51
|
Parada-Bustamante A, Oróstica ML, Reuquen P, Zuñiga LM, Cardenas H, Orihuela PA. The role of mating in oviduct biology. Mol Reprod Dev 2018; 83:875-883. [PMID: 27371809 DOI: 10.1002/mrd.22674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/29/2016] [Indexed: 02/05/2023]
Abstract
The oviduct connects the ovary to the uterus, and is subject to changes that influence gamete transport, fertilization, and early embryo development. The ovarian steroids estradiol and progesterone are largely responsible for regulating oviduct function, although mating signals also affect the female reproductive tract, both indirectly, through sensory stimulation, and directly, through contact with seminal plasma or spermatozoa. The resulting alterations in gene and protein expression help establish a microenvironment that is appropriate for sperm storage and selection, embryo development, and gamete transport. Mating may also induce the switch from a non-genomic to a genomic pathway of estradiol-accelerated oviduct egg transport, reflecting a novel example of the functional plasticity in well-differentiated cells. This review highlights the physiological relevance of various aspects of mating to oviduct biology and reproductive success. Expanding our knowledge of the mating-associated molecular and cellular events in oviduct cells would undoubtedly facilitate new therapeutic strategies to treat infertility attributable to oviduct pathologies. Mol. Reprod. Dev. 83: 875-883, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - María L Oróstica
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Patricia Reuquen
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Lidia M Zuñiga
- Laboratorio de Biología de la Reproducción, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Hugo Cardenas
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. .,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile.
| |
Collapse
|
52
|
Flow cytometry sex sorting affects bull sperm longevity and compromises their capacity to bind to oviductal cells. Livest Sci 2018. [DOI: 10.1016/j.livsci.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
53
|
Introduction: A Brief Guide to the Periconception Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:1-14. [PMID: 28864982 DOI: 10.1007/978-3-319-62414-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Definition of the periconception period is not an exact science and is probably somewhat arbitrary. One can define it as spanning the period from the final stages of gamete maturation until formation of the embryo and the stages of embryonic development and implantation. Hence, the periconception period includes periods when spermatozoa are in the female reproductive tract, oocytes are matured and ovulated into the oviduct, fertilization occurs and the embryo undergoes development. By definition the implantation process and the early stages of placenta formation are also regarded as a part of the periconception period. In this article we highlight a few of the major advances which have transformed this topic over the last two decades. It is now clear that the fitness and wellbeing of developing mammalian embryos, including the human, are highly dependent on the health status, diet and habits of both parents especially in the months and weeks that precede the formation of oocytes and spermatozoa.
Collapse
|
54
|
Pérez-Cerezales S, Ramos-Ibeas P, Acuña OS, Avilés M, Coy P, Rizos D, Gutiérrez-Adán A. The oviduct: from sperm selection to the epigenetic landscape of the embryo†. Biol Reprod 2017; 98:262-276. [DOI: 10.1093/biolre/iox173] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023] Open
Affiliation(s)
- Serafín Pérez-Cerezales
- Departmento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Priscila Ramos-Ibeas
- School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Omar Salvador Acuña
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
- Departamento de Biología de la Reproducción, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| | - Pilar Coy
- Departamento de Biología de la Reproducción, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
- Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia-Campus Mare Nostrum, Murcia, Spain
| | - Dimitrios Rizos
- Departmento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departmento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
55
|
Valdecantos PA, Bravo Miana RDC, García EV, García DC, Roldán-Olarte M, Miceli DC. Expression of bone morphogenetic protein receptors in bovine oviductal epithelial cells: Evidence of autocrine BMP signaling. Anim Reprod Sci 2017; 185:89-96. [DOI: 10.1016/j.anireprosci.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/20/2017] [Accepted: 08/09/2017] [Indexed: 01/09/2023]
|
56
|
