51
|
Mechanisms of Drug Resistance in Fungi and Their Significance in Biofilms. SPRINGER SERIES ON BIOFILMS 2014. [DOI: 10.1007/978-3-642-53833-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
52
|
Moser JC, Rawal M, Wagner BA, Du J, Cullen JJ, Buettner GR. Pharmacological ascorbate and ionizing radiation (IR) increase labile iron in pancreatic cancer. Redox Biol 2013; 2:22-7. [PMID: 24396727 PMCID: PMC3881203 DOI: 10.1016/j.redox.2013.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 02/04/2023] Open
Abstract
Labile iron, i.e. iron that is weakly bound and is relatively unrestricted in its redox activity, has been implicated in both the pathogenesis as well as treatment of cancer. Two cancer treatments where labile iron may contribute to their mechanism of action are pharmacological ascorbate and ionizing radiation (IR). Pharmacological ascorbate has been shown to have tumor-specific toxic effects due to the formation of hydrogen peroxide. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of hydrogen peroxide; labile iron can also react with hydrogen peroxide. Here we have investigated the magnitude of the labile iron pool in tumor and normal tissue. We also examined the ability of pharmacological ascorbate and IR to change the size of the labile iron pool. Although a significant amount of labile iron was seen in tumors (MIA PaCa-2 cells in athymic nude mice), higher levels were seen in murine tissues that were not susceptible to pharmacological ascorbate. Pharmacological ascorbate and irradiation were shown to increase the labile iron in tumor homogenates from this murine model of pancreatic cancer. As both IR and pharmacological ascorbate may rely on labile iron for their effects on tumor tissues, our data suggest that pharmacological ascorbate could be used as a radio-sensitizing agent for some radio-resistant tumors. EPR can detect chelatable iron in tissue as ferrioxamine. Chelatable iron varies widely with type of tissue. Pharmacological ascorbate increases the amount of chelatable iron in tissue.
Collapse
Affiliation(s)
- Justin C Moser
- Free Radical and Radiation Biology Program and ESR Facility, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, USA
| | - Malvika Rawal
- Free Radical and Radiation Biology Program and ESR Facility, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology Program and ESR Facility, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, USA
| | - Juan Du
- Free Radical and Radiation Biology Program and ESR Facility, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, USA
| | - Joseph J Cullen
- Free Radical and Radiation Biology Program and ESR Facility, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, USA ; Department of Surgery, The University of Iowa, Iowa City, IA, USA ; Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program and ESR Facility, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, USA ; Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
53
|
Linder MC. Mobilization of stored iron in mammals: a review. Nutrients 2013; 5:4022-50. [PMID: 24152745 PMCID: PMC3820057 DOI: 10.3390/nu5104022] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022] Open
Abstract
From the nutritional standpoint, several aspects of the biochemistry and physiology of iron are unique. In stark contrast to most other elements, most of the iron in mammals is in the blood attached to red blood cell hemoglobin and transporting oxygen to cells for oxidative phosphorylation and other purposes. Controlled and uncontrolled blood loss thus has a major impact on iron availability. Also, in contrast to most other nutrients, iron is poorly absorbed and poorly excreted. Moreover, amounts absorbed (~1 mg/day in adults) are much less than the total iron (~20 mg/day) cycling into and out of hemoglobin, involving bone marrow erythropoiesis and reticuloendothelial cell degradation of aged red cells. In the face of uncertainties in iron bioavailability, the mammalian organism has evolved a complex system to retain and store iron not immediately in use, and to make that iron available when and where it is needed. Iron is stored innocuously in the large hollow protein, ferritin, particularly in cells of the liver, spleen and bone marrow. Our current understanding of the molecular, cellular and physiological mechanisms by which this stored iron in ferritin is mobilized and distributed-within the cell or to other organs-is the subject of this review.
Collapse
Affiliation(s)
- Maria C Linder
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92834-6866, USA.
| |
Collapse
|
54
|
Gluz E, Grinberg I, Corem-Salkmon E, Mizrahi D, Margel S. Engineering of new crosslinked near-infrared fluorescent polyethylene glycol bisphosphonate nanoparticles for bone targeting. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eran Gluz
- Department of Chemistry; The Institute of Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Igor Grinberg
- Department of Chemistry; The Institute of Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Enav Corem-Salkmon
- Department of Chemistry; The Institute of Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Dana Mizrahi
- Department of Chemistry; The Institute of Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Shlomo Margel
- Department of Chemistry; The Institute of Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 52900 Israel
| |
Collapse
|
55
|
Garritano S, Inga A, Gemignani F, Landi S. More targets, more pathways and more clues for mutant p53. Oncogenesis 2013; 2:e54. [PMID: 23817466 PMCID: PMC3740285 DOI: 10.1038/oncsis.2013.15] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/20/2013] [Indexed: 12/17/2022] Open
Abstract
Mutations in the transcription factor p53 are among the most common genetic alterations in human cancer, and missense p53 mutations in cancer cells can lead to aggressive phenotypes. So far, only few studies investigated transcriptional reprogramming under mutant p53 expression as a means to identify deregulated targets and pathways. A review of the literature was carried out focusing on mutant p53-dependent transcriptome changes with the aims of (i) verifying whether different p53 mutations can be equivalent for their effects, or whether there is a mutation-specific transcriptional reprogramming of target genes, (ii) understanding what is the main mechanism at the basis of upregulation or downregulation of gene expression under the p53 mutant background, (iii) identifying novel candidate target genes of WT and/or mutant p53 and (iv) defining cellular pathways affected by the mutant p53-dependent gene expression reprogramming. Nearly 600 genes were consistently found upregulated or downregulated upon ectopic expression of mutant p53, regardless of the specific p53 mutation studied. Promoter analysis and the use of ChIP-seq data indicate that, for most genes, the expression changes could be ascribed to a loss both of WT p53 transcriptional activation and repressor functions. Pathway analysis indicated changes in the metabolism/catabolism of amino acids such as aspartate, glutamate, arginine and proline. Novel p53 candidate target genes were also identified, including ARID3B, ARNT2, CLMN, FADS1, FTH1, KPNA2, LPHN2, PARD6B, PDE4C, PIAS2, PRPF40A, PYGL and RHOBTB2, involved in the metabolism, xenobiotic responses and cell differentiation.
Collapse
Affiliation(s)
- S Garritano
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
56
|
6-Hydroxydopamine promotes iron traffic in primary cultured astrocytes. Biometals 2013; 26:705-14. [DOI: 10.1007/s10534-013-9647-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/08/2013] [Indexed: 01/19/2023]
|
57
|
Synthesis and characterization of new poly(ethylene glycol)bisphosphonate vinylic monomer and non-fluorescent and NIR-fluorescent bisphosphonate micrometer-sized particles. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.11.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
58
|
Abstract
This chapter is focused on the iron metallome in eukaryotes at the cellular and subcellular level, including properties, utilization in metalloproteins, trafficking, storage, and regulation of these processes. Studies in the model eukaryote Saccharomyces cerevisiae and mammalian cells will be highlighted. The discussion of iron properties will center on the speciation and localization of intracellular iron as well as the cellular and molecular mechanisms for coping with both low iron bioavailability and iron toxicity. The section on iron metalloproteins will emphasize heme, iron-sulfur cluster, and non-heme iron centers, particularly their cellular roles and mechanisms of assembly. The section on iron uptake, trafficking, and storage will compare methods used by yeast and mammalian cells to import iron, how this iron is brought into various organelles, and types of iron storage proteins. Regulation of these processes will be compared between yeast and mammalian cells at the transcriptional, post-transcriptional, and post-translational levels.
Collapse
Affiliation(s)
- Adrienne C. Dlouhy
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Caryn E. Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
59
|
Dysregulation of IRP1-mediated iron metabolism causes gamma ray-specific radioresistance in leukemia cells. PLoS One 2012; 7:e48841. [PMID: 23155415 PMCID: PMC3498264 DOI: 10.1371/journal.pone.0048841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/01/2012] [Indexed: 12/20/2022] Open
Abstract
Iron is required for nearly all organisms, playing important roles in oxygen transport and many enzymatic reactions. Excess iron, however, can be cytotoxic. Emerging evidence suggests that radioresistance can be achieved in lower organisms by the protection of proteins, but not DNA, immediately following ionizing radiation (IR) exposure, allowing for improved DNA repair. One potential mechanism for protein protection is controlling and limiting the amount of free iron in cells, as has been demonstrated in the extremophile Deinococcus Radiodurans, reducing the potential for oxidative damage to proteins during exposure to IR. We found that iron regulatory protein 1 (IRP1) expression was markedly reduced in human myeloid leukemia HL60 cells resistant to low linear energy transfer (LET) gamma rays, but not to high LET alpha particles. Stable knockdown of IRP1 by short-hairpin RNA (shRNA) interference in radiosensitive parental cells led to radioresistance to low LET IR, reduced intracellular Fenton chemistry, reduced protein oxidation, and more rapid DNA double-strand break (DSB) repair. The mechanism of radioresistance appeared to be related to attenuated free radical-mediated cell death. Control of intracellular iron by IRPs may be a novel radioresistance mechanism in mammalian cells.
