51
|
Seroussi E, Cinnamon Y, Yosefi S, Genin O, Smith JG, Rafati N, Bornelöv S, Andersson L, Friedman-Einat M. Identification of the Long-Sought Leptin in Chicken and Duck: Expression Pattern of the Highly GC-Rich Avian leptin Fits an Autocrine/Paracrine Rather Than Endocrine Function. Endocrinology 2016; 157:737-51. [PMID: 26587783 DOI: 10.1210/en.2015-1634] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
More than 20 years after characterization of the key regulator of mammalian energy balance, leptin, we identified the leptin (LEP) genes of chicken (Gallus gallus) and duck (Anas platyrhynchos). The extreme guanine-cytosine content (∼70%), the location in a genomic region with low-complexity repetitive and palindromic sequence elements, the relatively low sequence conservation, and low level of expression have hampered the identification of these genes until now. In vitro-expressed chicken and duck leptins specifically activated signaling through the chicken leptin receptor in cell culture. In situ hybridization demonstrated expression of LEP mRNA in granular and Purkinje cells of the cerebellum, anterior pituitary, and in embryonic limb buds, somites, and branchial arches, suggesting roles in adult brain control of energy balance and during embryonic development. The expression patterns of LEP and the leptin receptor (LEPR) were explored in chicken, duck, and quail (Coturnix japonica) using RNA-sequencing experiments available in the Short Read Archive and by quantitative RT-PCR. In adipose tissue, LEP and LEPR were scarcely transcribed, and the expression level was not correlated to adiposity. Our identification of the leptin genes in chicken and duck genomes resolves a long lasting controversy regarding the existence of leptin genes in these species. This identification was confirmed by sequence and structural similarity, conserved exon-intron boundaries, detection in numerous genomic, and transcriptomic datasets and characterization by PCR, quantitative RT-PCR, in situ hybridization, and bioassays. Our results point to an autocrine/paracrine mode of action for bird leptin instead of being a circulating hormone as in mammals.
Collapse
Affiliation(s)
- Eyal Seroussi
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Yuval Cinnamon
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Sara Yosefi
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Olga Genin
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Julia Gage Smith
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Nima Rafati
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Susanne Bornelöv
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Leif Andersson
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Miriam Friedman-Einat
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| |
Collapse
|
52
|
Baéza E, Jégou M, Gondret F, Lalande-Martin J, Tea I, Le Bihan-Duval E, Berri C, Collin A, Métayer-Coustard S, Louveau I, Lagarrigue S, Duclos MJ. Pertinent plasma indicators of the ability of chickens to synthesize and store lipids. J Anim Sci 2015; 93:107-16. [PMID: 25568361 DOI: 10.2527/jas.2014-8482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Excessive deposition of body fat is detrimental to production efficiency. The aim of this study was to provide plasma indicators of chickens' ability to store fat. From 3 to 9 wk of age, chickens from 2 experimental lines exhibiting a 2.5-fold difference in abdominal fat content and fed experimental diets with contrasted feed energy sources were compared. The diets contained 80 vs. 20 g of lipids and 379 vs. 514 g of starch per kg of feed, respectively, but had the same ME and total protein contents. Cellulose was used to dilute energy in the high-fat diet. At 9 wk of age, the body composition was analyzed and blood samples were collected. A metabolome-wide approach based on proton nuclear magnetic resonance spectroscopy was associated with conventional measurements of plasma parameters. A metabolomics approach showed that betaine, glutamine, and histidine were the most discriminating metabolites between groups. Betaine, uric acid, triglycerides, and phospholipids were positively correlated (r > 0.3; P < 0.05) and glutamine, histidine, triiodothyronine, homocysteine, and β-hydroxybutyrate were negatively correlated (r < -0.3; P < 0.05) with relative weight of abdominal fat and/or fat situated at the top of external face of the thigh. The combination of plasma free fatty acids, total cholesterol, phospholipid, β-hydroxybutyrate, glutamine, and methionine levels accounted for 74% of the variability of the relative weight of abdominal fat. On the other hand, the combination of plasma triglyceride and homocysteine levels accounted for 37% of the variability of fat situated at the top of external face of the thigh. The variations in plasma levels of betaine, homocysteine, uric acid, glutamine, and histidine suggest the implication of methyl donors in the control of hepatic lipid synthesis and illustrate the interplay between AA, glucose, and lipid metabolisms in growing chickens.