Štiavnická M, Abril-Parreño L, Nevoral J, Králíčková M, García-Álvarez O. Non-Invasive Approaches to Epigenetic-Based Sperm Selection. Med Sci Monit 2017; 23:4677-4683. [PMID: 28961228 PMCID: PMC5633068 DOI: 10.12659/msm.904098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since sperm size and form do not necessarily provide information on internal sperm structures, novel sperm markers need to be found in order to conduct assisted reproductive therapies (ART) successfully. Currently, the priority of andrologists is not only to select those sperm able to fertilize the oocyte, but also a high quality of sperm that will guarantee a healthy embryo. Evidence of this shows us the importance of studying sperm intensively on genetic and epigenetic levels, because these could probably be the cause of a percentage of infertility diagnosed as idiopathic. Thus, more attention is being paid to posttranslational modifications as the key for better understanding of the fertilization process and its impact on embryo and offspring. Advances in the discovery of new sperm markers should go hand in hand with finding appropriate techniques for selecting the healthiest sperm, guaranteeing its non-invasiveness. To date, most sperm selection techniques can be harmful to sperm due to centrifugation or staining procedures. Some methods, such as microfluidic techniques, sperm nanopurifications, and Raman spectroscopy, have the potential to make selection gentle to sperm, tracking small abnormalities undetected by methods currently used. The fact that live cells could be analyzed without harmful effects creates the expectation of using them routinely in ART. In this review, we focus on the combination of sperm epigenetic status (modifications) as quality markers, with non-invasive sperm selection methods as novel approaches to improve ART outcomes.
Collapse
Affiliation(s)
- Miriama Štiavnická
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Laura Abril-Parreño
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Nevoral
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Králíčková
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Olga García-Álvarez
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
57
|
Gadella BM. Reproductive tract modifications of the boar sperm surface. Mol Reprod Dev 2017; 84:822-831. [PMID: 28452082 DOI: 10.1002/mrd.22821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 01/25/2023]
Abstract
The sperm cell has a unique, polarized, and segregated surface that is modified extensively by the changing environments in both the male and the female reproductive tracts. The sperm cannot refresh its surface, as protein translation and membrane recycling by intracellular vesicular transport have ceased upon its maturation. So, how is the sperm surface modified in the reproductive tracts and how do these processes affect fertilization? This review traces these modifications as boar sperm travels from their liberation from the Sertoli cell into the lumen of seminiferous tubules of the testis to the site of fertilization in the ampulla of the oviduct in the sow, via an artificial insemination route. The effect of sperm dilution for artificial insemination, as well as more extensive sperm processing for in vitro fertilization, cryopreservation, or sex sorting, are also discussed with respect to how these procedures affect sperm surface organization and fertilization capacity.
Collapse
Affiliation(s)
- Bart M Gadella
- Faculty of Veterinary Medicine, Department of Farm Animal Health and Biochemistry and Cell Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
58
|
Khan FA, Liu H, Zhou H, Wang K, Qamar MTU, Pandupuspitasari NS, Shujun Z. Analysis of Bos taurus and Sus scrofa X and Y chromosome transcriptome highlights reproductive driver genes. Oncotarget 2017; 8:54416-54433. [PMID: 28903352 PMCID: PMC5589591 DOI: 10.18632/oncotarget.17081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
The biology of sperm, its capability of fertilizing an egg and its role in sex ratio are the major biological questions in reproductive biology. To answer these question we integrated X and Y chromosome transcriptome across different species: Bos taurus and Sus scrofa and identified reproductive driver genes based on Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. Our strategy resulted in 11007 and 10445 unique genes consisting of 9 and 11 reproductive modules in Bos taurus and Sus scrofa, respectively. The consensus module calculation yields an overall 167 overlapped genes which were mapped to 846 DEGs in Bos taurus to finally get a list of 67 dual feature genes. We develop gene co-expression network of selected 67 genes that consists of 58 nodes (27 down-regulated and 31 up-regulated genes) enriched to 66 GO biological process (BP) including 6 GO annotations related to reproduction and two KEGG pathways. Moreover, we searched significantly related TF (ISRE, AP1FJ, RP58, CREL) and miRNAs (bta-miR-181a, bta-miR-17-5p, bta-miR-146b, bta-miR-146a) which targeted the genes in co-expression network. In addition we performed genetic analysis including phylogenetic, functional domain identification, epigenetic modifications, mutation analysis of the most important reproductive driver genes PRM1, PPP2R2B and PAFAH1B1 and finally performed a protein docking analysis to visualize their therapeutic and gene expression regulation ability.