Collapse
|
60
|
Kanojia D, Zhou W, Zhang J, Jie C, Lo PK, Wang Q, Chen H. Proteomic profiling of cancer stem cells derived from primary tumors of HER2/Neu transgenic mice. Proteomics 2012; 12:3407-15. [PMID: 22997041 DOI: 10.1002/pmic.201200103] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/09/2012] [Accepted: 08/23/2012] [Indexed: 12/13/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression leads to mammary tumorigenesis and its elevated levels lead to increase in cancer stem cells (CSCs), invasion, and metastasis. CSCs are resistant to radiation/chemotherapeutic drugs and are believed to be responsible for recurrence/relapse of cancer. CSCs are isolated using flow cytometry based sorting, although reliable, this technology hinders the convenient identification of molecular targets of CSCs. Therefore to understand the molecular players of increased CSC through HER2 overexpression and to develop meaningful targets for combination therapy, we isolated and characterized breast CSCs through convenient tumorsphere culture. We identified the altered protein expression in CSC as compared to non-CSC using LC-MS/MS and confirmed those results using qRT-PCR and Western blotting. Ferritin heavy chain 1 (FTH1) was identified as a candidate gene, which is involved in iron metabolism and iron depletion significantly decreased the self-renewal of CSCs. We further performed in silico analysis of altered genes in tumorsphere and identified a set of genes (PTMA, S100A4, S100A6, TNXRD1, COX-1, COX-2, KRT14, and FTH1), representing possible molecular targets, which in combination showed a promise to be used as prognostic markers for breast cancer.
Collapse
Affiliation(s)
- Deepak Kanojia
- Department of Biological Science, Centre for Colon Cancer, University of South Carolina, Columbia, SC 29205, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Brenaut P, Bangera R, Bevilacqua C, Rebours E, Cebo C, Martin P. Validation of RNA isolated from milk fat globules to profile mammary epithelial cell expression during lactation and transcriptional response to a bacterial infection. J Dairy Sci 2012; 95:6130-44. [PMID: 22921620 DOI: 10.3168/jds.2012-5604] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/22/2012] [Indexed: 12/12/2022]
Abstract
Mastitis, an inflammation of the mammary gland, is the most costly infectious disease of dairy ruminants worldwide. Although it receives considerable attention, the early steps of the host response remain poorly defined. Here, we report a noninvasive method using milk fat globules (MFG) as a source of mammary RNA to follow the dynamics of the global transcriptional response of mammary epithelial cells (MEC) during the course of a bacterial infection. We first assessed that RNA isolated from MFG were representative of MEC RNA; we then evaluated whether MFG RNA could be used to monitor the MEC response to infection. Sufficiently high yields of good-quality RNA (RNA integrity numbers ranging between 6.7 and 8.7) were obtained from goat MFG for subsequent analyses. Contamination of MFG by macrophages and neutrophils, which can be trapped during creaming, was assessed and when using quantitative real-time PCR for cell-type specific markers, was shown to be weak enough (<8%) to affect MFG gene expression profiling. Using microarrays, we showed that RNA extracted from MFG and from mammary alveolar parenchyma shared approximately 90% of the highlighted probes corresponding in particular to genes encoding milk proteins (CSN, BLG, LALBA) and enzymes involved in milk fat synthesis and secretion (FASN, XDH, ADRP, SCD, and DGAT1). In addition, a gene involved in the acute-phase reaction, coding for the serum amyloid A3 (SAA3) protein, was found within the first 50 most highly expressed genes in a noninfectious context in both mammary alveolar parenchyma and MFG, strongly suggesting that SAA3 is expressed in MEC. We took advantage of this noninvasive RNA sampling to follow the early proinflammatory response of MEC during the course of a bacterial infection and showed that the levels of mRNA encoding SAA3 sharply increased at 24h postinfection. Taken together, our results demonstrate that MFG represent a unique source of MEC RNA to noninvasively sample sufficient amounts of high-quality RNA to assess the dynamics of MEC gene expression in vivo, especially during the first steps of infection, thereby paving the way for the discovery of early biomarkers for the control of intramammary infections. Furthermore, this noninvasive technique could be used to provide mammary transcriptomic data on a large scale, thus filling the gap between genomic and phenotypic data.
Collapse
Affiliation(s)
- P Brenaut
- INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, équipe «Lait, Génome & Santé» F-78350 Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
62
|
Pantopoulos K, Porwal SK, Tartakoff A, Devireddy L. Mechanisms of mammalian iron homeostasis. Biochemistry 2012; 51:5705-24. [PMID: 22703180 DOI: 10.1021/bi300752r] [Citation(s) in RCA: 425] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in the acquisition or distribution of the metal causes anemia, whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways as well as in mechanisms underlying intracellular iron trafficking, an important but less studied area of mammalian iron homeostasis.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
63
|
Daba A, Koromilas AE, Pantopoulos K. Alternative ferritin mRNA translation via internal initiation. RNA (NEW YORK, N.Y.) 2012; 18:547-556. [PMID: 22271759 PMCID: PMC3285941 DOI: 10.1261/rna.029322.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/08/2011] [Indexed: 05/31/2023]
Abstract
Ferritin stores and detoxifies an excess of intracellular iron, and thereby plays an important role in the metabolism of this metal. As unshielded iron promotes oxidative stress, ferritin is crucial in maintaining cellular redox balance and may also modulate cell growth, survival, and apoptosis. The expression of ferritin is controlled by transcriptional and post-transcriptional mechanisms. In light of the well-established transcriptional induction of ferritin by inflammatory signals, we examined how ferritin mRNA translation responds to stress conditions. We first used HT1080 fibrosarcoma cells engineered for coumermycin-inducible expression of PKR, a stress kinase that inhibits protein synthesis in virus-infected cells by phosphorylating eIF2α. In this setting, iron triggered partial ferritin mRNA translation despite a PKR-induced global shutdown in protein synthesis. Moreover, iron-mediated ferritin synthesis was evident in cells infected with an attenuated strain of poliovirus; when eIF4GI was cleaved, eIF2α was phosphorylated, and host protein synthesis was inhibited. Under global inhibition of protein synthesis or specific inhibition of ferritin mRNA translation in cells overexpressing PKR or IRP1, respectively, we demonstrate association of ferritin mRNA with heavy polysomes. Further experiments revealed that the 5' untranslated region (5' UTR) of ferritin mRNA contains a bona fide internal ribosomal entry site (IRES). Our data are consistent with the existence of an alternative, noncanonical mechanism for ferritin mRNA translation, which may primarily operate under stress conditions to protect cells from oxidative stress.
