormalities that recapitulate those observed in PMF. P-sel(null) Gata1(low) mice survived splenectomy and lived 3 months longer than P-sel(WT) Gata1(low) littermates and expressed limited fibrosis and osteosclerosis in the marrow or splenomegaly. Furthermore, deletion of P-sel disrupted megakaryocyte/neutrophil interactions in spleen, reduced TGF-β content, and corrected the HSC distribution that in Gata1(low) mice, as in PMF patients, is abnormally expanded in spleen. Conversely, pharmacological inhibition of TGF-β reduced P-sel expression in MK and corrected HSC distribution. Spleens, but not marrow, of Gata1(low) mice contained numerous cKIT(pos) activated fibrocytes, probably of dendritic cell origin, whose membrane protrusions interacted with MK establishing niches hosting immature cKIT(pos) hematopoietic cells. These activated fibrocytes were not detected in spleens from P-sel(null) Gata1(low) or TGF-β-inhibited Gata1(low) littermates and were observed in spleen, but not in marrow, from PMF patients. Therefore, in Gata1(low) mice, and possibly in PMF, abnormal P-sel expression in MK may mediate the pathological cell interactions that increase TGF-β content in MK and favor establishment of a microenvironment that supports myelofibrosis-related HSC in spleen.
Collapse
Affiliation(s)
- Gerald J Spangrude
- Department of Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, Utah, USA
| | | | - Fabrizio Martelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità
| | - Manuela Marra
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità
| | | | - Laura Sancillo
- Istituto Genetica Medica, Centro Nazionale Ricerche, and Medicine and Aging Sciences, Section of Human Momorphology, University G. D'Annunzio, Chieti, Italy
| | - Rosa Alba Rana
- Istituto Genetica Medica, Centro Nazionale Ricerche, and Medicine and Aging Sciences, Section of Human Momorphology, University G. D'Annunzio, Chieti, Italy
| | - Anna Rita Migliaccio
- Department of Biomedical Sciences, Alma Mater University, Bologna, Italy.,Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
80
|
Tibes R, Al-Kali A, Oliver GR, Delman DH, Hansen N, Bhagavatula K, Mohan J, Rakhshan F, Wood T, Foran JM, Mesa RA, Bogenberger JM. The Hedgehog pathway as targetable vulnerability with 5-azacytidine in myelodysplastic syndrome and acute myeloid leukemia. J Hematol Oncol 2015; 8:114. [PMID: 26483188 PMCID: PMC4615363 DOI: 10.1186/s13045-015-0211-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/28/2015] [Indexed: 02/04/2023] Open
Abstract
Background Therapy and outcome for elderly acute myeloid leukemia (AML) patients has not improved for many years. Similarly, there remains a clinical need to improve response rates in advanced myelodysplastic syndrome (MDS) patients treated with hypomethylating agents, and few combination regimens have shown clinical benefit. We conducted a 5-azacytidine (5-Aza) RNA-interference (RNAi) sensitizer screen to identify gene targets within the commonly deleted regions (CDRs) of chromosomes 5 and 7, whose silencing enhances the activity of 5-Aza. Methods and results An RNAi silencing screen of 270 genes from the CDRs of chromosomes 5 and 7 was performed in combination with 5-Aza treatment in four AML cell lines (TF-1, THP-1, MDS-L, and HEL). Several genes within the hedgehog pathway (HhP), specifically SHH, SMO, and GLI3, were identified as 5-Aza sensitizing hits. The smoothened (SMO) inhibitors LDE225 (erismodegib) and GDC0449 (vismodegib) showed moderate single-agent activity in AML cell lines. Further studies with erismodegib in combination with 5-Aza demonstrated synergistic activity with combination index (CI) values of 0.48 to 0.71 in seven AML lines. Clonogenic growth of primary patient samples was inhibited to a greater extent in the combination than with single-agent erismodegib or 5-Aza in 55 % (6 of 11) primary patient samples examined. There was no