Collapse
Affiliation(s)
- E Baéza
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France
| | - M Jégou
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage (PEGASE), F-35590 Saint-Gilles, France Agrocampus-Ouest, UMR 1348 PEGASE, F-35590 Saint-Gilles, France
| | - F Gondret
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage (PEGASE), F-35590 Saint-Gilles, France Agrocampus-Ouest, UMR 1348 PEGASE, F-35590 Saint-Gilles, France
| | - J Lalande-Martin
- Faculté des Sciences et Techniques, UMR CNRS 6230 CEISAM, BP 92208, 2 Rue de la Houssinière, F-44322 Nantes Cedex 3
| | - I Tea
- Faculté des Sciences et Techniques, UMR CNRS 6230 CEISAM, BP 92208, 2 Rue de la Houssinière, F-44322 Nantes Cedex 3
| | | | - C Berri
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France
| | - A Collin
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France
| | | | - I Louveau
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage (PEGASE), F-35590 Saint-Gilles, France Agrocampus-Ouest, UMR 1348 PEGASE, F-35590 Saint-Gilles, France
| | - S Lagarrigue
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage (PEGASE), F-35590 Saint-Gilles, France Agrocampus-Ouest, UMR 1348 PEGASE, F-35590 Saint-Gilles, France
| | - M J Duclos
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France
| |
Collapse
|
53
|
Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens. Sci Rep 2015; 5:16132. [PMID: 26531148 PMCID: PMC4632014 DOI: 10.1038/srep16132] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 10/09/2015] [Indexed: 01/22/2023] Open
Abstract
Excessive fat accretion is a crucial problem during broiler production. Abdominal fat weight (AbFW) and abdominal fat percentage (AbFP) are major phenotypic indices of fat traits. The present study used F2 females derived from a cross between Beijing-You and Cobb-Vantress chickens. Cohorts with extreme AbFP and AbFW phenotypes were chosen to construct high- and low-abdominal fat libraries (HAbF and LAbF, respectively) to investigate the expression profiles by RNA-sequencing and microRNA (miRNA)-sequencing. Compared with the LAbF library, 62 differentially expressed miRNAs (DEMs) and 303 differentially expressed genes (DEGs) were identified in the HAbF birds. Integrated analysis of DEMs and DEGs showed that a total of 106 DEGs were identified as target genes for the 62 DEMs. These genes were designated as intersection genes, and 11 of these genes are involved in lipid metabolism pathways. The miRNA gga-miR-19b-3p accelerated the proliferation of preadipocytes, as well as adipocyte differentiation, by down- regulating ACSL1. These findings suggest that some strong candidate miRNAs and genes, important in relation to abdominal adipose deposition, were identified by the integrated analysis of DEMs and DEGs. These findings add to our current understanding of the molecular genetic controls underlying abdominal adipose accumulation in chickens.
Collapse
|
54
|
Resnyk CW, Chen C, Huang H, Wu CH, Simon J, Le Bihan-Duval E, Duclos MJ, Cogburn LA. RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism. PLoS One 2015; 10:e0139549. [PMID: 26445145 PMCID: PMC4596860 DOI: 10.1371/journal.pone.0139549] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/14/2015] [Indexed: 01/20/2023] Open
Abstract
Genetic selection for enhanced growth rate in meat-type chickens (Gallus domesticus) is usually accompanied by excessive adiposity, which has negative impacts on both feed efficiency and carcass quality. Enhanced visceral fatness and several unique features of avian metabolism (i.e., fasting hyperglycemia and insulin insensitivity) mimic overt symptoms of obesity and related metabolic disorders in humans. Elucidation of the genetic and endocrine factors that contribute to excessive visceral fatness in chickens could also advance our understanding of human metabolic diseases. Here, RNA sequencing was used to examine differential gene expression in abdominal fat of genetically fat and lean chickens, which exhibit a 2.8-fold divergence in visceral fatness at 7 wk. Ingenuity Pathway Analysis revealed that many of 1687 differentially expressed genes are associated with hemostasis, endocrine function and metabolic syndrome in mammals. Among the highest expressed genes in abdominal fat, across both genotypes, were 25 differentially expressed genes associated with de novo synthesis and metabolism of lipids. Over-expression of numerous adipogenic and lipogenic genes in the FL chickens suggests that in situ lipogenesis in chickens could make a more substantial contribution to expansion of visceral fat mass than previously recognized. Distinguishing features of the abdominal fat transcriptome in lean chickens were high abundance of multiple hemostatic and vasoactive factors, transporters, and ectopic expression of several hormones/receptors, which could control local vasomotor tone and proteolytic processing of adipokines, hemostatic factors and novel endocrine factors. Over-expression of several thrombogenic genes in abdominal fat of lean chickens is quite opposite to the pro-thrombotic state found in obese humans. Clearly, divergent genetic selection for an extreme (2.5-2.8-fold) difference in visceral fatness provokes a number of novel regulatory responses that govern growth and metabolism of visceral fat in this unique avian model of juvenile-onset obesity and glucose-insulin imbalance.