Collapse
Affiliation(s)
- Alina Daba
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec H2T 1E2, Canada
- Department of Medicine, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Antonis E. Koromilas
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec H2T 1E2, Canada
- Department of Oncology, McGill University, Montreal, Quebec H2W 1S6, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec H2T 1E2, Canada
- Department of Medicine, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
64
|
Aroun A, Zhong JL, Tyrrell RM, Pourzand C. Iron, oxidative stress and the example of solar ultraviolet A radiation. Photochem Photobiol Sci 2012; 11:118-34. [DOI: 10.1039/c1pp05204g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
65
|
Romney SJ, Newman BS, Thacker C, Leibold EA. HIF-1 regulates iron homeostasis in Caenorhabditis elegans by activation and inhibition of genes involved in iron uptake and storage. PLoS Genet 2011; 7:e1002394. [PMID: 22194696 PMCID: PMC3240588 DOI: 10.1371/journal.pgen.1002394] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 10/10/2011] [Indexed: 12/31/2022] Open
Abstract
Caenorhabditis elegans ftn-1 and ftn-2, which encode the iron-storage protein ferritin, are transcriptionally inhibited during iron deficiency in intestine. Intestinal specific transcription is dependent on binding of ELT-2 to GATA binding sites in an iron-dependent enhancer (IDE) located in ftn-1 and ftn-2 promoters, but the mechanism for iron regulation is unknown. Here, we identify HIF-1 (hypoxia-inducible factor -1) as a negative regulator of ferritin transcription. HIF-1 binds to hypoxia-response elements (HREs) in the IDE in vitro and in vivo. Depletion of hif-1 by RNA interference blocks transcriptional inhibition of ftn-1 and ftn-2 reporters, and ftn-1 and ftn-2 mRNAs are not regulated in a hif-1 null strain during iron deficiency. An IDE is also present in smf-3 encoding a protein homologous to mammalian divalent metal transporter-1. Unlike the ftn-1 IDE, the smf-3 IDE is required for HIF-1–dependent transcriptional activation of smf-3 during iron deficiency. We show that hif-1 null worms grown under iron limiting conditions are developmentally delayed and that depletion of FTN-1 and FTN-2 rescues this phenotype. These data show that HIF-1 regulates intestinal iron homeostasis during iron deficiency by activating and inhibiting genes involved in iron uptake and storage. Due to its presence in proteins involved in hemoglobin synthesis, DNA synthesis, and mitochondrial respiration, eukaryotic cells require iron for survival. Excess iron can lead to oxidative damage, while iron deficiency reduces cell growth and causes cell death. Dysregulation of iron homeostasis in humans caused by iron deficiency or excess leads to anemia, diabetes, and neurodegenerative disorders. All organisms have thus developed mechanisms to sense, acquire, and store iron. We use Caenorhabditis elegans as a model organism to study mechanisms of iron regulation. Our previous studies show that the iron-storage protein ferritin (FTN-1, FTN-2) is transcriptionally inhibited in intestine during iron deficiency, but the mechanisms regulating iron regulation are not known. Here, we find that hypoxia-inducible factor 1 (HIF-1) transcriptionally inhibits ftn-1 and ftn-2 during iron deficiency. We also show that HIF-1 activates the iron uptake gene smf-3. Transcriptional activation and inhibition by HIF-1 is dependent on an iron enhancer in the promoters of these genes. HIF-1 is a known transcriptional activator, but its role in transcriptional inhibition is not well understood. Our data show that HIF-1 regulates iron homeostasis by activating and inhibiting iron uptake and storage genes, and they provide insight into HIF-1 transcriptional inhibition.
Collapse
Affiliation(s)
- Steven Joshua Romney
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Ben S. Newman
- University of Washington, Seattle, Washington, United States of America
| | - Colin Thacker
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Elizabeth A. Leibold
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
66
|
Cai Q, Long J, Lu W, Qu S, Wen W, Kang D, Lee JY, Chen K, Shen H, Shen CY, Sung H, Matsuo K, Haiman CA, Khoo US, Ren Z, Iwasaki M, Gu K, Xiang YB, Choi JY, Park SK, Zhang L, Hu Z, Wu PE, Noh DY, Tajima K, Henderson BE, Chan KY, Su F, Kasuga Y, Wang W, Cheng JR, Yoo KY, Lee JY, Zheng H, Liu Y, Shieh YL, Kim SW, Lee JW, Iwata H, Le Marchand L, Chan SY, Xie X, Tsugane S, Lee MH, Wang S, Li G, Levy S, Huang B, Shi J, Delahanty R, Zheng Y, Li C, Gao YT, Shu XO, Zheng W. Genome-wide association study identifies breast cancer risk variant at 10q21.2: results from the Asia Breast Cancer Consortium. Hum Mol Genet 2011; 20:4991-9. [PMID: 21908515 PMCID: PMC3221542 DOI: 10.1093/hmg/ddr405] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/05/2011] [Indexed: 12/21/2022] Open
Abstract
Although approximately 20 common genetic susceptibility loci have been identified for breast cancer risk through genome-wide association studies (GWASs), genetic risk variants reported to date explain only a small fraction of heritability for this common cancer. We conducted a four-stage GWAS including 17 153 cases and 16 943 controls among East-Asian women to search for new genetic risk factors for breast cancer. After analyzing 684 457 SNPs in 2062 cases and 2066 controls (Stage I), we selected for replication among 5969 Chinese women (4146 cases and 1823 controls) the top 49 SNPs that had neither been reported previously nor were in strong linkage disequilibrium with reported SNPs (Stage II). Three SNPs were further evaluated in up to 13 152 Chinese and Japanese women (6436 cases and 6716 controls) (Stage III). Finally, two SNPs were evaluated in 10 847 Korean women (4509 cases and 6338 controls) (Stage IV). SNP rs10822013 on chromosome 10q21.2, located in the zinc finger protein 365 (ZNF365) gene, showed a consistent association with breast cancer risk in all four stages with a combined per-risk allele odds ratio of 1.10 (95% CI: 1.07-1.14) (P-value for trend = 5.87 × 10(-9)). In vitro electrophoretic mobility shift assays demonstrated the potential functional significance of rs10822013. Our results strongly implicate rs10822013 at 10q21.2 as a genetic risk variant for breast cancer among East-Asian women.
Collapse
Affiliation(s)
- Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and
| | - Wei Lu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Shimian Qu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and
| | - Daehee Kang
- Department of Biomedical Sciences
- Department of Preventive Medicine
- Cancer Research Institute and
| | | | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Nanjing Medical University, Nanjing, China
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Keitaro Matsuo
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Ui Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | | | - Motoki Iwasaki
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Kai Gu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | | | - Sue K. Park
- Department of Biomedical Sciences
- Department of Preventive Medicine
- Cancer Research Institute and
| | - Lina Zhang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Nanjing Medical University, Nanjing, China
| | - Pei-Ei Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Dong-Young Noh
- Cancer Research Institute and
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kazuo Tajima
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Kelvin Y.K. Chan
- Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | | | - Yoshio Kasuga
- Department of Surgery, Nagano Matsushiro General Hospital, Nagano, Japan
| | - Wenjing Wang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jia-Rong Cheng
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | | | - Jong-Young Lee
- Center for Genome Science, Korea National Institute of Health, KCDC, Osong Health Technology Administration Complex, Chungcheongbuk-do, Korea
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yao Liu
- Department of Epidemiology and Biostatistics, Nanjing Medical University, Nanjing, China
| | - Ya-Lan Shieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sung-Won Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jong Won Lee
- Department of Surgery, Ulsan University College of Medicine, Seoul, Korea
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Central Hospital, Nagoya, Japan
| | - Loic Le Marchand
- Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, HI, USA
| | - Sum Yin Chan
- Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | | | - Shoichiro Tsugane
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Min Hyuk Lee
- Department of Surgery, Soonchunhyang University Hospital, Korea and
| | - Shenming Wang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guoliang Li
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Bo Huang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and
| | - Jiajun Shi
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and
| | - Ryan Delahanty
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and
| | - Ying Zheng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Chun Li
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and
| |
Collapse
|
67
|
Borkowska A, Sielicka-Dudzin A, Herman-Antosiewicz A, Halon M, Wozniak M, Antosiewicz J. P66Shc mediated ferritin degradation--a novel mechanism of ROS formation. Free Radic Biol Med 2011; 51:658-63. [PMID: 21616139 DOI: 10.1016/j.freeradbiomed.2011.04.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/18/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
Abstract
Diallyl trisulfide (DATS) has been shown to induce the formation of reactive oxygen species (ROS) in prostate cancer cells, which was accompanied by a decrease in the ferritin protein level and an increase in the labile iron pool (LIP). However, the mechanism of the ferritin degradation has not been fully elucidated. In this paper we demonstrate that DATS-induced ROS formation depends on p66Shc. In cells stably expressing a dominant negative mutant of p66Shc (p66ShcS36A), DATS did not induce ROS formation. In addition, in cells expressing p66ShcS36A neither an increase in ferritin H degradation nor an increase in LIP were observed. Cells stably expressing p66ShcS36A also possess higher levels of ferritin H compared to PC-3 cells transfected with an empty vector. Moreover, DATS-induced G2/M arrest is completely abrogated in cells expressing p66ShcS36A. Mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) or p66Shc knockout mouse have been used to evaluate if p66Shc involvement in DATS-induced signaling is cell specific. DATS induced G2/M arrest in WT MEFs but had no effect in the p66Shc(-/-) cell line. Moreover, increases in LIP and ROS formation were significantly attenuated in p66Shc(-/-) MEFs treated with DATS.