association of the 5-Aza/erismodegib sensitization potential to clinical-cytogenetic features or common myeloid mutations. Activation of the HhP, as determined by greater expression of HhP-related genes, showed less responsiveness to single-agent SMO inhibition, while synergy between both agents was similar regardless of HhP gene expression. In vitro experiments suggested that concurrent dosing showed stronger synergy than sequential dosing. Conclusions Inhibition of the HhP with SMO inhibitors in combination with the hypomethylating agent 5-Aza demonstrates synergy in vitro and inhibits long-term repopulation capacity ex vivo in AML and MDS. A clinical trial combining 5-Aza with LDE225 (erismodegib) in MDS and AML is ongoing based on these results as well as additional publications suggesting a role for HhP signaling in myeloid disease. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0211-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raoul Tibes
- Division of Hematology and Medical Oncology, Mayo Clinic/Mayo Clinic Cancer Center, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| | - Aref Al-Kali
- Mayo Clinic's Campus in Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Gavin R Oliver
- Mayo Clinic's Campus in Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Devora H Delman
- Division of Hematology and Medical Oncology, Mayo Clinic/Mayo Clinic Cancer Center, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| | - Nanna Hansen
- Division of Hematology and Medical Oncology, Mayo Clinic/Mayo Clinic Cancer Center, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| | - Keerthi Bhagavatula
- Division of Hematology and Medical Oncology, Mayo Clinic/Mayo Clinic Cancer Center, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| | - Jayaram Mohan
- Washington University St. Louis, St. Louis, MO, 63130-4899, USA.
| | - Fariborz Rakhshan
- Mayo Clinic's Campus in Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Thomas Wood
- Mayo Clinic's Campus in Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| | - James M Foran
- Mayo Clinic's Campus in Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Ruben A Mesa
- Division of Hematology and Medical Oncology, Mayo Clinic/Mayo Clinic Cancer Center, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| | - James M Bogenberger
- Division of Hematology and Medical Oncology, Mayo Clinic/Mayo Clinic Cancer Center, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
81
|
Jutzi JS, Pahl HL. The Hen or the Egg: Inflammatory Aspects of Murine MPN Models. Mediators Inflamm 2015; 2015:101987. [PMID: 26543325 PMCID: PMC4620236 DOI: 10.1155/2015/101987] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/16/2015] [Indexed: 12/15/2022] Open
Abstract
It has been known for some time that solid tumors, especially gastrointestinal tumors, can arise on the basis of chronic inflammation. However, the role of inflammation in the genesis of hematological malignancies has not been extensively studied. Recent evidence clearly shows that changes in the bone marrow niche can suffice to induce myeloid diseases. Nonetheless, while it has been demonstrated that myeloproliferative neoplasms (MPN) are associated with a proinflammatory state, it is not clear whether inflammatory processes contribute to the induction or maintenance of MPN. More provocatively stated: which comes first, the hen or the egg, inflammation or MPN? In other words, can chronic inflammation itself trigger an MPN? In this review, we will describe the evidence supporting a role for inflammation in initiating and promoting MPN development. Furthermore, we will compare and contrast the data obtained in gastrointestinal tumors with observations in MPN patients and models, pointing out the opportunities provided by novel murine MPN models to address fundamental questions regarding the role of inflammatory stimuli in the molecular pathogenesis of MPN.