Collapse
Affiliation(s)
- Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, College of Animal Science and Technology Huazhong Agricultural University, Wuhan, China
| | - Hui Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, College of Animal Science and Technology Huazhong Agricultural University, Wuhan, China
| | - Hao Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, College of Animal Science and Technology Huazhong Agricultural University, Wuhan, China
| | - Kai Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, College of Animal Science and Technology Huazhong Agricultural University, Wuhan, China
| | | | - Nuruliarizki Shinta Pandupuspitasari
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, College of Animal Science and Technology Huazhong Agricultural University, Wuhan, China.,The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Shujun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, College of Animal Science and Technology Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
59
|
García-Vázquez FA, Gadea J, Matás C, Holt WV. Importance of sperm morphology during sperm transport and fertilization in mammals. Asian J Androl 2017; 18:844-850. [PMID: 27624988 PMCID: PMC5109874 DOI: 10.4103/1008-682x.186880] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
After natural or artificial insemination, the spermatozoon starts a journey from the site of deposition to the place of fertilization. However, only a small subset of the spermatozoa deposited achieves their goal: to reach and fertilize the egg. Factors involved in controlling sperm transport and fertilization include the female reproductive tract environment, cell-cell interactions, gene expression, and phenotypic sperm traits. Some of the significant determinants of fertilization are known (i.e., motility or DNA status), but many sperm traits are still indecipherable. One example is the influence of sperm dimensions and shape upon transport within the female genital tract towards the oocyte. Biophysical associations between sperm size and motility may influence the progression of spermatozoa through the female reproductive tract, but uncertainties remain concerning how sperm morphology influences the fertilization process, and whether only the sperm dimensions per se are involved. Moreover, such explanations do not allow the possibility that the female tract is capable of distinguishing fertile spermatozoa on the basis of their morphology, as seems to be the case with biochemical, molecular, and genetic properties. This review focuses on the influence of sperm size and shape in evolution and their putative role in sperm transport and selection within the uterus and the ability to fertilize the oocyte.
Collapse
Affiliation(s)
- Francisco A García-Vázquez
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia 30100, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia 30100, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia 30100, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - William V Holt
- Department of Human Metabolism, Academic Unit of Reproductive and Developmental Medicine, Sheffield S10 2SF, UK
| |
Collapse
|
60
|
Zhang Y, Xi J, Jia B, Wang X, Wang X, Li C, Li Y, Zeng X, Ying R, Li X, Jiang S, Yuan F. RNAi as a tool to control the sex ratio of mouse offspring by interrupting Zfx/Zfy genes in the testis. Mamm Genome 2017; 28:100-105. [PMID: 28251288 DOI: 10.1007/s00335-017-9682-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/23/2017] [Indexed: 12/19/2022]
Abstract