Collapse
Affiliation(s)
- Christopher W. Resnyk
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Chuming Chen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Cathy H. Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Jean Simon
- INRA UR83 Recherches Avicoles, 37380, Nouzilly, France
| | | | | | - Larry A. Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
55
|
Zhuo Z, Lamont SJ, Lee WR, Abasht B. RNA-Seq Analysis of Abdominal Fat Reveals Differences between Modern Commercial Broiler Chickens with High and Low Feed Efficiencies. PLoS One 2015; 10:e0135810. [PMID: 26295149 PMCID: PMC4546421 DOI: 10.1371/journal.pone.0135810] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/27/2015] [Indexed: 01/31/2023] Open
Abstract
For economic and environmental reasons, chickens with superior feed efficiency (FE) are preferred in the broiler chicken industry. High FE (HFE) chickens typically have reduced abdominal fat, the major adipose tissue in chickens. In addition to its function of energy storage, adipose tissue is a metabolically active organ that also possesses endocrine and immune regulatory functions. It plays a central role in maintaining energy homeostasis. Comprehensive understanding of the gene expression in the adipose tissue and the biological basis of FE are of significance to optimize selection and breeding strategies. Through gene expression profiling of abdominal fat from high and low FE (LFE) commercial broiler chickens, the present study aimed to characterize the differences of gene expression between HFE and LFE chickens. mRNA-seq analysis was carried out on the total RNA of abdominal fat from 10 HFE and 12 LFE commercial broiler chickens, and 1.48 billion of 75-base sequence reads were generated in total. On average, 11,565 genes were expressed (>5 reads/gene/sample) in the abdominal fat tissue, of which 286 genes were differentially expressed (DE) at q (False Discover Rate) < 0.05 and fold change > 1.3 between HFE and LFE chickens. Expression levels from RNA-seq were confirmed with the NanoString nCounter analysis system. Functional analysis showed that the DE genes were significantly (p < 0.01) enriched in lipid metabolism, coagulation, and immune regulation pathways. Specifically, the LFE chickens had higher expression of lipid synthesis genes and lower expression of triglyceride hydrolysis and cholesterol transport genes. In conclusion, our study reveals the overall differences of gene expression in the abdominal fat from HFE and LFE chickens, and the results suggest that the divergent expression of lipid metabolism genes represents the major differences.
