51
|
Huisman W, Gille I, van der Maarel LE, Hageman L, Morton LT, de Jong RCM, Heemskerk MHM, Amsen D, Falkenburg JHF, Jedema I. Identification of Functional HLA-A*01 :01-Restricted EBV-LMP2-Specific T-cell Receptors. J Infect Dis 2020; 226:833-842. [PMID: 32808978 PMCID: PMC9470112 DOI: 10.1093/infdis/jiaa512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adoptive transfer of genetically engineered T cells expressing antigen-specific T-cell receptors (TCRs), is an appealing therapeutic approach for Epstein-Barr virus (EBV)-associated malignancies of latency type II/III that express EBV-antigens (LMP1/2). Patients who are HLA-A*01:01pos could benefit from such products, since no T cells recognizing any EBV-derived peptide in this common HLA allele have been found thus far. METHODS HLA-A*01:01-restricted EBV-(LMP2)-specific T-cells were isolated using peptide-MHC-tetramers. Functionality was assessed by production of IFNγ and cytotoxicity when stimulated with EBV-LMP2-expressing cell-lines. Functionality of primary T cells transduced with HLA-A*01:01-restricted EBV-LMP2-specific TCRs was optimized by knocking out the endogenous TCR of primary T cells (ΔTCR) using CRISPR-Cas9 technology. RESULTS EBV-LMP2-specific T cells were successfully isolated and their TCRs were characterized. TCR gene-transfer in primary T cells resulted in specific peptide-MHC-tetramer binding and reactivity against EBV-LMP2-expressing cell-lines. The mean-fluorescence intensity of peptide-MHC-tetramer binding was increased 1.5-2 fold when the endogenous TCR of CD8pos T cells was knocked out. CD8pos/ΔTCR T cells modified to express EBV-LMP2-specific TCRs showed IFNγ secretion and cytotoxicity towards EBV-LMP2-expressing malignant cell-lines. DISCUSSION We isolated the first functional HLA-A*01:01-restricted EBV-LMP2-specific T-cell populations and TCRs, which can potentially be used in future TCR gene-therapy to treat EBV-associated latency type II/III malignancies.
Collapse
Affiliation(s)
- Wesley Huisman
- Department of Hematology, Leiden University Medical Center, The Netherlands.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, the Netherlands
| | - Ilse Gille
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | | | - Lois Hageman
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | - Laura T Morton
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | - Rob C M de Jong
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | | | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, the Netherlands
| | | | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, The Netherlands
| |
Collapse
|
52
|
Bingjie W, Lihong W, Yongjin S, Huihui L, Jinping O, Xi'nan C. The efficacy and safety of Epstein-Barr virus-specific antigen peptide-activated cytotoxic T-cells treatment for refractory or recurrent angioimmunoblastic T-cell lymphoma: A prospective clinical observational study. Hematol Oncol 2020; 38:272-276. [PMID: 32083758 DOI: 10.1002/hon.2726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/09/2022]
Abstract
The efficacy and safety of Epstein-Barr virus (EBV)-specific antigen peptide-activated cytotoxic T lymphocytes (CTLs) in the treatment of refractory or recurrent angioimmunoblastic T-cell lymphoma (AITL) was determined in this prospective one-arm clinical study. Seven males and two females were enrolled with a median age of 70 years. The tumor stages were all stage III and IV. All patients had group B symptoms and IPI scores of 3 to 5 points. All patients received chemotherapy before CTLs infusion which the median chemotherapy cycle was three. The diseases states before CTLs included five cases of disease progression (PD), two cases of recurrence (R), and two cases with residual lesions after chemotherapy. Eight patients received HLA-haploidentical EBV-specific CTLs, and one patient chose autologous CTLs. The number of transfused cells was 1.67 to 2.38 × 1010 for one course of CTLs therapy. One patient was treated with three courses of CTLs, three patients were treated with two courses of CTLs, and five patients were treated with one course of CTLs. During the infusion, eight patients had fever, one patient had rash, and no graft-vs-host diseases were observed. The EBV-DNA decreased by more than two orders of magnitude in six patients, and the response rate was 66.7%. Two patients of PD status achieved complete remission (CR), one patient of PD status achieved partial remission, two patients with residual lesions after chemotherapy achieved CR, and four patients had no response. The objective remission rate was 55.6%. After the median follow-up of 14.5 months, five patients died, and three patients were completely relieved while one patient was lost during follow-up. The 3-year overall survival was 44.4% and 3-year progression-free survival was 33.3%. EBV-specific antigen peptide-activated CTLs showed positive effect in certain patients with refractory and recurrent AITL with high clinical safety.
Collapse
Affiliation(s)
- Wang Bingjie
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Wang Lihong
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Shi Yongjin
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Liu Huihui
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Ou Jinping
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Cen Xi'nan
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|
53
|
Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol 2020; 17:475-492. [PMID: 32313224 DOI: 10.1038/s41571-020-0356-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) was the first successful therapy for patients with haematological malignancies, predominantly owing to graft-versus-tumour (GvT) effects. Dramatic methodological changes, designed to expand eligibility for allo-HSCT to older patients and/or those with comorbidities, have led to the use of reduced-intensity conditioning regimens, in parallel with more aggressive immunosuppression to better control graft-versus-host disease (GvHD). Consequently, disease relapse has become the major cause of death following allo-HSCT. Hence, the prevention and treatment of relapse has come to the forefront and remains an unmet medical need. Despite >60 years of preclinical and clinical studies, the immunological requirements necessary to achieve GvT effects without promoting GvHD have not been fully established. Herein, we review learnings from preclinical modelling and clinical studies relating to the GvT effect, focusing on mechanisms of relapse and on immunomodulatory strategies that are being developed to overcome disease recurrence after both allo-HSCT and autologous HSCT. Emphasis is placed on discussing current knowledge and approaches predicated on the use of cell therapies, cytokines to augment immune responses and dual-purpose antibody therapies or other pharmacological agents that can control GvHD whilst simultaneously targeting cancer cells.