Collapse
Affiliation(s)
- Jonas S Jutzi
- Division of Molecular Hematology, University Hospital Freiburg, Center for Clinical Research, Breisacher Straße 66, 79106 Freiburg, Germany ; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19A, 79104 Freiburg, Germany ; Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Heike L Pahl
- Division of Molecular Hematology, University Hospital Freiburg, Center for Clinical Research, Breisacher Straße 66, 79106 Freiburg, Germany
| |
Collapse
|
82
|
Ge J, Apicella M, Mills JA, Garçon L, French DL, Weiss MJ, Bessler M, Mason PJ. Dysregulation of the Transforming Growth Factor β Pathway in Induced Pluripotent Stem Cells Generated from Patients with Diamond Blackfan Anemia. PLoS One 2015; 10:e0134878. [PMID: 26258650 PMCID: PMC4530889 DOI: 10.1371/journal.pone.0134878] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022] Open
Abstract
Diamond Blackfan Anemia (DBA) is an inherited bone marrow failure syndrome with clinical features of red cell aplasia and variable developmental abnormalities. Most affected patients have heterozygous loss of function mutations in ribosomal protein genes but the pathogenic mechanism is still unknown. We generated induced pluripotent stem cells from DBA patients carrying RPS19 or RPL5 mutations. Transcriptome analysis revealed the striking dysregulation of the transforming growth factor β (TGFβ) signaling pathway in DBA lines. Expression of TGFβ target genes, such as TGFBI, BAMBI, COL3A1 and SERPINE1 was significantly increased in the DBA iPSCs. We quantified intermediates in canonical and non-canonical TGFβ pathways and observed a significant increase in the levels of the non-canonical pathway mediator p-JNK in the DBA iPSCs. Moreover, when the mutant cells were corrected by ectopic expression of WT RPS19 or RPL5, levels of p-JNK returned to normal. Surprisingly, nuclear levels of SMAD4, a mediator of canonical TGFβ signaling, were decreased in DBA cells due to increased proteolytic turnover. We also observed the up-regulation of TGFβ1R, TGFβ2, CDKN1A and SERPINE1 mRNA, and the significant decrease of GATA1 mRNA in the primitive multilineage progenitors. In summary our observations identify for the first time a dysregulation of the TGFβ pathway in the pathobiology of DBA.
Collapse
Affiliation(s)
- Jingping Ge
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Marisa Apicella
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jason A. Mills
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Loïc Garçon
- UPMC University Paris 06, UMR_S938, and Assistance Publique- Hôpitaux de Paris, Paris, France
| | - Deborah L. French
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Monica Bessler
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Philip J. Mason
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
83
|
Khan AA, Harrison CN, McLornan DP. Targeting of the Hedgehog pathway in myeloid malignancies: still a worthy chase? Br J Haematol 2015; 170:323-35. [PMID: 25892100 DOI: 10.1111/bjh.13426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deregulated Hedgehog (Hh) signalling activity may be associated with a broad range of cancer types and hence has become an attractive target for therapeutic intervention. Although initial haematological interest focused on the therapeutic targeting of this pathway in chronic myeloid leukaemia), small molecule inhibitors targeting the Hh pathway are now being tested in a range of other myeloid disorders, including myelofibrosis, myelodysplasia and acute myeloid leukaemia. In this review we will evaluate the rationale for targeting of the Hh pathway in myeloid diseases and discuss the novel agents that have entered the clinical arena. We will discuss pre-clinical models, emerging clinical trial data, and suggest how these targeted therapies may address current unmet medical needs. Finally, we will explore potential limitations of these therapies due to the emergence of secondary resistance mechanisms and speculate on future developments within this arena.
Collapse
Affiliation(s)
- Alesia A Khan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Donal P McLornan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK.,Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
84
|
Malara A, Abbonante V, Di Buduo CA, Tozzi L, Currao M, Balduini A. The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci 2015; 72:1517-36. [PMID: 25572292 PMCID: PMC4369169 DOI: 10.1007/s00018-014-1813-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
Megakaryocytes are rare cells found in the bone marrow, responsible for the everyday production and release of millions of platelets into the bloodstream. Since the discovery and cloning, in 1994, of their principal humoral factor, thrombopoietin, and its receptor c-Mpl, many efforts have been directed to define the mechanisms underlying an efficient platelet production. However, more recently different studies have pointed out new roles for megakaryocytes as regulators of bone marrow homeostasis and physiology. In this review we discuss the interaction and the reciprocal regulation of megakaryocytes with the different cellular and extracellular components of the bone marrow environment. Finally, we provide evidence that these processes may concur to the reconstitution of the bone marrow environment after injury and their deregulation may lead to the development of a series of inherited or acquired pathologies.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Christian A. Di Buduo
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Lorenzo Tozzi
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Manuela Currao
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
85
|
Abstract
The stem cell paradigm was first demonstrated in hematopoietic stem cells. Whilst classically it was cytokines and chemokines which were believed to control stem cell fate, more recently it has become apparent that the stem cell niche and highly conserved embryonic pathways play a key role in governing stem cell behavior. One of these pathways, the hedgehog signaling pathway, found in all organisms, is vitally important in embryogenesis, performing the function of patterning through early stages of development, and in adulthood, through the control of somatic stem cell numbers. In addition to these roles in health however, it has been found to be deregulated in a number of solid and hematological malignancies, components of the hedgehog pathway being associated with a poor prognosis. Further, these components represent viable therapeutic targets, with inhibition from a drug development perspective being readily achieved, making the hedgehog pathway an attractive potential therapeutic target. However, although the concept of cancer stem cells is well established, how these cells arise and the factors which influence their behavior are not yet fully understood. The role of the hedgehog signaling pathway and its potential as a therapeutic target in hematological malignancies is the focus of this review.