Collapse
Affiliation(s)
- Andzelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland Poland
| | | | | | | | | | | |
Collapse
|
68
|
Abstract
Iron has a pivotal role in homeostasis due to its participation in virtually all of the body's oxidation-reduction processes. However, iron can also be considered a double-edged weapon, as its excess may lead to an increased risk of developing cancer, presumably by the generation of reactive oxygen species, and its role as substrate to enzymes that participate in cell proliferation. Thus, iron might as well be considered a cofactor in tumour cell proliferation. In certain pathological conditions, such as haemochromatosis, hepatitis B and C virus infection, asbestosis and endometriosis, iron overload may increase the risk of cancer. By contrast, iron depletion could be considered a useful adjunct in antitumour therapy. This paper reviews the current scientific evidence behind iron's role as a protumoral agent, and the potential benefit of a state of iron depletion in patients with cancer.
Collapse
|
69
|
Kurz T, Gustafsson B, Brunk UT. Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic Biol Med 2011; 50:1647-58. [PMID: 21419217 DOI: 10.1016/j.freeradbiomed.2011.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 02/24/2011] [Accepted: 03/08/2011] [Indexed: 12/19/2022]
Abstract
To test the consequences of lysosomal degradation of differently iron-loaded ferritin molecules and to mimic ferritin autophagy under iron-overload and normal conditions, J774 cells were allowed to endocytose heavily iron loaded ferritin, probably with some adventitious iron (Fe-Ft), or iron-free apo-ferritin (apo-Ft). When cells subsequently were exposed to a bolus dose of hydrogen peroxide, apo-Ft prevented lysosomal membrane permeabilization (LMP), whereas Fe-Ft enhanced LMP. A 4-h pulse of Fe-Ft initially increased oxidative stress-mediated LMP that was reversed after another 3h under standard culture conditions, suggesting that lysosomal iron is rapidly exported from lysosomes, with resulting upregulation of apo-ferritin that supposedly is autophagocytosed, thereby preventing LMP by binding intralysosomal redox-active iron. The obtained data suggest that upregulation of the stress protein ferritin is a rapid adaptive mechanism that counteracts LMP and ensuing apoptosis during oxidative stress. In addition, prolonged iron starvation was found to induce apoptotic cell death that, interestingly, was preceded by LMP, suggesting that LMP is a more general phenomenon in apoptosis than so far recognized. The findings provide new insights into aging and neurodegenerative diseases that are associated with enhanced amounts of cellular iron and show that lysosomal iron loading sensitizes to oxidative stress.
Collapse
Affiliation(s)
- Tino Kurz
- Division of Pharmacology, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
70
|
Shpyleva SI, Tryndyak VP, Kovalchuk O, Starlard-Davenport A, Chekhun VF, Beland FA, Pogribny IP. Role of ferritin alterations in human breast cancer cells. Breast Cancer Res Treat 2011; 126:63-71. [PMID: 20390345 DOI: 10.1007/s10549-010-0849-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/13/2010] [Indexed: 12/23/2022]
Abstract
Breast cancer is the most common malignancy in women. Successful treatment of breast cancer relies on a better understanding of the molecular mechanisms involved in breast cancer initiation and progression. Recent studies have suggested a crucial role of perturbations in ferritin levels and tightly associated with this, the deregulation of intracellular iron homeostasis; however, the underlying molecular mechanisms for the cancer-linked ferritin alterations remain largely unknown and often with conflicting conclusions. Therefore, this study was undertaken to define the role of ferritin in breast cancer. We determined that human breast cancer cells with an epithelial phenotype, such as MCF-7, MDA-MB-361, T-47D, HCC70 and cells, expressed low levels of ferritin light chain, ferritin heavy chain, transferrin, transferring receptor, and iron-regulatory proteins 1 and 2. In contrast, expression of these proteins was substantially elevated in breast cancer cells with an aggressive mesenchymal phenotype, such as Hs-578T, BT-549, and especially MDA-MB-231 cells. The up-regulation of ferritin light chain and ferritin heavy chain in MDA-MB-231 cells was accompanied by alterations in the subcellular distribution of these proteins as characterized by an increased level of nuclear ferritin and a lower level of the cellular labile iron pool as compared to MCF-7 cells. We established that ferritin heavy chain is a target of miRNA miR-200b, suggesting that its up-regulation in MDA-MB-231 cells may be triggered by the low expression of miR-200b. Ectopic up-regulation of miR-200b by transfection of MDA-MB-231 cells with miR-200b substantially decreased the level of ferritin heavy chain. More importantly, miR-200b-induced down-regulation of ferritin was associated with an increased sensitivity of the MDA-MB-231 cells to the chemotherapeutic agent doxorubicin. These results suggest that perturbations in ferritin levels are associated with the progression of breast cancer toward a more advanced malignant phenotype.
Collapse
Affiliation(s)
- Svitlana I Shpyleva
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron–sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance.
Collapse
|
72
|
Ayşe IG, Zafer A, Sule O, Işil IT, Kalkan T. Differentiation of K562 cells under ELF-EMF applied at different time courses. Electromagn Biol Med 2011; 29:122-30. [PMID: 20707646 DOI: 10.3109/15368378.2010.502451] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The time-course of ELF-EMF application to biological systems is thought to be an important parameter determining the physiological outcome. This study investigated the effect of ELF-EMF on the differentiation of K562 cells at different time courses. ELF-EMF (50 Hz, 5 mT, 1 h) was applied at two different time-courses; first at the onset of hemin induction for 1 h, and second, daily 1 h for four days. While single exposure to ELF-EMF resulted in a decrease in differentiation, ELF-EMF applied everyday for 1 h caused an increase in differentiation. The effect of co-stressors, magnesium, and heat-shock was also determined and similar results were obtained. ELF-EMF increased ROS levels in K562 cells not treated with hemin, however did not change ROS levels of hemin treated cells indicating that ROS was not the cause. Overall, these results imply that the time-course of application is an important parameter determining the physiological response of cells to ELF-EMF.
Collapse
Affiliation(s)
- Inhan-Garip Ayşe
- Department of Biophysics, Marmara University School of Medicine, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
73
|
Xi L, Xu K, Qiao Y, Qu S, Zhang Z, Dai W. Differential expression of ferritin genes in response to abiotic stresses and hormones in pear (Pyrus pyrifolia). Mol Biol Rep 2010; 38:4405-13. [DOI: 10.1007/s11033-010-0568-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
74
|
Recalcati S, Minotti G, Cairo G. Iron regulatory proteins: from molecular mechanisms to drug development. Antioxid Redox Signal 2010; 13:1593-616. [PMID: 20214491 DOI: 10.1089/ars.2009.2983] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Eukaryotic cells require iron for survival but, as an excess of poorly liganded iron can lead to the catalytic production of toxic radicals that can damage cell structures, regulatory mechanisms have been developed to maintain appropriate cell and body iron levels. The interactions of iron responsive elements (IREs) with iron regulatory proteins (IRPs) coordinately regulate the expression of the genes involved in iron uptake, use, storage, and export at the post-transcriptional level, and represent the main regulatory network controlling cell iron homeostasis. IRP1 and IRP2 are similar (but not identical) proteins with partially overlapping and complementary functions, and control cell iron metabolism by binding to IREs (i.e., conserved RNA stem-loops located in the untranslated regions of a dozen mRNAs directly or indirectly related to iron metabolism). The discovery of the presence of IREs in a number of other mRNAs has extended our knowledge of the influence of the IRE/IRP regulatory network to new metabolic pathways, and it has been recently learned that an increasing number of agents and physiopathological conditions impinge on the IRE/IRP system. This review focuses on recent findings concerning the IRP-mediated regulation of iron homeostasis, its alterations in disease, and new research directions to be explored in the near future.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Human Morphology and Biomedical Sciences Città Studi, University of Milan, Milano, Italy
| | | | | |
Collapse
|
75
|
Bonnefont-Rousselot D, Collin F. Melatonin: Action as antioxidant and potential applications in human disease and aging. Toxicology 2010; 278:55-67. [DOI: 10.1016/j.tox.2010.04.008] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 04/09/2010] [Accepted: 04/16/2010] [Indexed: 12/14/2022]
|
76
|
Wu C, Zhang W, Mai K, Xu W, Wang X, Ma H, Liufu Z. Transcriptional up-regulation of a novel ferritin homolog in abalone Haliotis discus hannai Ino by dietary iron. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:424-32. [PMID: 20647051 DOI: 10.1016/j.cbpc.2010.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/08/2010] [Accepted: 07/11/2010] [Indexed: 01/08/2023]
Abstract
A novel cDNA encoding ferritin (HdhNFT) was cloned from the hepatopancreas of abalone, Haliotis discus hannai Ino. The deduced protein contains 171 amino acid residues with a predicted molecular mass (MW) about 19.8 kDa and theoretical isoelectric point (pI) of 4.792. Amino acid alignment revealed that HdhNFT shared high similarity with other known ferritins. The HdhNFT contained a highly conserved motif for the ferroxidase center, which consists of seven residues of a typical vertebrate heavy-chain ferritin with a typical stem-loop structure. HdhNFT mRNA contains a 27 bp iron-responsive element (IRE) in the 5'-untranslated region. This IRE exhibited 82.14% similarity with abalone H. discus discus and 78.57% similarity with Pacific oyster Crassostrea gigas IREs. By real-time PCR assays, the mRNA transcripts of HdhNFT were found to be higher expressed in kidney, hepatopancreas, gill, mantle and muscle than in haemocytes and gonad. Moreover, mRNA expression levels of HdhNFT in the hepatopancreas and haemocytes were measured by real-time PCR in abalone fed with graded levels of dietary iron (29.2, 65.7, 1267.2 and 6264.7 mg/kg). Results showed that the expression of the HdhNFT mRNA increased with dietary iron contents. Furthermore, the maximum value of the HdhNFT mRNA was found in the treatment with 6264.7 mg/kg of dietary iron. These data indicated that dietary iron can up-regulate HdhNFT at transcriptional level in abalone.
