51
|
Slaney AM, Dijke IE, Jeyakanthan M, Li C, Zou L, Plaza-Alexander P, Meloncelli PJ, Bau JA, Allan LL, Lowary TL, West LJ, Cairo CW, Buriak JM. Conjugation of A and B Blood Group Structures to Silica Microparticles for the Detection of Antigen-Specific B Cells. Bioconjug Chem 2016; 27:705-15. [PMID: 26816334 DOI: 10.1021/acs.bioconjchem.5b00672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silica microparticles were functionalized with A and B blood group carbohydrate antigens (A type I, A type II, B type I, and B type II) to enable the detection and monitoring of ABO antigen-specific B cells. Microparticles were prepared via the Stöber synthesis, labeled with an Alexafluor fluorescent dye, and characterized via TEM and fluorescence microscopy. The silica microparticles were functionalized with (3-aminopropyl)trimethoxysilane (APTMS), followed by the use of an established fluorenylmethyloxycarbonyl (Fmoc)-protected PEG-based linker. The terminal Fmoc moiety of the PEG-based linker was then deprotected, yielding free amino groups, to which the A and B antigens were coupled. The carbohydrate antigens were synthesized with a p-nitrophenol ester to enable conjugation to the functionalized silica microparticles via an amide bond. The number of free amine groups available for coupling for a given mass of PEG-functionalized silica microparticles was quantified via reaction with Fmoc-glycine. The antigen-functionalized microparticles were then evaluated for their specificity in binding to A and B antigen-reactive B-cells via flow cytometry, and for blocking of naturally occurring antibodies in human serum. Selective binding of the functionalized microparticles to blood group-reactive B cells was observed by flow cytometry and fluorescence microscopy. The modular approach outlined here is applicable to the preparation of silica microparticles containing any carbohydrate antigen and alternative fluorophores or labels. This approach therefore comprises a novel, general platform for screening B cell populations for binding to carbohydrate antigens, including, in this case, the human A and B blood group antigens.
Collapse
Affiliation(s)
- Anne M Slaney
- National Institute for Nanotechnology (NINT), National Research Council , 11421 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2M9
| | | | | | | | | | | | | | - Jeremy A Bau
- National Institute for Nanotechnology (NINT), National Research Council , 11421 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2M9
| | - Lenka L Allan
- Pathology and Laboratory Medicine, Faculty of Medicine, Vancouver General Hospital, JP Pavilion North, University of British Columbia , 855 West 12th Avenue, Vancouver, British Columbia, Canada V5Z 1M9
| | | | | | | | - Jillian M Buriak
- National Institute for Nanotechnology (NINT), National Research Council , 11421 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2M9
| |
Collapse
|
52
|
Abstract
Epstein-Barr virus (EBV) is arguably one of the most successful pathogens of humans, persistently infecting over ninety percent of the world's population. Despite this high frequency of carriage, the virus causes apparently few adverse effects in the vast majority of infected individuals. Nevertheless, the potent growth transforming ability of EBV means the virus has the potential to cause malignancies in infected individuals. Indeed, EBV is thought to cause 1% of human malignancies, equating to 200,000 malignancies each year. A clear factor as to why virus-induced disease is relatively infrequent in healthy infected individuals is the presence of a potent immune response to EBV, in particular, that mediated by T cells. Thus, patient groups with immunodeficiencies or whose cellular immune response is suppressed have much higher frequencies of EBV-induced disease and, in at least some cases, these diseases can be controlled by restoration of the T-cell compartment. In this chapter, we will primarily review the role the αβ subset of T cells in the control of EBV in healthy and diseased individuals.
Collapse
Affiliation(s)
- Andrew D Hislop
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Graham S Taylor
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
53
|
Bergallo M, Pinon M, Galliano I, Montanari P, Daprà V, Gambarino S, Calvo PL. Epstein Barr virus induces HERV-K and HERV-W expression in pediatrics liver transplant recipients? Minerva Pediatr 2015; 72:145-148. [PMID: 26677952 DOI: 10.23736/s0026-4946.16.04472-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Human endogenous retrovirus (HER Vs) constitute approximately 8% of the human genome. Induction of HER V transcription is possible under certain circumstances, and may have a possible role in some pathological conditions. Aim of the present study was to verify whether HER V-W and K activation by Epstein Barr Virus (EBV) might occur also in vivo, during EBV infection, in pediatric liver transplant recipients. METHODS A total of 35 pediatric liver transplant (LT) patients who received LT at the University Hospital City of Science and Health of Turin, Regina Margherita Children's Hospital were included. The samples were grouped in EBV negative and positive. RESULTS We found that HER V-K, and HER V-W expression levels showed no differences between the two groups (P=0.533 HERV-W and P=0.6017 HERV-K). There was not was a significant difference P=0.1894 and 0.1705 for HERV-W and -K respectively when we compared transplant recipients' group with high EBV viral load vs. others transplant recipients. CONCLUSIONS Our data suggest that EBV does not facilitate in-vivo HERV activation.