Collapse
Affiliation(s)
- Victoria Campbell
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterninary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterninary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
86
|
Ciaffoni F, Cassella E, Varricchio L, Massa M, Barosi G, Migliaccio AR. Activation of non-canonical TGF-β1 signaling indicates an autoimmune mechanism for bone marrow fibrosis in primary myelofibrosis. Blood Cells Mol Dis 2015; 54:234-41. [PMID: 25703685 DOI: 10.1016/j.bcmd.2014.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/31/2014] [Indexed: 11/25/2022]
Abstract
Primary myelofibrosis (PMF) is characterized by megakaryocyte hyperplasia, dysplasia and death with progressive reticulin/collagen fibrosis in marrow and hematopoiesis in extramedullary sites. The mechanism of fibrosis was investigated by comparing TGF-β1 signaling of marrow and spleen of patients with PMF and of non-diseased individuals. Expression of 39 (23 up-regulated and 16 down-regulated) and 38 (8 up-regulated and 30 down-regulated) TGF-β1 signaling genes was altered in the marrow and spleen of PMF patients, respectively. Abnormalities included genes of TGF-β1 signaling, cell cycling and abnormal in chronic myeloid leukemia (EVI1 and p21(CIP)) (both marrow and spleen) and Hedgehog (marrow only) and p53 (spleen only) signaling. Pathway analyses of these alterations predict an increased osteoblast differentiation, ineffective hematopoiesis and fibrosis driven by non-canonical TGF-β1 signaling in marrow and increased proliferation and defective DNA repair in spleen. Since activation of non-canonical TGF-β1 signaling is associated with fibrosis in autoimmune diseases, the hypothesis that fibrosis in PMF results from an autoimmune process triggered by dead megakaryocytes was tested by determining that PMF patients expressed plasma levels of mitochondrial DNA and anti-mitochondrial antibodies greater than normal controls. These data identify autoimmunity as a possible cause of marrow fibrosis in PMF.
Collapse
Affiliation(s)
- Fiorella Ciaffoni
- Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Cassella
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA
| | - Lilian Varricchio
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA
| | - Margherita Massa
- Biotechnology Research Area, Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Giovanni Barosi
- Biotechnology Research Area, Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy; Myeloproliferative Disease Research Consortium, New York, NY, USA
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA; Myeloproliferative Disease Research Consortium, New York, NY, USA; Department of Biomedical Sciences, Alma Mater University, Bologna, Italy.