Collapse
Affiliation(s)
- Chenglong Wu
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, PR China
| | | | | | | | | | | | | |
Collapse
|
77
|
Zhao G. Phytoferritin and its implications for human health and nutrition. Biochim Biophys Acta Gen Subj 2010; 1800:815-23. [DOI: 10.1016/j.bbagen.2010.01.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 01/15/2010] [Accepted: 01/18/2010] [Indexed: 01/02/2023]
|
78
|
Zheng WJ, Hu YH, Sun L. Identification and analysis of a Scophthalmus maximus ferritin that is regulated at transcription level by oxidative stress and bacterial infection. Comp Biochem Physiol B Biochem Mol Biol 2010; 156:222-8. [DOI: 10.1016/j.cbpb.2010.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/29/2010] [Accepted: 03/29/2010] [Indexed: 02/01/2023]
|
79
|
Hu YH, Zheng WJ, Sun L. Identification and molecular analysis of a ferritin subunit from red drum (Sciaenops ocellatus). FISH & SHELLFISH IMMUNOLOGY 2010; 28:678-686. [PMID: 20064620 DOI: 10.1016/j.fsi.2010.01.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 12/23/2009] [Accepted: 01/03/2010] [Indexed: 05/28/2023]
Abstract
Ferritin is a conserved iron binding protein existing ubiquitously in prokaryotes and eukaryotes. In this study, the gene encoding a ferritin M subunit homologue (SoFer1) was cloned from red drum (Sciaenops ocellatus) and analyzed at expression and functional levels. The open reading frame of SoFer1 is 531 bp and preceded by a 5'-untranslated region that contains a putative Iron Regulatory Element (IRE) preserved in many ferritins. The deduced amino acid sequence of SoFer1 possesses both the ferroxidase center of mammalian H ferritin and the iron nucleation site of mammalian L ferritin. Expression of SoFer1 was tissue specific and responded positively to experimental challenges with Gram-positive and Gram-negative fish pathogens. Treatment of red drum liver cells with iron, copper, and oxidant significantly upregulated the expression of SoFer1 in time-dependent manners. To further examine the potential role of SoFer1 in antioxidation, red drum liver cells transfected transiently with SoFer1 were prepared. Compared to control cells, SoFer1 transfectants exhibited reduced production of reactive oxygen species following H(2)O(2) challenge. Finally, to examine the iron binding potential of SoFer1, SoFer1 was expressed in and purified from Escherichia coli as a recombinant protein. Iron-chelating analysis showed that purified recombinant SoFer1 was capable of iron binding. Taken together, these results suggest that SoFer1 is likely to be a functional ferritin involved in iron sequestration, host immune defence against bacterial infection, and antioxidation.
Collapse
Affiliation(s)
- Yong-hua Hu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | |
Collapse
|
80
|
Pham DQD, Winzerling JJ. Insect ferritins: Typical or atypical? Biochim Biophys Acta Gen Subj 2010; 1800:824-33. [PMID: 20230873 DOI: 10.1016/j.bbagen.2010.03.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/22/2010] [Accepted: 03/07/2010] [Indexed: 02/07/2023]
Abstract
Insects transmit millions of cases of disease each year, and cost millions of dollars in agricultural losses. The control of insect-borne diseases is vital for numerous developing countries, and the management of agricultural insect pests is a very serious business for developed countries. Control methods should target insect-specific traits in order to avoid non-target effects, especially in mammals. Since insect cells have had a billion years of evolutionary divergence from those of vertebrates, they differ in many ways that might be promising for the insect control field-especially, in iron metabolism because current studies have indicated that significant differences exist between insect and mammalian systems. Insect iron metabolism differs from that of vertebrates in the following respects. Insect ferritins have a heavier mass than mammalian ferritins. Unlike their mammalian counterparts, the insect ferritin subunits are often glycosylated and are synthesized with a signal peptide. The crystal structure of insect ferritin also shows a tetrahedral symmetry consisting of 12 heavy chain and 12 light chain subunits in contrast to that of mammalian ferritin that exhibits an octahedral symmetry made of 24 heavy chain and 24 light chain subunits. Insect ferritins associate primarily with the vacuolar system and serve as iron transporters-quite the opposite of the mammalian ferritins, which are mainly cytoplasmic and serve as iron storage proteins. This review will discuss these differences.
Collapse
Affiliation(s)
- Daphne Q D Pham
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 531412000, USA
| | | |
Collapse
|
81
|
Transport of iron chelators and chelates across MDCK cell monolayers: implications for iron excretion during chelation therapy. Int J Hematol 2010; 91:401-12. [PMID: 20213118 DOI: 10.1007/s12185-010-0510-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/29/2009] [Accepted: 01/25/2010] [Indexed: 12/17/2022]
Abstract
Iron chelators are effective at removing iron from the body in iron overload, but little is known about the handling of iron chelates by the kidney. We studied the transport of deferoxamine, deferasirox, and three hydroxypyridones, and their iron chelates, in polarized renal epithelial MDCK cells growing on Transwell inserts. Directional iron efflux was also studied in (59)Fe-loaded cells. The chelators were transported at comparable rates in the apical and basolateral directions and moved faster than their corresponding chelates, except for deferoxamine, which did not move from the basolateral to the apical side. In contrast, the chelates were transported faster in the apical-to-basolateral direction. More permeable chelators were more efficient at removing iron from iron-loaded cells compared with deferoxamine. Iron is preferentially removed from the basolateral side, and kinetic modeling suggests facilitated diffusion of chelates in some cases. Basolateral iron efflux is temperature-dependent and partially sensitive to ATP depletion. Polarized transport of chelates suggests the kidney may be involved in reabsorption of iron bound to chelators, with a temperature-sensitive facilitated removal of some iron complexes from the basolateral side. Further studies are warranted to determine if these processes may contribute to the observed nephrotoxicity of some iron chelators.
Collapse
|
82
|
Arosio P, Levi S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta Gen Subj 2010; 1800:783-92. [PMID: 20176086 DOI: 10.1016/j.bbagen.2010.02.005] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/10/2010] [Accepted: 02/15/2010] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ferritin structure is designed to maintain large amounts of iron in a compact and bioavailable form in solution. All ferritins induce fast Fe(II) oxidation in a reaction catalyzed by a ferroxidase center that consumes Fe(II) and peroxides, the reagents that produce toxic free radicals in the Fenton reaction, and thus have anti-oxidant effects. Cytosolic ferritins are composed of the H- and L-chains, whose expression are regulated by iron at a post-transcriptional level and by oxidative stress at a transcriptional level. The regulation of mitochondrial ferritin expression is presently unclear. SCOPE OF REVIEW The scope of the review is to update recent progress regarding the role of ferritins in the regulation of cellular iron and in the response to oxidative stress with particular attention paid to the new roles described for cytosolic ferritins, to genetic disorders caused by mutations of the ferritin L-chain, and new findings on mitochondrial ferritin. MAJOR CONCLUSIONS The new data on the adult conditional knockout (KO) mice for the H-chain and on the hereditary ferritinopathies with mutations that reduce ferritin functionality strongly indicate that the major role of ferritins is to protect from the oxidative damage caused by iron deregulation. In addition, the study of mitochondrial ferritin, which is not iron-regulated, indicates that it participates in the protection against oxidative damage, particularly in cells with high oxidative activity. GENERAL SIGNIFICANCE Ferritins have a central role in the protection against oxidative damage, but they are also involved in non-iron-dependent processes.