Collapse
Affiliation(s)
- Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy - .,Laboratory of Citoimmunodiagnostics, Città della Salute e della Scienza, Regina Margherita Children's Hospital, Turin, Italy -
| | - Michele Pinon
- Unit of Pediatric Gastroenterology and Hepatology, Molinette Hospital, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy.,Laboratory of Citoimmunodiagnostics, Città della Salute e della Scienza, Regina Margherita Children's Hospital, Turin, Italy
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy.,Laboratory of Citoimmunodiagnostics, Città della Salute e della Scienza, Regina Margherita Children's Hospital, Turin, Italy
| | - Valentina Daprà
- Laboratory of Citoimmunodiagnostics, Città della Salute e della Scienza, Regina Margherita Children's Hospital, Turin, Italy
| | - Stefano Gambarino
- Laboratory of Citoimmunodiagnostics, Città della Salute e della Scienza, Regina Margherita Children's Hospital, Turin, Italy
| | - Pier L Calvo
- Unit of Pediatric Gastroenterology and Hepatology, Molinette Hospital, Città della Salute e della Scienza, University of Turin, Turin, Italy
| |
Collapse
|
54
|
Hislop AD. Early virological and immunological events in Epstein–Barr virus infection. Curr Opin Virol 2015; 15:75-9. [DOI: 10.1016/j.coviro.2015.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
|
55
|
Klein T, Fung SY, Renner F, Blank MA, Dufour A, Kang S, Bolger-Munro M, Scurll JM, Priatel JJ, Schweigler P, Melkko S, Gold MR, Viner RI, Régnier CH, Turvey SE, Overall CM. The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling. Nat Commun 2015; 6:8777. [PMID: 26525107 PMCID: PMC4659944 DOI: 10.1038/ncomms9777] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022] Open
Abstract
Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1(mut/mut) patient with healthy MALT1(+/mut) family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway-first promoting activation via the CBM--then triggering HOIL1-dependent negative-feedback termination, preventing reactivation.
Collapse
Affiliation(s)
- Theo Klein
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Department of Oral Biological and Medical Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Shan-Yu Fung
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Child &Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada V6T 1Z3
| | - Florian Renner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Michael A Blank
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, 95134 California, USA
| | - Antoine Dufour
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Department of Oral Biological and Medical Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Sohyeong Kang
- Child &Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada V6T 1Z3.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Madison Bolger-Munro
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Joshua M Scurll
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - John J Priatel
- Child &Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada V6T 1Z3.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Patrick Schweigler
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Samu Melkko
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Michael R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Rosa I Viner
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, 95134 California, USA
| | - Catherine H Régnier
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Child &Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada V6T 1Z3
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Department of Oral Biological and Medical Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
56
|
Palendira U, Rickinson AB. Primary immunodeficiencies and the control of Epstein-Barr virus infection. Ann N Y Acad Sci 2015; 1356:22-44. [PMID: 26415106 DOI: 10.1111/nyas.12937] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/14/2015] [Accepted: 08/16/2015] [Indexed: 12/23/2022]
Abstract
Human primary immunodeficiency (PID) states, where mutations in single immune system genes predispose individuals to certain infectious agents and not others, are experiments of nature that hold important lessons for the immunologist. The number of genetically defined PIDs is rising rapidly, as is the opportunity to learn from them. Epstein-Barr virus (EBV), a human herpesvirus, has long been of interest because of its complex interaction with the immune system. Thus, it causes both infectious mononucleosis (IM), an immunopathologic disease associated with exaggerated host responses, and at least one malignancy, EBV-positive lymphoproliferative disease, when those responses are impaired. Here, we describe the full range of PIDs currently linked with an increased risk of EBV-associated disease. These provide examples where IM-like immunopathology is fatally exaggerated, and others where responses impaired at the stage of induction, expansion, or effector function predispose to malignancy. Current evidence from this rapidly moving field supports the view that lesions in both natural killer cell and T cell function can lead to EBV pathology.