Collapse
Affiliation(s)
- Zhu Zhuo
- Department of Animal & Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - William R. Lee
- Maple Leaf Farms, Inc., Leesburg, Indiana, United States of America
| | - Behnam Abasht
- Department of Animal & Food Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
56
|
Diot M, Reverchon M, Rame C, Froment P, Brillard JP, Brière S, Levêque G, Guillaume D, Dupont J. Expression of adiponectin, chemerin and visfatin in plasma and different tissues during a laying season in turkeys. Reprod Biol Endocrinol 2015; 13:81. [PMID: 26228641 PMCID: PMC4521348 DOI: 10.1186/s12958-015-0081-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In mammals, adipose tissue is able to secrete various hormones called adipokines including adiponectin (ADP), chemerin (Chem) and visfatin (Visf) which are involved in controlling energy metabolism as well as reproductive functions. Visf receptor is still unknown whereas ADP and Chem mainly act through AdipoR1, AdipoR2 and CMKLR1 and GPR1 receptors, respectively. No studies have yet demonstrated the presence of these three adipokines in peripheral tissues, ovarian cells or turkey plasma. Here, we investigated the expression (mRNA and protein) of ADP, Chem, Visf and their receptors in peripheral tissues and ovarian cells (granulosa and theca cells) from hierarchical follicles. Furthermore, we determined the plasma profile of ADP, Visf and Chem at different physiological stages: start, peak and end of the laying period in Meleagris gallopavo turkeys. This data was correlated with the metabolic data (plasma glucose, triglycerides, cholesterol and phospholipids). METHODS Tissue and ovarian cells mRNA and protein expression levels were determined by RT-qPCR and immunoblot, respectively. Plasma adipokines were measured by chicken ELISA and immunoblotting. RESULTS In turkeys, Chem is mainly expressed in the liver while ADP and Visf are mainly expressed in the abdominal adipose tissue and pectoral muscles,respectively. As in mammals, AdipoR1 and AdipoR2 expression levels (mRNA and protein) are highly present in muscle and liver, respectively, whereas the mRNA expression of CMKLR1 and GPR1 is ubiquitous. In ovarian cells, ADP, Visf, Chem and their receptors are more highly expressed in theca cells than in granulosa cells excepted for AdipoR1. Furthermore, we found that plasma levels of ADP, Chem and Visf were reduced at the end of the laying period compared to the start of this period. At the plasma levels, the levels of these adipokines are strongly negatively correlated with glucose and only plasma Chem is negatively correlated with cholesterol, triglycerides and phospholipids. CONCLUSIONS In turkeys, ADP, Visf and Chem and their receptors are expressed in peripheral tissues and ovarian cells. Plasma concentration of ADP, Visf and Chem decrease at the end of laying period and only plasma Chem is negatively correlated with levels of cholesterol, triglycerides and phospholipids levels during the entire laying period.
Collapse
Affiliation(s)
- Mélodie Diot
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France.
- CNRS, UMR6175, Nouzilly, F-37380, France.
- Université François Rabelais, Tours, F-37041, France.
- IFCE, Nouzilly, F-37380, France.
| | - Maxime Reverchon
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France.
- CNRS, UMR6175, Nouzilly, F-37380, France.
- Université François Rabelais, Tours, F-37041, France.
- IFCE, Nouzilly, F-37380, France.
| | - Christelle Rame
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France.
- CNRS, UMR6175, Nouzilly, F-37380, France.
- Université François Rabelais, Tours, F-37041, France.
- IFCE, Nouzilly, F-37380, France.
| | - Pascal Froment
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France.
- CNRS, UMR6175, Nouzilly, F-37380, France.
- Université François Rabelais, Tours, F-37041, France.
- IFCE, Nouzilly, F-37380, France.
| | - Jean-Pierre Brillard
- Fertilité et reproduction avicole (FERTIL'AVI), Rouziers-de-Touraine, F-37360, France.
| | - Sylvain Brière
- Hendrix Genetics-Grelier, Saint Laurent de la Plaine, F-49290, France.
| | - Gérard Levêque
- Hendrix Genetics-Grelier, Saint Laurent de la Plaine, F-49290, France.
| | - Daniel Guillaume
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France.
- CNRS, UMR6175, Nouzilly, F-37380, France.
- Université François Rabelais, Tours, F-37041, France.
- IFCE, Nouzilly, F-37380, France.
| | - Joëlle Dupont
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France.
- CNRS, UMR6175, Nouzilly, F-37380, France.
- Université François Rabelais, Tours, F-37041, France.
- IFCE, Nouzilly, F-37380, France.