Collapse
Affiliation(s)
- Paolo Arosio
- Department of Chemistry, Faculty of Medicine, University of Brescia, Viale Europa 11, 25125 Brescia, Italy.
| | | |
Collapse
|
83
|
Luo W, Ma YM, Quinn PJ, Hider RC, Liu ZD. Design, synthesis and properties of novel iron(III)-specific fluorescent probes. J Pharm Pharmacol 2010; 56:529-36. [PMID: 15099448 DOI: 10.1211/0022357023196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Bidentate chelators such as hydroxypyridinones and hydroxypyranones are highly iron selective. The synthesis of two novel fluorescent probes N-[2-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl)ethyl]-2-(7-methoxy-2-oxo-2H-chromen-4-yl)acetamide (CP600) and N-[(3-hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)methyl]-2-(7-methoxy-2-oxo-2H-chromen-4-yl)acetamide (CP610) is reported. The method involves coupling the bidentate ligands, 3-hydroxypyridin-4-one and 3-hydroxypyran-4-one, with the well-characterised fluorescent probe methoxycoumarin. Fluorescence emission of both probes at 380 nm is readily quenched by Fe3+. The fluorescence was quenched to a greater extent by Fe3+ than by Mn2+, Co2+, Zn2+, Ca2+, Mg2+, Na+ and K+ and to approximately the same extent as Cu2+. Comparison of the fluorescence-quenching ability by a range of metal ions on CP600 and CP610 and the hexadentate chelator, calcein, under in-vitro conditions, demonstrated advantages of the two novel fluorescent probes with respect to both iron(III) sensitivity and selectivity. Chelation of iron(III) by CP600 and CP610 leads to the formation of a complex with a metal-to-ligand ratio of 1:3. Fluorescence is quenched on formation of such complexes. These probes possess a molecular weight less than 400 and thus they are predicted to permeate biological membranes by passive diffusion, and have potential for reporting intracellular organelle labile iron levels.
Collapse
Affiliation(s)
- Wei Luo
- Department of Pharmacy, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NN, UK
| | | | | | | | | |
Collapse
|
84
|
Glutathione S-transferase gene deletions and their effect on iron status in HbE/beta thalassemia patients. Ann Hematol 2009; 89:411-4. [PMID: 19838709 DOI: 10.1007/s00277-009-0847-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
Abstract
Iron overload and oxidative stress are main pathophysiological features of HbE/beta thalassemia patients. Glutathione S-transferase genes (GSTT1 and GSTM1) are well known detoxification agents, and any mutation in the gene is known to cause oxidative damage. This study was aimed to compare the prevalence of GST deletions in 240 HbE/beta thalassemia patients with 100 controls and to determine role of deletions on iron overload. We observed significantly higher frequency of GSTT1 (P = 0.001) and GSTT1/GSTM1 (P = 0.03) in comparison to controls. Patients who had null genotype for both the alleles, i.e., GSTT1/GSTM1 had significantly higher levels of serum iron (P = 0.007) and serum ferritin (P = 0.001) than patients with normal genotype for GST deletions. This is the first study to prove the role of GST gene deletions with iron overload in HbE/beta thalassemia.
Collapse
|
85
|
Lu Z, Nie G, Li Y, Soe-Lin S, Tao Y, Cao Y, Zhang Z, Liu N, Ponka P, Zhao B. Overexpression of mitochondrial ferritin sensitizes cells to oxidative stress via an iron-mediated mechanism. Antioxid Redox Signal 2009; 11:1791-803. [PMID: 19271990 DOI: 10.1089/ars.2008.2306] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondrial ferritin (MtFt) is a newly identified H-ferritin-like protein expressed only in mitochondria. Previous studies have shown that its overexpression markedly affects intracellular iron homeostasis and rescues defects caused by frataxin deficiency. To assess how MtFt exerts its function under oxidative stress conditions, MtFt overexpressing cells were treated with tert-butyl-hydroperoxide (tBHP), and the effects of MtFt expression on cell survival and iron homeostasis were examined. We found that MtFt expression was associated with decreased mitochondrial metabolic activity and reduced glutathione levels as well as a concomitant increase in reactive oxygen species levels and apoptosis. Moreover, mechanistic studies demonstrated that tBHP treatment led to a prolonged decrease in cytosolic ferritins levels in MtFt-expressing cells, while ferritin levels recovered to basal levels in control counterparts. tBHP treatment also resulted in elevated transferrin receptors, followed by more iron acquisition in MtFt expressing cells. The high molecular weight desferrioxamine, targeting to lysosomes, as well as the hydrophobic iron chelator salicylaldehyde isonicotinoyl hydrazone significantly attenuated tBHP-induced cell damage. In conclusion, the current study indicates that both the newly acquired iron from the extracellular environment and internal iron redistribution from ferritin degradation may be responsible for the increased sensitivity to oxidative stress in MtFt-expressing cells.
Collapse
Affiliation(s)
- Zhongbing Lu
- State Key Laboratory of Brain and Recognition Laboratory, Institute of Biophysics, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Zhang KH, Tian HY, Gao X, Lei WW, Hu Y, Wang DM, Pan XC, Yu ML, Xu GJ, Zhao FK, Song JG. Ferritin heavy chain-mediated iron homeostasis and subsequent increased reactive oxygen species production are essential for epithelial-mesenchymal transition. Cancer Res 2009; 69:5340-8. [PMID: 19531652 DOI: 10.1158/0008-5472.can-09-0112] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epithelial-mesenchymal transition (EMT) plays a critical role in tumor progression. To obtain a broad view of the molecules involved in EMT, we carried out a comparative proteomic analysis of transforming growth factor-beta1 (TGF-beta1)-induced EMT in AML-12 murine hepatocytes. A total of 36 proteins with significant alterations in abundance were identified. Among these proteins, ferritin heavy chain (FHC), a cellular iron storage protein, was characterized as a novel modulator in TGF-beta1-induced EMT. In response to TGF-beta1, there was a dramatic decrease in the FHC levels, which caused iron release from FHC and, therefore, increased the intracellular labile iron pool (LIP). Abolishing the increase in LIP blocked TGF-beta1-induced EMT. In addition, increased LIP levels promoted the production of reactive oxygen species (ROS), which in turn activated p38 mitogen-activated protein kinase. The elimination of ROS inhibited EMT, whereas H2O2 treatment rescued TGF-beta1-induced EMT in cells in which the LIP increase was abrogated. Overexpression of exogenous FHC attenuated the increases in LIP and ROS production, leading to a suppression of EMT. We also showed that TGF-beta1-mediated down-regulation of FHC occurs via 3' untranslated region-dependent repression of the translation of FHC mRNA. Moreover, we found that FHC down-regulation is an event that occurs between the early and highly invasive advanced stages in esophageal adenocarcinoma and that depletion of LIP or ROS suppresses the migration of tumor cells. Our data show that cellular iron homeostasis regulated by FHC plays a critical role in TGF-beta1-induced EMT.
Collapse
Affiliation(s)
- Ke-Hua Zhang
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Kiessling MK, Klemke CD, Kaminski MM, Galani IE, Krammer PH, Gülow K. Inhibition of constitutively activated nuclear factor-kappaB induces reactive oxygen species- and iron-dependent cell death in cutaneous T-cell lymphoma. Cancer Res 2009; 69:2365-74. [PMID: 19258503 DOI: 10.1158/0008-5472.can-08-3221] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant signaling of the nuclear facotr (NF-kappaB) pathway has been identified as a mediator of survival and apoptosis resistance in leukemias and lymphomas. Here, we report that cell death of cutaneous T-cell lymphoma cell lines induced by inhibition of the NF-kappaB pathway is independent of caspases or classic death receptors. We found that free intracellular iron and reactive oxygen species (ROS) are the main mediators of this cell death. Antioxidants such as N-Acetyl-l-cysteine and glutathione or the iron chelator desferrioxamine effectively block cell death in cutaneous T-cell lymphoma cell lines or primary T cells from Sézary patients. We show that inhibition of constitutively active NF-kappaB causes down-regulation of ferritin heavy chain (FHC) that leads to an increase of free intracellular iron, which, in turn, induces massive generation of ROS. Furthermore, direct down-regulation of FHC by siRNA caused a ROS-dependent cell death. Finally, high concentrations of ROS induce cell death of malignant T cells. In contrast, T cells isolated from healthy donors do not display down-regulation of FHC and, therefore, do not show an increase in iron and cell death upon NF-kappaB inhibition. In addition, in a murine T-cell lymphoma model, we show that inhibition of NF-kappaB and subsequent down-regulation of FHC significantly delays tumor growth in vivo. Thus, our results promote FHC as a potential target for effective therapy in lymphomas with aberrant NF-kappaB signaling.