Collapse
Affiliation(s)
- Umaimainthan Palendira
- Centenary Institute, Newtown, New South Wales, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, NSW, Australia
| | - Alan B Rickinson
- Cancer Sciences and Centre for Human Virology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
57
|
de Saint Basile G, Sepulveda FE, Maschalidi S, Fischer A. Cytotoxic granule secretion by lymphocytes and its link to immune homeostasis. F1000Res 2015; 4:930. [PMID: 26594351 PMCID: PMC4648190 DOI: 10.12688/f1000research.6754.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/21/2022] Open
Abstract
The granule-dependent cytotoxic activity of T and natural killer lymphocytes has progressively emerged as an important effector pathway not only for host defence but also for immune regulation. The analysis of an early-onset, severe, primary immune dysregulatory syndrome known as hemophagocytic lymphohistiocytosis (HLH) has been decisive in highlighting this latter role and identifying key effectors on the basis of gene mutation analyses and mediators in the maturation and secretion of cytotoxic granules. Studies of cytotoxicity-deficient murine counterparts have helped to define primary HLH as a syndrome in which uncontrolled T-cell activation in response to lymphocytic choriomeningitis virus infection results in excessive macrophage activation and inflammation-associated cytopenia. Recent recognition of late-onset HLH, which occurs in a variety of settings, in association with hypomorphic, monoallelic mutations in genes encoding components of the granule-dependent cytotoxic pathway or even in the absence of such mutations has broadened our view about the mechanisms that underlie the perturbation of immune homeostasis. These findings have led to the development of a model in which disease occurs when a threshold is reached through the accumulation of genetic and environmental risk factors. Nevertheless, validation of this model will require further investigations.
Collapse
Affiliation(s)
- Geneviève de Saint Basile
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, F-75015, France ; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, F-75015, France ; Centre d'Etudes des Déficits Immunitaires, Assistance Publique-Hôpitaux de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fernando E Sepulveda
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, F-75015, France ; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, F-75015, France
| | - Sophia Maschalidi
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, F-75015, France ; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, F-75015, France
| | - Alain Fischer
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, F-75015, France ; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, F-75015, France ; Immunology and Pediatric Hematology Department, Necker Children's Hospital, AP-HP, Paris, France ; Collège de France, Paris, F-75005, France
| |
Collapse
|
58
|
Jung J, Münz C. Immune control of oncogenic γ-herpesviruses. Curr Opin Virol 2015; 14:79-86. [PMID: 26372881 DOI: 10.1016/j.coviro.2015.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 08/27/2015] [Accepted: 08/30/2015] [Indexed: 11/26/2022]
Abstract
Human γ-herpesviruses contain Epstein Barr virus (EBV), the first human tumor virus that was identified in man, and Kaposi Sarcoma associated herpesvirus (KSHV), one of the most recently identified human oncogenic pathogens. Both of these have co-evolved with humans to cause tumors only in a minority of infected individuals, despite their exquisite ability to establish persistent infections. In this review we will summarize the fine-tuned balance between immune responses, immune escape and cellular transformation by these viruses, which results in life-long persistent, but asymptomatic infection with immune control in most virus carriers. A detailed understanding of this balance is required to immunotherapeutically reinstall it in patients that suffer from EBV and KSHV associated malignancies.
Collapse
Affiliation(s)
- Jae Jung
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, CA 90033, USA.
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
59
|
Alkhairy OK, Perez-Becker R, Driessen GJ, Abolhassani H, van Montfrans J, Borte S, Choo S, Wang N, Tesselaar K, Fang M, Bienemann K, Boztug K, Daneva A, Mechinaud F, Wiesel T, Becker C, Dückers G, Siepermann K, van Zelm MC, Rezaei N, van der Burg M, Aghamohammadi A, Seidel MG, Niehues T, Hammarström L. Novel mutations in TNFRSF7/CD27: Clinical, immunologic, and genetic characterization of human CD27 deficiency. J Allergy Clin Immunol 2015; 136:703-712.e10. [DOI: 10.1016/j.jaci.2015.02.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 01/30/2023]
|
60
|
Opasawatchai A, Matangkasombut P. iNKT Cells and Their Potential Lipid Ligands during Viral Infection. Front Immunol 2015; 6:378. [PMID: 26257744 PMCID: PMC4513233 DOI: 10.3389/fimmu.2015.00378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/11/2015] [Indexed: 01/12/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique population of lipid-reactive CD1d-restricted innate-like T lymphocytes. Despite being a minor population, they serve as an early source of cytokines and promote immunological crosstalk thus bridging innate and adaptive immunity. Diseases ranging from allergy, autoimmunity, and cancer, as well as infectious diseases, including viral infection, have been reported to be influenced by iNKT cells. However, it remains unclear how iNKT cells are activated during viral infection, as virus-derived lipid antigens have not been reported. Cytokines may activate iNKT cells during infections from influenza and murine cytomegalovirus, although CD1d-dependent activation is evident in other viral infections. Several viruses, such as dengue virus, induce CD1d upregulation, which correlates with iNKT cell activation. In contrast, herpes simplex virus type 1 (HSV-1), human immunodeficiency virus (HIV), Epstein–Barr virus, and human papilloma virus promote CD1d downregulation as a strategy to evade iNKT cell recognition. These observations suggest the participation of a CD1d-dependent process in the activation of iNKT cells in response to viral infection. Endogenous lipid ligands, including phospholipids as well as glycosphingolipids, such as glucosylceramide, have been proposed to mediate iNKT cell activation. Pro-inflammatory signals produced during viral infection may stimulate iNKT cells through enhanced CD1d-dependent endogenous lipid presentation. Furthermore, viral infection may alter lipid composition and inhibit endogenous lipid degradation. Recent advances in this field are reviewed.