| |
Collapse
|
87
|
Mascarenhas J. Looking forward: novel therapeutic approaches in chronic and advanced phases of myelofibrosis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2015; 2015:329-39. [PMID: 26637740 DOI: 10.1182/asheducation-2015.1.329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Myelofibrosis (MF) is complex at the pathobiologic level and heterogeneous at the clinical level. The advances in molecular characterization of MF provide important insight into the mechanisms driving this chronic myeloid malignancy, refine risk stratification, offer novel therapeutic targets, and serve to measure therapeutic response. Although JAK2 inhibition has been the focus of laboratory and clinical efforts over the last decade, current experimental therapeutic approaches have broadened to include inhibitors of key alternative signaling pathways, epigenetic modulators, anti-fibrotics, and immunotherapies. Based on compelling preclinical rationale, a number of JAK2 inhibitor based combination therapies are now actively being evaluated in the clinic with the goal of disease course modification. The role and timing of hematopoietic stem cell transplant (HSCT) for MF has been challenged with the availability of commercial ruxolitinib and the plethora of experimental treatment options that exist. Integration of preconditioning JAK2 inhibition, reduced intensity conditioning regimens, and alternative donor sources are all being explored in an attempt to optimize this potentially curative modality. This review will summarize modern MF risk stratification, current clinical research approaches to chronic and advance phase MF focusing on novel agents alone and in combination, and update the reader on new directions in HSCT.
Collapse
Affiliation(s)
- John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
88
|
Cong Y, Ru JY, Bao NR, Guo T, Zhao JN. A single nucleotide polymorphism in the TGF-β1 gene (rs1982073 C>T) may contribute to increased risks of bone fracture, osteoporosis, and osteoarthritis: a meta-analysis. Clin Rheumatol 2014; 35:973-85. [PMID: 25501632 DOI: 10.1007/s10067-014-2840-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 01/26/2023]
Abstract
Genetic factors have been shown to be of great importance for the pathogenesis of bone diseases, such as fracture, osteoporosis (OP), and osteoarthritis (OA). However, published studies on the correlations of transforming growth factor-β1 (TGF-β1) gene polymorphisms with bone diseases have been hampered by small sample sizes or inconclusive findings. We hence aimed at examining the relationships between a single nucleotide polymorphism in the TGF-β1 gene (rs1982073 C>T) with bone fracture, OP, and OA risks in this meta-analysis. A systematic electronic search of literature was conducted to identify all published studies in English or Chinese on the association between the TGF-β1 gene and fracture, OP, or OA risks. Data were abstracted independently by two reviewers. To investigate the strength of this relationship, crude odds ratios with 95 % confidence intervals were used. An updated meta-analysis based on nine independent case-control studies were chosen (patients with fracture, OP, or OA = 1569; healthy controls = 1638). Results identified a higher frequency of rs1982073 C>T in patients with fracture, OP, or OA than in healthy controls. Ethnicity and genotyping method-stratified analysis under both models implied that the rs1982073 C>T polymorphism was positively correlated with the risk of fracture, OP, and OA among Asians under detection via the non-PCR-RFLP method. Disease-stratified results yielded that rs1982073 C>T may increase the risk of fracture, OP, and OA under the allele model, but was only significantly related to OP under the dominant model. According to the sample size-stratified analysis, subjects with the rs1982073 C>T polymorphism in the allele model were more likely to develop the three bone diseases in both the small and large sample size groups, and only in the large sample size under the dominant model. Our findings show that TGF-β1 rs1982073 C>T has a modest effect in increasing susceptibility to bone fracture, OP, and OA.
Collapse
Affiliation(s)
- Yu Cong
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road, No. 305, Nanjing, 210002, People's Republic of China
| | - Jiang-Ying Ru
- Department of Orthopedics, Jiangsu Provincial Corps Hospital of the Chinese People' Armed Police Force, Yangzhou, 225003, People's Republic of China
| | - Ni-Rong Bao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road, No. 305, Nanjing, 210002, People's Republic of China
| | - Ting Guo
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road, No. 305, Nanjing, 210002, People's Republic of China
| | - Jian-Ning Zhao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road, No. 305, Nanjing, 210002, People's Republic of China.