Collapse
Affiliation(s)
- Michael K Kiessling
- Tumor Immunology Program, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
88
|
Sakamoto K, Iwasaki K, Sugiyama H, Tsuji Y. Role of the tumor suppressor PTEN in antioxidant responsive element-mediated transcription and associated histone modifications. Mol Biol Cell 2009; 20:1606-17. [PMID: 19158375 DOI: 10.1091/mbc.e08-07-0762] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coordinated regulation of PI3-kinase (PI3K) and the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) plays a pivotal role in various cell functions. PTEN is deficient in many cancer cells, including Jurkat human leukemia. Here, we demonstrate that the status of PTEN determines cellular susceptibility to oxidative stress through antioxidant-responsive element (ARE)-mediated transcription of detoxification genes. We found that ferritin H transcription was robustly induced in tert-butylhydroquinone (t-BHQ)-treated Jurkat cells via an ARE, and it was due to PTEN deficiency. Chromatin immunoprecipitation assays revealed that p300/CREB-binding protein (CBP) histone acetyltransferases and Nrf2 recruitment to the ARE and Bach1 release were blocked by the PI3K inhibitor LY294002, along with the partial inhibition of Nrf2 nuclear accumulation. Furthermore, acetylations of histone H3 Lys9 and Lys18, and deacetylation of Lys14 were associated with the PI3K-dependent ARE activation. Consistently, PTEN restoration in Jurkat cells inhibited t-BHQ-mediated expression of ferritin H and another ARE-regulated gene NAD(P)H:quinone oxidoreductase 1. Conversely, PTEN knockdown in K562 cells enhanced the response to t-BHQ. The PTEN status under t-BHQ treatment affected hydrogen peroxide-mediated caspase-3 cleavage. The PI3K-dependent ferritin H induction was observed by treatment with other ARE-activating agents ethoxyquin and hemin. Collectively, the status of PTEN determines chromatin modifications leading to ARE activation.
Collapse
Affiliation(s)
- Kensuke Sakamoto
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
89
|
Zhang F, Wang W, Tsuji Y, Torti SV, Torti FM. Post-transcriptional modulation of iron homeostasis during p53-dependent growth arrest. J Biol Chem 2008; 283:33911-8. [PMID: 18819919 DOI: 10.1074/jbc.m806432200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Iron plays an essential role in cell proliferation and is a required cofactor for a number of critical cellular enzymes. In this report we investigate changes in proteins of iron metabolism during p53-mediated replicative arrest. Following the induction of p53 in H1299 lung cancer cells containing a doxycycline-inducible p53, an increase in both H and L subunits of ferritin protein was observed. To determine the mechanism of this effect, we investigated the ability of p53 to regulate ferritin. Real time reverse transcription-PCR demonstrated no difference in levels of ferritin H mRNA in the presence and absence of p53. Because these results suggested that transcriptional mechanisms were not responsible for the p53-dependent increase in ferritin, we tested whether a post-transcriptional mechanism was involved. RNA bandshift assays revealed that induction of p53 decreased iron regulatory protein binding. Consistent with this observation, Western blot analysis revealed a decline in transferrin receptor 1 protein levels following induction of p53. Collectively, these results suggest that p53 may induce cell cycle arrest not only by well described mechanisms involving the induction of cyclin-dependent kinase inhibitors but also by the recruitment of pathways that reduce the availability of intracellular iron.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cancer Biology, Wake Forest University, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
90
|
Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta Gen Subj 2008; 1790:589-99. [PMID: 18929623 DOI: 10.1016/j.bbagen.2008.09.004] [Citation(s) in RCA: 632] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/28/2008] [Accepted: 09/09/2008] [Indexed: 01/19/2023]
Abstract
Ferritins are characterized by highly conserved three-dimensional structures similar to spherical shells, designed to accommodate large amounts of iron in a safe, soluble and bioavailable form. They can have different architectures with 12 or 24 equivalent or non-equivalent subunits, all surrounding a large cavity. All ferritins readily interact with Fe(II) to induce its oxidation and deposition in the cavity in a mineral form, in a reaction that is catalyzed by a ferroxidase center. This is an anti-oxidant activity that consumes Fe(II) and peroxides, the reagents that produce toxic free radicals in the Fenton reaction. The mechanism of ferritin iron incorporation has been characterized in detail, while that of iron release and recycling has been less thoroughly studied. Generally ferritin expression is regulated by iron and by oxidative damage, and in vertebrates it has a central role in the control of cellular iron homeostasis. Ferritin is mostly cytosolic but is found also in mammalian mitochondria and nuclei, in plant plastids and is secreted in insects. In vertebrates the cytosolic ferritins are composed of H and L subunit types and their assembly in a tissues specific ratio that permits flexibility to adapt to cell needs. The H-ferritin can translocate to the nuclei in some cell types to protect DNA from iron toxicity, or can be actively secreted, accomplishing various functions. The mitochondrial ferritin is found in mammals, it has a restricted tissue distribution and it seems to protect the mitochondria from iron toxicity and oxidative damage. The various functions attributed to the cytosolic, nuclear, secretory and mitochondrial ferritins are discussed.
Collapse
|
91
|
Ferritin iron content in haemodialysis patients: Comparison with septic and hemochromatosis patients. Clin Biochem 2008; 41:997-1001. [DOI: 10.1016/j.clinbiochem.2008.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/28/2008] [Accepted: 05/12/2008] [Indexed: 11/23/2022]
|
92
|
Bitoun JP, Wu G, Ding H. Escherichia coli FtnA acts as an iron buffer for re-assembly of iron-sulfur clusters in response to hydrogen peroxide stress. Biometals 2008; 21:693-703. [PMID: 18618270 DOI: 10.1007/s10534-008-9154-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
Iron-sulfur clusters are one of the most ubiquitous redox centers in biology. Ironically, iron-sulfur clusters are highly sensitive to reactive oxygen species. Disruption of iron-sulfur clusters will not only change the activity of proteins that host iron-sulfur clusters, the iron released from the disrupted iron-sulfur clusters will further promote the production of deleterious hydroxyl free radicals via the Fenton reaction. Here, we report that ferritin A (FtnA), a major iron-storage protein in Escherichia coli, is able to scavenge the iron released from the disrupted iron-sulfur clusters and alleviates the production of hydroxyl free radicals. Furthermore, we find that the iron stored in FtnA can be retrieved by an iron chaperon IscA for the re-assembly of the iron-sulfur cluster in a proposed scaffold IscU in the presence of the thioredoxin reductase system which emulates normal intracellular redox potential. The results suggest that E. coli FtnA may act as an iron buffer to sequester the iron released from the disrupted iron-sulfur clusters under oxidative stress conditions and to facilitate the re-assembly of the disrupted iron-sulfur clusters under normal physiological conditions.
Collapse
Affiliation(s)
- Jacob P Bitoun
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
93
|
MacKenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:997-1030. [PMID: 18327971 PMCID: PMC2932529 DOI: 10.1089/ars.2007.1893] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 12/21/2022]
Abstract
Maintenance of proper "labile iron" levels is a critical component in preserving homeostasis. Iron is a vital element that is a constituent of a number of important macromolecules, including those involved in energy production, respiration, DNA synthesis, and metabolism; however, excess "labile iron" is potentially detrimental to the cell or organism or both because of its propensity to participate in oxidation-reduction reactions that generate harmful free radicals. Because of this dual nature, elaborate systems tightly control the concentration of available iron. Perturbation of normal physiologic iron concentrations may be both a cause and a consequence of cellular damage and disease states. This review highlights the molecular mechanisms responsible for regulation of iron absorption, transport, and storage through the roles of key regulatory proteins, including ferroportin, hepcidin, ferritin, and frataxin. In addition, we present an overview of the relation between iron regulation and oxidative stress and we discuss the role of functional iron overload in the pathogenesis of hemochromatosis, neurodegeneration, and inflammation.