Collapse
Affiliation(s)
- Anunya Opasawatchai
- Department of Microbiology, Faculty of Science, Mahidol University , Bangkok , Thailand ; Faculty of Dentistry, Mahidol University , Bangkok , Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University , Bangkok , Thailand ; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University , Bangkok , Thailand
| |
Collapse
|
61
|
Chung BK, Priatel JJ, Tan R. CD1d Expression and Invariant NKT Cell Responses in Herpesvirus Infections. Front Immunol 2015; 6:312. [PMID: 26161082 PMCID: PMC4479820 DOI: 10.3389/fimmu.2015.00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 12/26/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly coordinate signaling between innate and adaptive immune cells through the secretion of proinflammatory cytokines, leading to the maturation of antigen-presenting cells, and expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immunoregulatory properties, iNKT cells have been extensively studied and are known to play a pivotal role in mediating immune responses against microbial pathogens including viruses. Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT cell surveillance and establish lifelong latency in humans. Collectively, published findings suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could be harnessed therapeutically to limit viral infection and viral-associated disease.
Collapse
Affiliation(s)
- Brian K. Chung
- NIHR Birmingham Liver Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - John J. Priatel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rusung Tan
- Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
62
|
Liu F, Fan H, Ren D, Dong G, Hu E, Ji J, Hou Y. TLR9-induced miR-155 and Ets-1 decrease expression of CD1d on B cells in SLE. Eur J Immunol 2015; 45:1934-45. [DOI: 10.1002/eji.201445286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/23/2015] [Accepted: 04/28/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Fei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School, Nanjing University; Nanjing P. R. China
| | - Hongye Fan
- School of Life Science and Technology; China Pharmaceutical University; Nanjing, Jiangsu P. R. China
| | - Deshan Ren
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School, Nanjing University; Nanjing P. R. China
| | - Guanjun Dong
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School, Nanjing University; Nanjing P. R. China
| | - Erling Hu
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School, Nanjing University; Nanjing P. R. China
| | - Jianjian Ji
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School, Nanjing University; Nanjing P. R. China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School, Nanjing University; Nanjing P. R. China
- Jiangsu Key Laboratory of Molecular Medicine; Nanjing P. R. China
| |
Collapse
|
63
|
Aguilar C, Latour S. X-linked inhibitor of apoptosis protein deficiency: more than an X-linked lymphoproliferative syndrome. J Clin Immunol 2015; 35:331-8. [PMID: 25737324 DOI: 10.1007/s10875-015-0141-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
X-linked inhibitor of apoptosis (XIAP) deficiency (also known as X-linked lymphoproliferative syndrome type 2, XLP-2) is a rare primary immunodeficiency. Since the disease was first described in 2006, more than 70 patients suffering from XIAP-deficiency have been reported, thus extending the clinical presentations of the disease. The main clinical features of XLP-2 are (i) elevated susceptibility to hemophagocytic lymphohistiocytosis (HLH, frequently in response to infection with Epstein-Barr virus (EBV)), (ii) recurrent splenomegaly and (iii) inflammatory bowel disease (IBD) with the characteristics of Crohn's disease. XIAP deficiency is now considered to be one of the genetic causes of IBD in infancy. Although XIAP is an anti-apoptotic molecule, it is also involved in many other pathways, including the regulation of innate immunity and inflammation. XIAP is required for signaling through the Nod-like receptors NOD1 and 2, which are intracellular sensors of bacterial infection. XIAP-deficient T cells (including innate natural killer T cells and mucosal-associated invariant T cells) are overly sensitive to apoptosis. NOD2 function is impaired in XIAP-deficient monocytes. However, the physiopathological mechanisms underlying the clinical phenotypes in XIAP deficiency, notably the HLH and the EBV susceptibility, are not well understood. Here, we review the clinical aspects, molecular etiology and physiopathology of XIAP deficiency.