| |
Collapse
|
57
|
Chen L, Luo J, Li JX, Li JJ, Wang DQ, Tian Y, Lu LZ. Transcriptome analysis of adiposity in domestic ducks by transcriptomic comparison with their wild counterparts. Anim Genet 2015; 46:299-307. [PMID: 25917302 DOI: 10.1111/age.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 01/28/2023]
Abstract
Excessive adiposity is a major problem in the duck industry, but its molecular mechanisms remain unknown. Genetic comparisons between domestic and wild animals have contributed to the exploration of genetic mechanisms responsible for many phenotypic traits. Significant differences in body fat mass have been detected between domestic and wild ducks. In this study, we used the Peking duck and Anas platyrhynchos as the domestic breed and wild counterpart respectively and performed a transcriptomic comparison of abdominal fat between the two breeds to comprehensively analyze the transcriptome basis of adiposity in ducks. We obtained approximately 350 million clean reads; assembled 61 250 transcripts, including 23 699 novel ones; and identified alternative 5' splice sites, alternative 3' splice sites, skipped exons and retained intron as the main alternative splicing events. A differential expression analysis between the two breeds showed that 753 genes exhibited differential expression. In Peking ducks, some lipid metabolism-related genes (IGF2, FABP5, BMP7, etc.) and oncogenes (RRM2, AURKA, CYR61, etc.) were upregulated, whereas genes related to tumor suppression and immunity (TNFRSF19, TNFAIP6, IGSF21, NCF1, etc.) were downregulated, suggesting adiposity might closely associate with tumorigenesis in ducks. Furthermore, 280 576 single-nucleotide variations were found differentiated between the two breeds, including 8641 non-synonymous ones, and some of the non-synonymous ones were found enriched in genes involved in lipid-associated and immune-associated pathways, suggesting abdominal fat of the duck undertakes both a metabolic function and immune-related function. These datasets enlarge our genetic information of ducks and provide valuable resources for analyzing mechanisms underlying adiposity in ducks.
Collapse
Affiliation(s)
- L Chen
- Institute of Animal Sciences and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | | | | | | | | | | | | |
Collapse
|
58
|
Regassa A, Kim WK. Transcriptome analysis of hen preadipocytes treated with an adipogenic cocktail (DMIOA) with or without 20(S)-hydroxylcholesterol. BMC Genomics 2015; 16:91. [PMID: 25765115 PMCID: PMC4347561 DOI: 10.1186/s12864-015-1231-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/12/2015] [Indexed: 11/17/2022] Open
Abstract
Background 20(S)-hydroxycholesterol (20(S)) potentially reduces adipogenesis in mammalian cells. The role of this oxysterol and molecular mechanisms underlying the adipogenesis of preadipocytes from laying hens have not been investigated. This study was conducted to 1. Analyze genes differentially expressed between preadipocytes treated with an adipogenic cocktail (DMIOA) containing 500 nM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine, 20 μg/mL insulin and 300 μM oleic acid (OA) and control cells and 2. Analyze genes differentially expressed between preadipocytes treated with DMIOA and those treated with DMIOA + 20(S) using Affymetrix GeneChip® Chicken Genome Arrays. Results In experiment one, where we compared the gene expression profile of non-treated (control) cells with those treated with DMIOA, out of 1,221 differentially expressed genes, 755 were over-expressed in control cells, and 466 were over-expressed in cells treated with DMIOA. In experiment two, where we compared the gene expression profile of DMIOA treated cells with those treated with DMIOA+20(S), out of 212 differentially expressed genes, 90 were over-expressed in cells treated with DMIOA, and 122 were over-expressed in those treated with DMIOA+20(S). Genes over-expressed in control cells compared to those treated with DMIOA include those involved in cell-to-cell signaling and interaction (IL6, CNN2, ITGB3), cellular assembly and organization (BMP6, IGF1, ACTB), and cell cycle (CD4, 9, 38). Genes over-expressed in DMIOA compared to control cells include those involved in cellular development (ADAM22, ADAMTS9, FIGF), lipid metabolism (FABP3, 4 and 5), and molecular transport (MAP3K8, PDK4, AGTR1). Genes over-expressed in cells treated with DMIOA compared with those treated with DMIOA+20(S) include those involved in lipid metabolism (ENPP2, DHCR7, DHCR24), molecular transport (FADS2, SLC6A2, CD36), and vitamin and mineral metabolism (BCMO1, AACS, AR). Genes over-expressed in cells treated with DMIOA+20(S) compared with those treated with DMIOA include those involved in cellular growth and proliferation (CD44, CDK6, IL1B), cellular development (ADORA2B, ATP6VOD2, TNFAIP3), and cell-to-cell signaling and interaction (VCAM1, SPON2, VLDLR). Conclusion We identified important adipogenic regulators and key pathways that would help to understand the molecular mechanism of the in vitro adipogenesis in laying hens and demonstrated that 20(S) is capable of suppressing DMIOA-induced adipogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1231-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alemu Regassa
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Woo Kyun Kim
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada. .,Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA, 30602, U.S.A.