| |
Collapse
|
89
|
Bartalucci N, Bogani C, Vannucchi AM. Preclinical models for drug selection in myeloproliferative neoplasms. Curr Hematol Malig Rep 2014; 8:317-24. [PMID: 24146202 DOI: 10.1007/s11899-013-0182-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The discovery that an abnormally activated JAK-STAT signaling pathway is central to the pathogenesis of myeloproliferative neoplasms has promoted the clinical development of small-molecule JAK2 inhibitors. These agents have shown remarkable efficacy in disease control, but do not induce molecular remission; on the other hand, interferon holds the promise to target the putative hematopoietic progenitor cell initiating the disease. The presence of additional molecular abnormalities indicates a high molecular complexity of myeloproliferative neoplasms, and the need for simultaneously targeting different targets. Several drugs are currently under study as single agents and in combination. This review briefly describes the several in vitro and in vivo models of myeloproliferative neoplasms that are being used as preclinical models for drug development.
Collapse
Affiliation(s)
- Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | |
Collapse
|
90
|
Tibes R, Mesa RA. Targeting hedgehog signaling in myelofibrosis and other hematologic malignancies. J Hematol Oncol 2014; 7:18. [PMID: 24598114 PMCID: PMC3975838 DOI: 10.1186/1756-8722-7-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/20/2014] [Indexed: 01/05/2023] Open
Abstract
Treatment of myelofibrosis (MF), a BCR-ABL-negative myeloproliferative neoplasm, is challenging. The only current potentially curative option, allogeneic hematopoietic stem cell transplant, is recommended for few patients. The remaining patients are treated with palliative therapies to manage MF-related anemia and splenomegaly. Identification of a mutation in the Janus kinase 2 (JAK2) gene (JAK2 V617F) in more than half of all patients with MF has prompted the discovery and clinical development of inhibitors that target JAK2. Although treatment with JAK2 inhibitors has been shown to improve symptom response and quality of life in patients with MF, these drugs do not alter the underlying disease; therefore, novel therapies are needed. The hedgehog (Hh) signaling pathway has been shown to play a role in normal hematopoiesis and in the tumorigenesis of hematologic malignancies. Moreover, inhibitors of the Hh pathway have been shown to inhibit growth and self-renewal capacity in preclinical models of MF. In a mouse model of MF, combined inhibition of the Hh and JAK pathways reduced JAK2 mutant allele burden, reduced bone marrow fibrosis, and reduced white blood cell and platelet counts. Preliminary clinical data also suggest that inhibition of the Hh pathway, alone or in combination with JAK2 inhibition, may enable disease modification in patients with MF. Future studies, including one combining the Hh pathway inhibitor sonidegib and the JAK2 inhibitor ruxolitinib, are underway in patients with MF and will inform whether this combination approach can lead to true disease modification.
Collapse
Affiliation(s)
- Raoul Tibes
- Mayo Clinic Cancer Center, NCI Designated Comprehensive Cancer Center, 13400 E. Shea Blvd, Scottsdale, AZ 85259, USA
| | - Ruben A Mesa
- Mayo Clinic Cancer Center, NCI Designated Comprehensive Cancer Center, 13400 E. Shea Blvd, Scottsdale, AZ 85259, USA
| |
Collapse
|
91
|
|
92
|
Abstract
Abstract
Myelofibrosis (MF), including primary MF, postpolycythemia vera MF, and postessential thrombocythemia MF, is a clonal stem cell disorder characterized by BM fibrosis, extramedullary hematopoiesis, and a variable propensity to transform into acute leukemia. Allogeneic stem cell transplantation is the only known cure for MF, but its applicability is limited by the advanced age of most patients and by comorbid conditions. In the past decade, there has been an explosion of information on the molecular-genetic features associated with these diseases, fueled recently by the discovery of the JAK2V617F mutation. The development of JAK inhibitors has represented a significant therapeutic advance for these diseases; however, their use in MF has not yet been associated with eradication or a significant suppression of the malignant clone. In this era, much remains to be understood about MF, but it is likely that the identification of key pathogenetic drivers of the disease, coupled with the availability of novel molecularly targeted agents, will result in the discovery of new agents that significantly alter the natural history of the disease. This review focuses on recent and ongoing efforts in the development of novel agents in MF that go beyond the field of JAK inhibitors.
Collapse
|