Collapse
Affiliation(s)
- Claire Aguilar
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Descartes-Sorbonne Paris Cité University of Paris and Institut Imagine, Paris, France
| | | |
Collapse
|
64
|
XIAP deficiency syndrome in humans. Semin Cell Dev Biol 2015; 39:115-23. [DOI: 10.1016/j.semcdb.2015.01.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/15/2023]
|
65
|
Chaudhry MS, Karadimitris A. Role and regulation of CD1d in normal and pathological B cells. THE JOURNAL OF IMMUNOLOGY 2015; 193:4761-8. [PMID: 25381357 DOI: 10.4049/jimmunol.1401805] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD1d is a nonpolymorphic, MHC class I-like molecule that presents phospholipid and glycosphingolipid Ags to a subset of CD1d-restricted T cells called invariant NKT (iNKT) cells. This CD1d-iNKT cell axis regulates nearly all aspects of both the innate and adaptive immune responses. Expression of CD1d on B cells is suggestive of the ability of these cells to present Ag to, and form cognate interactions with, iNKT cells. In this article, we summarize key evidence regarding the role and regulation of CD1d in normal B cells and in humoral immunity. We then extend the discussion to B cell disorders, with emphasis on autoimmune disease, viral infection, and neoplastic transformation of B lineage cells, in which CD1d expression can be altered as a mechanism of immune evasion and can have both diagnostic and prognostic importance. Finally, we highlight current and future therapeutic strategies that aim to target the CD1d-iNKT cell axis in B cells.
Collapse
Affiliation(s)
- Mohammed S Chaudhry
- Centre for Haematology, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Anastasios Karadimitris
- Centre for Haematology, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| |
Collapse
|
66
|
Abstract
Epstein-Barr virus (EBV) is usually acquired silently early in life and carried thereafter as an asymptomatic infection of the B lymphoid system. However, many circumstances disturb the delicate EBV-host balance and cause the virus to display its pathogenic potential. Thus, primary infection in adolescence can manifest as infectious mononucleosis (IM), as a fatal illness that magnifies the immunopathology of IM in boys with the X-linked lymphoproliferative disease trait, and as a chronic active disease leading to life-threatening hemophagocytosis in rare cases of T or natural killer (NK) cell infection. Patients with primary immunodeficiencies affecting the NK and/or T cell systems, as well as immunosuppressed transplant recipients, handle EBV infections poorly, and many are at increased risk of virus-driven B-lymphoproliferative disease. By contrast, a range of other EBV-positive malignancies of lymphoid or epithelial origin arise in individuals with seemingly intact immune systems through mechanisms that remain to be understood.
Collapse
Affiliation(s)
- Graham S Taylor
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; , , , ,
| | | | | | | | | |
Collapse
|
67
|
Ressing ME, van Gent M, Gram AM, Hooykaas MJG, Piersma SJ, Wiertz EJHJ. Immune Evasion by Epstein-Barr Virus. Curr Top Microbiol Immunol 2015; 391:355-81. [PMID: 26428381 DOI: 10.1007/978-3-319-22834-1_12] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epstein-Bar virus (EBV) is widespread within the human population with over 90% of adults being infected. In response to primary EBV infection, the host mounts an antiviral immune response comprising both innate and adaptive effector functions. Although the immune system can control EBV infection to a large extent, the virus is not cleared. Instead, EBV establishes a latent infection in B lymphocytes characterized by limited viral gene expression. For the production of new viral progeny, EBV reactivates from these latently infected cells. During the productive phase of infection, a repertoire of over 80 EBV gene products is expressed, presenting a vast number of viral antigens to the primed immune system. In particular the EBV-specific CD4+ and CD8+ memory T lymphocytes can respond within hours, potentially destroying the virus-producing cells before viral replication is completed and viral particles have been released. Preceding the adaptive immune response, potent innate immune mechanisms provide a first line of defense during primary and recurrent infections. In spite of this broad range of antiviral immune effector mechanisms, EBV persists for life and continues to replicate. Studies performed over the past decades have revealed a wide array of viral gene products interfering with both innate and adaptive immunity. These include EBV-encoded proteins as well as small noncoding RNAs with immune-evasive properties. The current review presents an overview of the evasion strategies that are employed by EBV to facilitate immune escape during latency and productive infection. These evasion mechanisms may also compromise the elimination of EBV-transformed cells, and thus contribute to malignancies associated with EBV infection.