The objective of this study was to explore a novel method to alter the sex-ratio balance of mouse offspring by silencing the paralogous genes Zfx/Zfy (Zinc finger X/Y-chromosomal transcription factor gene) during spermatogenesis. Four recombined vectors PRZ1, PRZ2, PRZ3, and PRZ4 (RNAi-Ready-pSIREN-RetroQ-ZsGreen) were constructed for interrupting the Zfx gene. Additionally, a recombined vector Psilencer/Zfy-shRNA was constructed for interrupting the Zfy gene. Male mice were randomly divided into 8 groups, with 20 animals per group. Five groups of mice were injected with PRZ1, PRZ2, PRZ3, PRZ4, and Psilencer/Zfy-shRNA vectors, respectively. The three control groups were injected with an equal volume of physiological saline, empty RNAi-Ready-pSIREN-RetroQ-ZsGreen vector, and empty Psilencer/Zfy-shRNA vector, respectively. All groups were injected every 7 days for a total of four injections. Fourteen days after the fourth injection, 10 male mice from each group were mated individually with 10 females. Testicular tissue of 10 male mice in each group was collected, and the expression level of Zfx/Zfy mRNA was determined by qRT-PCR. Results showed that, compared with the empty RNAi-Ready-pSIREN-RetroQ-ZsGreen vector and the physiological saline group, expression of Zfx mRNA decreased significantly after injection of PRZ1 (p < 0.01), PRZ3 (p < 0.01), and PRZ4 (p < 0.01), and 78.75 ± 7.50% of the offspring were male in PRZ4 group, significantly higher than the offspring derived from the empty RNAi-Ready-pSIREN-RetroQ-ZsGreen vector and physiological saline group (p < 0.01). In the PRZ1 group, the expression of Zfx mRNA was also significantly lower (p < 0.01), but the male rate of offspring was not different (p > 0.05). Conversely, the expression of Zfy mRNA decreased significantly after injection of Psilencer/Zfy-shRNA (p < 0.01) and 31.00 ± 11.00% of the offspring were male, significantly lower than in the physiological saline group (p < 0.01). In conclusion, our findings show that RNAi-mediated disruption of Zfx/Zfy in mouse testis affected X/Y spermatogenesis. Additionally, results suggest that the paralogous genes Zfx/Zfy play an important role in the process of X and Y sperm development. The individual interference of Zfx/Zfy may predict the outcome of X and Y haploid sperms. Presented herein is an advanced method developed to control mouse X/Y spermatogenesis and sex ratio of offspring.
Collapse
Affiliation(s)
- YongSheng Zhang
- College of Animal Science and Technology, Shihezi University, Xinjiang, Xinjiang Uygur Autonomous Region, China
| | - JiFeng Xi
- College of Animal Science and Technology, Shihezi University, Xinjiang, Xinjiang Uygur Autonomous Region, China.,Xinjiang Agricultural Vocational Technical College, Shihezi, China
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Xinjiang, Xinjiang Uygur Autonomous Region, China.
| | - XiangZu Wang
- College of Animal Science and Technology, Shihezi University, Xinjiang, Xinjiang Uygur Autonomous Region, China.,Xinjiang Agricultural Vocational Technical College, Shihezi, China
| | - XuHai Wang
- College of Animal Science and Technology, Shihezi University, Xinjiang, Xinjiang Uygur Autonomous Region, China
| | - ChaoCheng Li
- College of Animal Science and Technology, Shihezi University, Xinjiang, Xinjiang Uygur Autonomous Region, China
| | - YaQiang Li
- College of Animal Science and Technology, Shihezi University, Xinjiang, Xinjiang Uygur Autonomous Region, China
| | - XianCun Zeng
- College of Animal Science and Technology, Shihezi University, Xinjiang, Xinjiang Uygur Autonomous Region, China
| | - RuiWen Ying
- College of Animal Science and Technology, Shihezi University, Xinjiang, Xinjiang Uygur Autonomous Region, China
| | - Xin Li
- College of Life Sciences, Shihezi University, Xinjiang, Xinjiang Uygur Autonomous Region, China
| | - Song Jiang
- College of Animal Science and Technology, Shihezi University, Xinjiang, Xinjiang Uygur Autonomous Region, China
| | - FangYuan Yuan
- College of Animal Science and Technology, Shihezi University, Xinjiang, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
61
|