| |
Collapse
|
59
|
Moreira GCM, Godoy TF, Boschiero C, Gheyas A, Gasparin G, Andrade SCS, Paduan M, Montenegro H, Burt DW, Ledur MC, Coutinho LL. Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens. Anim Genet 2015; 46:141-7. [PMID: 25643900 DOI: 10.1111/age.12263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 12/17/2022]
Abstract
Abdominal fat content is an economically important trait in commercially bred chickens. Although many quantitative trait loci (QTL) related to fat deposition have been detected, the resolution for these regions is low and functional variants are still unknown. The current study was conducted aiming at increasing resolution for a region previously shown to have a QTL associated with fat deposition, to detect novel variants from this region and to annotate those variants to delineate potentially functional ones as candidates for future studies. To achieve this, 18 chickens from a parental generation used in a reciprocal cross between broiler and layer lines were sequenced using the Illumina next-generation platform with an initial coverage of 18X/chicken. The discovery of genetic variants was performed in a QTL region located on chromosome 3 between microsatellite markers LEI0161 and ADL0371 (33,595,706-42,632,651 bp). A total of 136,054 unique SNPs and 15,496 unique INDELs were detected in this region, and after quality filtering, 123,985 SNPs and 11,298 INDELs were retained. Of these variants, 386 SNPs and 15 INDELs were located in coding regions of genes related to important metabolic pathways. Loss-of-function variants were identified in several genes, and six of those, namely LOC771163, EGLN1, GNPAT, FAM120B, THBS2 and GGPS1, were related to fat deposition. Therefore, these loss-of-function variants are candidate mutations for conducting further studies on this important trait in chickens.
Collapse
Affiliation(s)
- G C M Moreira
- Departamento de Zootecnia, USP/ESALQ, Piracicaba, SP, 13418-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Dietary Conjugated Linoleic Acid Supplementation Leads to Downregulation of PPAR Transcription in Broiler Chickens and Reduction of Adipocyte Cellularity. PPAR Res 2014; 2014:137652. [PMID: 25309587 PMCID: PMC4189438 DOI: 10.1155/2014/137652] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/29/2014] [Accepted: 08/30/2014] [Indexed: 12/23/2022] Open
Abstract
Conjugated linoleic acids (CLA) act as an important ligand for nuclear receptors in adipogenesis and fat deposition in mammals and avian species. This study aimed to determine whether similar effects are plausible on avian abdominal fat adipocyte size, as well as abdominal adipogenic transcriptional level. CLA was supplemented at different levels, namely, (i) basal diet without CLA (5% palm oil) (CON), (ii) basal diet with 2.5% CLA and 2.5% palm oil (LCLA), and (iii) basal diet with 5% CLA (HCLA).The content of cis-9, trans-11 CLA was between 1.69- and 2.3-fold greater (P < 0.05) than that of trans-10, cis-12 CLA in the abdominal fat of the LCLA and HCLA group. The adipogenic capacity of the abdominal fat depot in LCLA and HCLA fed chicken is associated with a decreased proportion of adipose cells and monounsaturated fatty acids (MUFA). The transcriptional level of adipocyte protein (aP2) and peroxisome proliferator-activated receptor gamma (PPARγ) was downregulated by 1.08- to 2.5-fold in CLA supplemented diets, respectively. It was speculated that feeding CLA to broiler chickens reduced adipocyte size and downregulated PPARγ and aP2 that control adipocyte cellularity. Elevation of CLA isomers into their adipose tissue provides a potential CLA-rich source for human consumption.