Collapse
Affiliation(s)
- Maaike E Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel van Gent
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna M Gram
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein J G Hooykaas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sytse J Piersma
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
68
|
Abstract
Epstein-Barr virus (EBV) was discovered 50 years ago as the first candidate human tumor virus. Since then, we have realized that this human γ-herpesvirus establishes persistent infection in the majority of adult humans, but fortunately causes EBV-associated diseases only in few individuals. This is an incredible success story of the human immune system, which controls EBV infection and its transforming capacity for decades. A better understanding of this immune control would not only benefit patients with EBV-associated malignancies, but could also provide clues how to establish such a potent, mostly cell-mediated immune control against other pathogens and tumors. However, the functional relevance of EBV-specific immune responses can only be addressed in vivo, and mice with reconstituted human immune system components (huMice) constitute a small animal model to interrogate the protective value of immune compartments during EBV infection, but also might provide a platform to test EBV-specific vaccines. This chapter will summarize the insights into EBV immunobiology that have already been gained in these models and provide an outlook into promising future avenues to develop this in vivo model of EBV infection and human immune responses further.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
69
|
Abstract
Epstein-Barr virus (EBV) infects nearly all humans and usually is asymptomatic, or in the case of adolescents and young adults, it can result in infectious mononucleosis. EBV-infected B cells are controlled primarily by NK cells, iNKT cells, CD4 T cells, and CD8 T cells. While mutations in proteins important for B cell function can affect EBV infection of these cells, these mutations do not result in severe EBV infection. Some genetic disorders affecting T and NK cell function result in failure to control EBV infection, but do not result in increased susceptibility to other virus infections. These include mutations in SH2D1A, BIRC4, ITK, CD27, MAGT1, CORO1A, and LRBA. Since EBV is the only virus that induces proliferation of B cells, the study of these diseases has helped to identify proteins critical for interactions of T and/or NK cells with B cells. Mutations in three genes associated with hemophagocytic lymphohistocytosis, PRF1, STXBP2, and UNC13D, can also predispose to severe chronic active EBV disease. Severe EBV infection can be associated with immunodeficiencies that also predispose to other viral infections and in some cases other bacterial and fungal infections. These include diseases due to mutations in PIK3CD, PIK3R1, CTPS1, STK4, GATA2, MCM4, FCGR3A, CARD11, ATM, and WAS. In addition, patients with severe combined immunodeficiency, which can be due to mutations in a number of different genes, are at high risk for various infections as well as EBV B cell lymphomas. Identification of proteins important for control of EBV may help to identify new targets for immunosuppressive therapies.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institutes of Health, 50 South Drive, MSC 8007, Bethesda, MD, 20892, USA.
| |
Collapse
|
70
|
Ghosh S, Bienemann K, Boztug K, Borkhardt A. Interleukin-2-inducible T-cell kinase (ITK) deficiency - clinical and molecular aspects. J Clin Immunol 2014; 34:892-9. [PMID: 25339095 PMCID: PMC4220104 DOI: 10.1007/s10875-014-0110-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/07/2014] [Indexed: 01/30/2023]
Abstract
In patients with underlying immunodeficiency, Epstein-Barr virus (EBV) may lead to severe immune dysregulation manifesting as fatal mononucleosis, lymphoma, lymphoproliferative disease (LPD), lymphomatoid granulomatosis, hemophagocytic lymphohistiocytosis (HLH) and dysgammaglobulinemia. Several newly discovered primary immunodeficiencies (STK4, CD27, MAGT1, CORO1A) have been described in recent years; our group and collaborators were able to reveal the pathogenicity of mutations in the Interleukin-2-inducible T-cell Kinase (ITK) in a cohort of nine patients with most patients presenting with massive EBV B-cell lymphoproliferation. This review summarizes the clinical and immunological findings in these patients. Moreover, we describe the functional consequences of the mutations and draw comparisons with the extensively investigated function of ITK in vitro and in the murine model.
Collapse
Affiliation(s)
- Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | | | | | | |
Collapse
|
71
|
Martin E, Palmic N, Sanquer S, Lenoir C, Hauck F, Mongellaz C, Fabrega S, Nitschké P, Esposti MD, Schwartzentruber J, Taylor N, Majewski J, Jabado N, Wynn RF, Picard C, Fischer A, Arkwright PD, Latour S. CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature 2014; 510:288-92. [PMID: 24870241 PMCID: PMC6485470 DOI: 10.1038/nature13386] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 04/22/2014] [Indexed: 12/18/2022]
Abstract
Lymphocyte functions triggered by antigen recognition and co-stimulation signals are associated with a rapid and intense cell division, and hence with metabolism adaptation. The nucleotide cytidine 5' triphosphate (CTP) is a precursor required for the metabolism of DNA, RNA and phospholipids. CTP originates from two sources: a salvage pathway and a de novo synthesis pathway that depends on two enzymes, the CTP synthases (or synthetases) 1 and 2 (CTPS1 with CTPS2); the respective roles of these two enzymes are not known. CTP synthase activity is a potentially important step for DNA synthesis in lymphocytes. Here we report the identification of a loss-of-function homozygous mutation (rs145092287) in CTPS1 in humans that causes a novel and life-threatening immunodeficiency, characterized by an impaired capacity of activated T and B cells to proliferate in response to antigen receptor-mediated activation. In contrast, proximal and distal T-cell receptor (TCR) signalling events and responses were only weakly affected by the absence of CTPS1. Activated CTPS1-deficient cells had decreased levels of CTP. Normal T-cell proliferation was restored in CTPS1-deficient cells by expressing wild-type CTPS1 or by addition of exogenous CTP or its nucleoside precursor, cytidine. CTPS1 expression was found to be low in resting T cells, but rapidly upregulated following TCR activation. These results highlight a key and specific role of CTPS1 in the immune system by its capacity to sustain the proliferation of activated lymphocytes during the immune response. CTPS1 may therefore represent a therapeutic target of immunosuppressive drugs that could specifically dampen lymphocyte activation.