Collapse
Affiliation(s)
- Elizabeth L MacKenzie
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
94
|
Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 2008; 108:1517-49. [PMID: 18426241 DOI: 10.1021/cr078203u] [Citation(s) in RCA: 1559] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Emily L Que
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
95
|
MacKenzie EL, Tsuji Y. Elevated intracellular calcium increases ferritin H expression through an NFAT-independent post-transcriptional mechanism involving mRNA stabilization. Biochem J 2008; 411:107-13. [PMID: 18076382 PMCID: PMC2702759 DOI: 10.1042/bj20071544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An increase in intracellular Ca2+ is one of the initiating events in T-cell activation. A calcium-mediated signalling cascade in T-cells involves activation of calcineurin and the dephosphorylation and translocation of NFAT (nuclear factor of activated T-cells), resulting in the transcriptional activation of target genes such as IL-2 (interleukin-2). In the present study, we found that increased intracellular calcium leads to induction of the antioxidant protein ferritin H. We previously reported that the ferritin H gene is transcriptionally activated under oxidative stress conditions through an ARE (antioxidant-responsive element). The facts that the ferritin H ARE contains a composite AP-1 (activator protein 1) site and that NFAT collaborates with AP-1 transcription factors led us to test whether calcium-activated NFAT is involved in the ferritin H induction through the ARE. Treatment of Jurkat T-cells with the calcium ionophore, ionomycin, increased ferritin H mRNA and protein expression. Although NFAT translocated to the nucleus and bound a consensus NFAT sequence located in the IL-2 promoter after ionomycin treatment, it did not activate ferritin H transcription despite the presence of a putative NFAT-binding sequence in the ferritin H ARE. In addition, the calcineurin inhibitor cyclosporin A treatment blocked ionomycin-mediated NFAT nuclear translocation but failed to abrogate the increase in ferritin H mRNA. Analysis of mRNA stability after actinomycin D treatment revealed that ionomycin prolongs ferritin H mRNA half-life. Taken together, these results suggest that ionomycin-mediated induction of ferritin H may occur in an NFAT-independent manner but through post-transcriptional stabilization of the ferritin H mRNA.
Collapse
Affiliation(s)
- Elizabeth L. MacKenzie
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Yoshiaki Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
96
|
Gu JM, Lim SO, Oh SJ, Yoon SM, Seong JK, Jung G. HBx modulates iron regulatory protein 1-mediated iron metabolism via reactive oxygen species. Virus Res 2008; 133:167-77. [PMID: 18262302 DOI: 10.1016/j.virusres.2007.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 12/21/2007] [Accepted: 12/24/2007] [Indexed: 10/22/2022]
Abstract
Hepatitis B virus X protein (HBx) is involved in viral metabolism and progression of liver disease. Iron metabolism plays a significant role in liver disease. In this report, to elucidate the relationship between iron metabolism and HBx, we established the Huh7 cell lines in which HBx was stably expressed (Huh7-HBx). In Huh7-HBx, we observed that transferrin receptor 1 (TfR1) expression decreased and ferritin heavy chain (FtH) expression increased as well as reactive oxygen species (ROS) level increased. We also found that these modulations were caused by the downregulation of iron regulatory protein 1 (IRP1). Furthermore, the levels of total iron and labile iron pool (LIP) were altered in Huh7-HBx. In addition, antioxidant N-acetylcystein (NaC) increased IRP1 expression by depleting HBx-induced ROS. We also confirmed these alterations of TfR1 and FtH in the primary hepatocytes of HBx transgenic mice and in HepG2.2.15 cells that constitutively replicate the intact HBV genome. In conclusion, these results suggest that HBx modulates iron metabolism via ROS leading to pathological status in liver diseases.
Collapse
Affiliation(s)
- Jin-Mo Gu
- Department of Biological Sciences, Seoul National University, 56-1 Shillim-dong, Kwanak-gu, Seoul 151-747, Republic of Korea
| | | | | | | | | | | |
Collapse
|
97
|
p53-Mediated downregulation of H ferritin promoter transcriptional efficiency via NF-Y. Int J Biochem Cell Biol 2008; 40:2110-9. [DOI: 10.1016/j.biocel.2008.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/07/2008] [Accepted: 02/11/2008] [Indexed: 11/20/2022]
|
98
|
Abstract
Iron is required for key cellular functions, and there is a strong link between iron metabolism and important metabolic processes, such as cell growth, apoptosis and inflammation. Diseases that are directly or indirectly related to iron metabolism represent major health problems. Iron-regulatory proteins (IRPs) 1 and 2 are key controllers of vertebrate iron metabolism and post-transcriptionally regulate expression of the major iron homeostasis genes. Here we discuss how dysregulation of the IRP system can result from both iron-related and unrelated effectors and explain how this can have important pathological consequences in several human disorders.
Collapse
Affiliation(s)
- Gaetano Cairo
- Institute of General Pathology, University of Milan School of Medicine, Milan, Italy.
| | | |
Collapse
|
99
|
Balla J, Vercellotti GM, Jeney V, Yachie A, Varga Z, Jacob HS, Eaton JW, Balla G. Heme, heme oxygenase, and ferritin: how the vascular endothelium survives (and dies) in an iron-rich environment. Antioxid Redox Signal 2007; 9:2119-37. [PMID: 17767398 DOI: 10.1089/ars.2007.1787] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Iron-derived reactive oxygen species are involved in the pathogenesis of numerous vascular disorders. One abundant source of redox active iron is heme, which is inherently dangerous when it escapes from its physiologic sites. Here, we present a review of the nature of heme-mediated cytotoxicity and of the strategies by which endothelium manages to protect itself from this clear and present danger. Of all sites in the body, the endothelium may be at greatest risk of exposure to heme. Heme greatly potentiates endothelial cell killing mediated by leukocytes and other sources of reactive oxygen. Heme also promotes the conversion of low-density lipoprotein to cytotoxic oxidized products. Hemoglobin in plasma, when oxidized, transfers heme to endothelium and lipoprotein, thereby enhancing susceptibility to oxidant-mediated injury. As a defense against such stress, endothelial cells upregulate heme oxygenase-1 and ferritin. Heme oxygenase opens the porphyrin ring, producing biliverdin, carbon monoxide, and a most dangerous product-redox active iron. The latter can be effectively controlled by ferritin via sequestration and ferroxidase activity. These homeostatic adjustments have been shown to be effective in the protection of endothelium against the damaging effects of heme and oxidants; lack of adaptation in an iron-rich environment led to extensive endothelial damage in humans.
Collapse
Affiliation(s)
- József Balla
- Department of Medicine, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Bou-Abdallah F, Carney E, Chasteen ND, Arosio P, Viescas AJ, Papaefthymiou GC. A comparative Mössbauer study of the mineral cores of human H-chain ferritin employing dioxygen and hydrogen peroxide as iron oxidants. Biophys Chem 2007; 130:114-21. [PMID: 17881115 PMCID: PMC2156192 DOI: 10.1016/j.bpc.2007.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/04/2007] [Indexed: 11/20/2022]
Abstract
Ferritins are ubiquitous iron storage and detoxification proteins distributed throughout the plant and animal kingdoms. Mammalian ferritins oxidize and accumulate iron as a ferrihydrite mineral within a shell-like protein cavity. Iron deposition utilizes both O(2) and H(2)O(2) as oxidants for Fe(2+) where oxidation can occur either at protein ferroxidase centers or directly on the surface of the growing mineral core. The present study was undertaken to determine whether the nature of the mineral core formed depends on the protein ferroxidase center versus mineral surface mechanism and on H(2)O(2) versus O(2) as the oxidant. The data reveal that similar cores are produced in all instances, suggesting that the structure of the core is thermodynamically, not kinetically controlled. Cores averaging 500 Fe/protein shell and diameter approximately 2.6 nm were prepared and exhibited superparamagnetic blocking temperatures of 19 and 22 K for the H(2)O(2) and O(2) oxidized samples, respectively. The observed blocking temperatures are consistent with the unexpectedly large effective anisotropy constant K(eff)=312 kJ/m(3) recently reported for ferrihydrite nanoparticles formed in reverse micelles [E.L. Duarte, R. Itri, E. Lima Jr., M.S. Batista, T.S. Berquó and G.F. Goya, Large Magnetic Anisotropy in ferrihydrite nanoparticles synthesized from reverse micelles, Nanotechnology 17 (2006) 5549-5555.]. All ferritin samples exhibited two magnetic phases present in nearly equal amounts and ascribed to iron spins at the surface and in the interior of the nanoparticle. At 4.2 K, the surface spins exhibit hyperfine fields, H(hf), of 436 and 445 kOe for the H(2)O(2) and O(2) samples, respectively. As expected, the spins in the interior of the core exhibit larger H(hf) values, i.e. 478 and 486 kOe for the H(2)O(2) and O(2) samples, respectively. The slightly smaller hyperfine field distribution DH(hf) for both surface (78 kOe vs. 92 kOe) and interior spins (45 kOe vs. 54 kOe) of the O(2) sample compared to the H(2)O(2) samples implies that the former is somewhat more crystalline.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, USA
| | | | | | | | | | | |
Collapse
|