Collapse
|
54
|
Weber EW, Maus MV, Mackall CL. The Emerging Landscape of Immune Cell Therapies. Cell 2020; 181:46-62. [PMID: 32243795 PMCID: PMC8900215 DOI: 10.1016/j.cell.2020.03.001] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Cell therapies present an entirely new paradigm in drug development. Within this class, immune cell therapies are among the most advanced, having already demonstrated definitive evidence of clinical benefits in cancer and infectious disease. Numerous features distinguish these "living therapies" from traditional medicines, including their ability to expand and contract in proportion to need and to mediate therapeutic benefits for months or years following a single application. Continued advances in fundamental immunology, genetic engineering, gene editing, and synthetic biology exponentially expand opportunities to enhance the sophistication of immune cell therapies, increasing potency and safety and broadening their potential for treatment of disease. This perspective will summarize the current status of immune cell therapies for cancer, infectious disease, and autoimmunity, and discuss advances in cellular engineering to overcome barriers to progress.
Collapse
Affiliation(s)
- Evan W Weber
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
55
|
Toner K, Bollard CM, Dave H. T-cell therapies for T-cell lymphoma. Cytotherapy 2019; 21:935-942. [PMID: 31320195 DOI: 10.1016/j.jcyt.2019.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 01/05/2023]
Abstract
T-cell lymphomas represent a subpopulation of non-Hodgkin lymphomas with poor outcomes when treated with conventional chemotherapy. A variety of novel agents have been introduced as new treatment strategies either as first-line treatment or in conjunction with chemotherapy. Immunotherapy has been demonstrated to be a promising area for new therapeutics, including monoclonal antibodies and adoptive cellular therapeutics. T-cell therapeutics have been shown to have significant success in the treatment of B-cell malignancies and are rapidly expanding as potential treatment options for other cancers including T-cell lymphomas. Although treating T-cell lymphomas with T-cell therapeutics has unique challenges, multiple targets are currently being studied both preclinically and in clinical trials.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA; The George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Hema Dave
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA; The George Washington School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
56
|
Messinger JE, Dai J, Stanland LJ, Price AM, Luftig MA. Identification of Host Biomarkers of Epstein-Barr Virus Latency IIb and Latency III. mBio 2019; 10:e01006-19. [PMID: 31266868 PMCID: PMC6606803 DOI: 10.1128/mbio.01006-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Deciphering the molecular pathogenesis of virally induced cancers is challenging due, in part, to the heterogeneity of both viral gene expression and host gene expression. Epstein-Barr virus (EBV) is a ubiquitous herpesvirus prevalent in B-cell lymphomas of immune-suppressed individuals. EBV infection of primary human B cells leads to their immortalization into lymphoblastoid cell lines (LCLs), serving as a model of these lymphomas. In previous studies, reports from our laboratory have described a temporal model for immortalization with an initial phase characterized by expression of Epstein-Barr nuclear antigens (EBNAs), high levels of c-Myc activity, and hyperproliferation in the absence of the latent membrane proteins (LMPs), called latency IIb. This is followed by the long-term outgrowth of LCLs expressing the EBNAs along with the LMPs, particularly NFκB-activating LMP1, defining latency III. However, LCLs express a broad distribution of LMP1 such that a subset of these cells express LMP1 at levels similar to those seen in latency IIb, making it difficult to distinguish these two latency states. In this study, we performed mRNA sequencing (mRNA-Seq) on early EBV-infected latency IIb cells and latency III LCLs sorted by NFκB activity. We found that latency IIb transcriptomes clustered independently from latency III independently of NFκB. We identified and validated mRNAs defining these latency states. Indeed, we were able to distinguish latency IIb cells from LCLs expressing low levels of LMP1 using multiplex RNA-fluorescence in situ hybridization (RNA-FISH) targeting EBV EBNA2 or LMP1 and human CCR7 or MGST1 This report defines latency IIb as a bona fide latency state independent from latency III and identifies biomarkers for understanding EBV-associated tumor heterogeneity.IMPORTANCE EBV is a ubiquitous pathogen, with >95% of adults harboring a life-long latent infection in memory B cells. In immunocompromised individuals, latent EBV infection can result in lymphoma. The established expression profile of these lymphomas is latency III, which includes expression of all latency genes. However, single-cell analysis of EBV latent gene expression in these lymphomas suggests heterogeneity where most cells express the transcription factor, EBNA2, and only a fraction of the cells express membrane protein LMP1. Our work describes an early phase after infection where the EBNAs are expressed without LMP1, called latency IIb. However, LMP1 levels within latency III vary widely, making these states hard to discriminate. This may have important implications for therapeutic responses. It is crucial to distinguish these states to understand the molecular pathogenesis of these lymphomas. Ultimately, better tools to understand the heterogeneity of these cancers will support more-efficacious therapies in the future.
Collapse
Affiliation(s)
- Joshua E Messinger
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lyla J Stanland
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alexander M Price
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
57
|
Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment. Semin Immunol 2019; 42:101306. [DOI: 10.1016/j.smim.2019.101306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
|
58
|
Abstract
In this issue of Blood, McLaughlin et al demonstrate the safety and efficacy of donor-derived Epstein-Barr virus (EBV) latent membrane protein (LMP)-specific T cells to prevent relapse of aggressive EBV-positive B- or T/NK-cell lymphomas following allogeneic hematopoietic stem cell transplantation (HSCT).1
Collapse
|