Collapse
Affiliation(s)
- Emmanuel Martin
- 1] Laboratoire Activation Lymphocytaire et Susceptibilité à l'EBV, INSERM UMR 1163, Hôpital Necker Enfants-Malades, Paris 75015, France [2] Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Noé Palmic
- 1] Laboratoire Activation Lymphocytaire et Susceptibilité à l'EBV, INSERM UMR 1163, Hôpital Necker Enfants-Malades, Paris 75015, France [2] Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Sylvia Sanquer
- Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker Enfants-Malades, Paris 75015, France
| | - Christelle Lenoir
- 1] Laboratoire Activation Lymphocytaire et Susceptibilité à l'EBV, INSERM UMR 1163, Hôpital Necker Enfants-Malades, Paris 75015, France [2] Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Fabian Hauck
- 1] Laboratoire Activation Lymphocytaire et Susceptibilité à l'EBV, INSERM UMR 1163, Hôpital Necker Enfants-Malades, Paris 75015, France [2] Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Cédric Mongellaz
- Hematopoiesis and Immunotherapy, CNRS-UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier 34293, France
| | - Sylvie Fabrega
- 1] Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France [2] Plateforme Vecteurs Viraux et Transfert de Gènes, IFR94, Hôpital Necker Enfants-Malades, Paris 75015, France
| | - Patrick Nitschké
- 1] Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France [2] Service de Bioinformatique, Hôpital Necker Enfants-Malades, Paris 75015, France
| | - Mauro Degli Esposti
- 1] University of Manchester, Royal Manchester Children's Hospital, Manchester M13 0WL, UK [2] Italian Institute of Technology, Genoa 16163, Italy
| | | | - Naomi Taylor
- Hematopoiesis and Immunotherapy, CNRS-UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier 34293, France
| | - Jacek Majewski
- McGill University and Genome Québec Innovation Centre, Montréal H3A 0G1, Canada
| | - Nada Jabado
- 1] McGill University and Genome Québec Innovation Centre, Montréal H3A 0G1, Canada [2] Department of Pediatrics, McGill University Health Center Research Institute, Montréal H3H 1P3, Canada
| | - Robert F Wynn
- University of Manchester, Royal Manchester Children's Hospital, Manchester M13 0WL, UK
| | - Capucine Picard
- 1] Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France [2] Centre d'Etude des Déficits Immunitaires, Hôpital Necker Enfants-Malades, AP-HP, Paris 75015, France [3] Laboratoire Génétique Humaine des Maladies Infectieuses, INSERM UMR 1163, Hôpital Necker Enfants-Malades, Paris 75015, France
| | - Alain Fischer
- 1] Laboratoire Activation Lymphocytaire et Susceptibilité à l'EBV, INSERM UMR 1163, Hôpital Necker Enfants-Malades, Paris 75015, France [2] Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France [3] Unité d'Immunologie et Hématologie Pédiatrique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris 75015, France [4] Collège de France, Paris 75005, France
| | - Peter D Arkwright
- 1] University of Manchester, Royal Manchester Children's Hospital, Manchester M13 0WL, UK [2]
| | - Sylvain Latour
- 1] Laboratoire Activation Lymphocytaire et Susceptibilité à l'EBV, INSERM UMR 1163, Hôpital Necker Enfants-Malades, Paris 75015, France [2] Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France [3] Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker Enfants-Malades, Paris 75015, France [4]
| |
Collapse
|
72
|
Priatel JJ, Chung BK, Tsai K, Tan R. Natural killer T cell strategies to combat Epstein-Barr virus infection. Oncoimmunology 2014; 3:e28329. [PMID: 25050206 PMCID: PMC4063158 DOI: 10.4161/onci.28329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/19/2022] Open
Abstract
Epstein-Barr virus (EBV) infection results in rapid loss of CD1d expression from the surface of infected B cells, thus enabling the virus to evade immune recognition by natural killer T (NKT) cells. Using pharmacologic means to boost CD1d expression, potent NKT cell effector functions can be elicited toward EBV-infected B cells, suggesting the promise of novel strategies to target EBV-associated diseases such as some B-cell malignancies.