Collapse
|
61
|
Friedman-Einat M, Cogburn LA, Yosefi S, Hen G, Shinder D, Shirak A, Seroussi E. Discovery and characterization of the first genuine avian leptin gene in the rock dove (Columba livia). Endocrinology 2014; 155:3376-84. [PMID: 24758303 DOI: 10.1210/en.2014-1273] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leptin, the key regulator of mammalian energy balance, has been at the center of a great controversy in avian biology for the last 15 years since initial reports of a putative leptin gene (LEP) in chickens. Here, we characterize a novel LEP in rock dove (Columba livia) with low similarity of the predicted protein sequence (30% identity, 47% similarity) to the human ortholog. Searching the Sequence-Read-Archive database revealed leptin transcripts, in the dove's liver, with 2 noncoding exons preceding 2 coding exons. This unusual 4-exon structure was validated by sequencing of a GC-rich product (76% GC, 721 bp) amplified from liver RNA by RT-PCR. Sequence alignment of the dove leptin with orthologous leptins indicated that it consists of a leader peptide (21 amino acids; aa) followed by the mature protein (160 aa), which has a putative structure typical of 4-helical-bundle cytokines except that it is 12 aa longer than human leptin. Extra residues (10 aa) were located within the loop between 2 5'-helices, interrupting the amino acid motif that is conserved in tetrapods and considered essential for activation of leptin receptor (LEPR) but not for receptor binding per se. Quantitative RT-PCR of 11 tissues showed highest (P < .05) expression of LEP in the dove's liver, whereas the dove LEPR peaked (P < .01) in the pituitary. Both genes were prominently expressed in the gonads and at lower levels in tissues involved in mammalian leptin signaling (adipose; hypothalamus). A bioassay based on activation of the chicken LEPR in vitro showed leptin activity in the dove's circulation, suggesting that dove LEP encodes an active protein, despite the interrupted loop motif. Providing tools to study energy-balance control at an evolutionary perspective, our original demonstration of leptin signaling in dove predicts a more ancient role of leptin in growth and reproduction in birds, rather than appetite control.
Collapse
Affiliation(s)
- Miriam Friedman-Einat
- Agricultural Research Organization (M.F.-E., S.Y., G.H., D.S., A.S., E.S.), Volcani Center, Bet-Dagan, 50-250 Israel; and Department of Animal and Food Sciences (L.A.C.), University of Delaware, Newark, Delaware 19716
| | | | | | | | | | | | | |
Collapse
|
62
|
Prokop JW, Schmidt C, Gasper D, Duff RJ, Milsted A, Ohkubo T, Ball HC, Shawkey MD, Mays HL, Cogburn LA, Londraville RL. Discovery of the elusive leptin in birds: identification of several 'missing links' in the evolution of leptin and its receptor. PLoS One 2014; 9:e92751. [PMID: 24663438 PMCID: PMC3963946 DOI: 10.1371/journal.pone.0092751] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/24/2014] [Indexed: 01/09/2023] Open
Abstract
Leptin is a pleiotropic protein best known for regulation of appetite and fat storage in mammals. While many leptin orthologs have been identified among vertebrates, an authentic leptin in birds has remained elusive and controversial. Here we identify leptin sequence from the Peregrine falcon, Falco peregrinus (pfleptin), and identify sequences from two other birds (mallard and zebra finch), and 'missing' vertebrates (elephant shark, alligator, Indian python, Chinese soft-shelled turtle, and coelacanth). The pattern of genes surrounding leptin (snd1, rbm28) is syntenic between the falcon and mammalian genomes. Phylogenetic analysis of all known leptin protein sequences improves our understanding of leptin's evolution. Structural modeling of leptin orthologs highlights a highly conserved hydrophobic core in the four-helix cytokine packing domain. A docked model of leptin with the leptin receptor for Peregrine falcon reveals several conserved amino acids important for the interaction and possible coevolution of leptin with its receptor. We also show for the first time, an authentic avian leptin sequence that activates the JAK-STAT signaling pathway. These newly identified sequences, structures, and tools for avian leptin and its receptor will allow elucidation of the function of these proteins in feral and domestic birds.
Collapse
Affiliation(s)
- Jeremy W. Prokop
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Cameron Schmidt
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
| | - Donald Gasper
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
| | - Robert J. Duff
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
| | - Amy Milsted
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Amimachi, Ibaraki, Japan
| | - Hope C. Ball
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
| | - Matthew D. Shawkey
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
| | - Herman L. Mays
- Geier Collections and Research Center, Cincinnati Museum Center, Cincinnati, Ohio, United States of America
| | - Larry A. Cogburn
- Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail: (RLL), cogburn@udel (LAG)
| | - Richard L. Londraville
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
- * E-mail: (RLL), cogburn@udel (LAG)
| |
Collapse
|