Collapse
Affiliation(s)
- John J Priatel
- Child and Family Research Institute; Immunity in Health and Disease; University of British Columbia; Vancouver, BC Canada ; Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver, BC Canada
| | - Brian K Chung
- Child and Family Research Institute; Immunity in Health and Disease; University of British Columbia; Vancouver, BC Canada ; Department of Medical Genetics; University of British Columbia; Vancouver, BC Canada
| | - Kevin Tsai
- Child and Family Research Institute; Immunity in Health and Disease; University of British Columbia; Vancouver, BC Canada ; Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver, BC Canada
| | - Rusung Tan
- Child and Family Research Institute; Immunity in Health and Disease; University of British Columbia; Vancouver, BC Canada ; Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver, BC Canada ; Department of Pathology; Sidra Medical and Research Center; Doha, Qatar
| |
Collapse
|
73
|
Cellular immune controls over Epstein-Barr virus infection: new lessons from the clinic and the laboratory. Trends Immunol 2014; 35:159-69. [PMID: 24589417 DOI: 10.1016/j.it.2014.01.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 01/08/2023]
Abstract
Epstein-Barr virus (EBV), a human herpesvirus with potent B cell growth transforming ability, induces multiple cellular immune responses in the infected host. How these host responses work together to prevent virus pathogenicity, and how immune imbalance predisposes to disease, remain poorly understood. Here, we describe three ongoing lines of enquiry that are shedding new light on these issues. These focus on: (i) patients with infectious mononucleosis or its fatal equivalent, X-linked lymphoproliferative disease; (ii) EBV infection in a range of new, genetically defined, primary immune deficiency states; and (iii) experimental infection in two complementary animal models, the rhesus macaque and the human haemopoietic stem cell reconstituted mouse.
Collapse
|
74
|
Bassiri H, Das R, Nichols KE. Invariant NKT cells: Killers and conspirators against cancer. Oncoimmunology 2014; 2:e27440. [PMID: 24575380 PMCID: PMC3926875 DOI: 10.4161/onci.27440] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022] Open
Abstract
Although invariant natural killer T (iNKT) cells influence antitumor responses indirectly by secreting cytokines and promoting the cytolytic functions of T and NK cells, we find that iNKT cells mediate direct tumoricidal activity in vitro and significantly inhibit tumor growth in vivo, even in the absence of other cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Hamid Bassiri
- Division of Infectious Diseases; Children's Hospital of Philadelphia; Philadelphia, PA USA
| | - Rupali Das
- Division of Oncology; Children's Hospital of Philadelphia; Philadelphia, PA USA
| | - Kim E Nichols
- Division of Oncology; Children's Hospital of Philadelphia; Philadelphia, PA USA
| |
Collapse
|
75
|
Mameli G, Madeddu G, Mei A, Uleri E, Poddighe L, Delogu LG, Maida I, Babudieri S, Serra C, Manetti R, Mura MS, Dolei A. Activation of MSRV-type endogenous retroviruses during infectious mononucleosis and Epstein-Barr virus latency: the missing link with multiple sclerosis? PLoS One 2013; 8:e78474. [PMID: 24236019 PMCID: PMC3827255 DOI: 10.1371/journal.pone.0078474] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022] Open
Abstract
The etiology of multiple sclerosis (MS) is still unclear. The immuno-pathogenic phenomena leading to neurodegeneration are thought to be triggered by environmental (viral?) factors operating on predisposing genetic backgrounds. Among the proposed co-factors are the Epstein Barr virus (EBV), and the potentially neuropathogenic HERV-W/MSRV/Syncytin-1 endogenous retroviruses. The ascertained links between EBV and MS are history of late primary infection, possibly leading to infectious mononucleosis (IM), and high titers of pre-onset IgG against EBV nuclear antigens (anti-EBNA IgG). During MS, there is no evidence of MS-specific EBV expression, while a continuous expression of HERV-Ws occurs, paralleling disease behaviour. We found repeatedly extracellular HERV-W/MSRV and MSRV-specific mRNA sequences in MS patients (in blood, spinal fluid, and brain samples), and MRSV presence/load strikingly paralleled MS stages and active/remission phases. Aim of the study was to verify whether HERV-W might be activated in vivo, in hospitalized young adults with IM symptoms, that were analyzed with respect to expression of HERV-W/MSRV transcripts and proteins. Healthy controls were either EBV-negative or latently EBV-infected with/without high titers of anti-EBNA-1 IgG. The results show that activation of HERV-W/MSRV occurs in blood mononuclear cells of IM patients (2Log10 increase of MSRV-type env mRNA accumulation with respect to EBV-negative controls). When healthy controls are stratified for previous EBV infection (high and low, or no anti-EBNA-1 IgG titers), a direct correlation occurs with MSRV mRNA accumulation. Flow cytometry data show increased percentages of cells exposing surface HERV-Wenv protein, that occur differently in specific cell subsets, and in acute disease and past infection. Thus, the data indicate that the two main links between EBV and MS (IM and high anti-EBNA-1-IgG titers) are paralleled by activation of the potentially neuropathogenic HERV-W/MSRV. These novel findings suggest HERV-W/MSRV activation as the missing link between EBV and MS, and may open new avenues of intervention.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giordano Madeddu
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Alessandra Mei
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elena Uleri
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Luciana Poddighe
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Lucia G. Delogu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Ivana Maida
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Sergio Babudieri
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Caterina Serra
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Roberto Manetti
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Maria S. Mura
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Antonina Dolei
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|