Atikuzzaman M, Alvarez-Rodriguez M, Vicente-Carrillo A, Johnsson M, Wright D, Rodriguez-Martinez H. Conserved gene expression in sperm reservoirs between birds and mammals in response to mating. BMC Genomics 2017; 18:98. [PMID: 28100167 PMCID: PMC5242001 DOI: 10.1186/s12864-017-3488-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Spermatozoa are stored in the oviductal functional sperm reservoir in animals with internal fertilization, including zoologically distant classes such as pigs or poultry. They are held fertile in the reservoir for times ranging from a couple of days (in pigs), to several weeks (in chickens), before they are gradually released to fertilize the newly ovulated eggs. It is currently unknown whether females from these species share conserved mechanisms to tolerate such a lengthy presence of immunologically-foreign spermatozoa. Therefore, global gene expression was assessed using cDNA microarrays on tissue collected from the avian utero-vaginal junction (UVJ), and the porcine utero-tubal junction (UTJ) to determine expression changes after mating (entire semen deposition) or in vivo cloacal/cervical infusion of sperm-free seminal fluid (SF)/seminal plasma (SP). RESULTS In chickens, mating changed the expression of 303 genes and SF-infusion changed the expression of 931 genes, as compared to controls, with 68 genes being common to both treatments. In pigs, mating or SP-infusion changed the expressions of 1,722 and 1,148 genes, respectively, as compared to controls, while 592 genes were common to both treatments. The differentially expressed genes were significantly enriched for GO categories related to immune system functions (35.72-fold enrichment). The top 200 differentially expressed genes of each treatment in each animal class were analysed for gene ontology. In both pig and chicken, an excess of genes affecting local immune defence were activated, though frequently these were down-regulated. Similar genes were found in both the chicken and pig, either involved in pH-regulation (SLC16A2, SLC4A9, SLC13A1, SLC35F1, ATP8B3, ATP13A3) or immune-modulation (IFIT5, IFI16, MMP27, ADAMTS3, MMP3, MMP12). CONCLUSION Despite being phylogenetically distant, chicken and pig appear to share some gene functions for the preservation of viable spermatozoa in the female reservoirs.
Collapse
Affiliation(s)
- Mohammad Atikuzzaman
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Campus HU/US, Developmental Biology, Linköping University, Lasarettsgatan 64/65, Lanken, floor 12, SE-581 85, Linköping, Sweden
| | - Manuel Alvarez-Rodriguez
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Campus HU/US, Developmental Biology, Linköping University, Lasarettsgatan 64/65, Lanken, floor 12, SE-581 85, Linköping, Sweden
| | - Alejandro Vicente-Carrillo
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Campus HU/US, Developmental Biology, Linköping University, Lasarettsgatan 64/65, Lanken, floor 12, SE-581 85, Linköping, Sweden
| | - Martin Johnsson
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering, Linköping University, Linköping, Sweden
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering, Linköping University, Linköping, Sweden
| | - Heriberto Rodriguez-Martinez
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Campus HU/US, Developmental Biology, Linköping University, Lasarettsgatan 64/65, Lanken, floor 12, SE-581 85, Linköping, Sweden.
| |
Collapse
|
62
|
Panahi S, Fahami F, Deemeh MR, Tavalaee M, Gourabi H, Nasr-Esfahani MH. Chances to Have A Boy after Gender Selection by Pre-Implantation Genetic Screening Are Reduced in Couples with only Girls and without A Boy Sired by The Male Partner. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2017; 10:350-356. [PMID: 28042415 PMCID: PMC5134750 DOI: 10.22074/ijfs.2016.4828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/25/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND Gender selection and family planning have their roots in human history. Despite great interest in these fields, very few scientific propositions exist which could explain why some family do not attain the desired sex. Therefore, the aim of this study was to evaluate whether sex of previous child or children could affect the outcomes of pre-implantation genetic screening (PGS). MATERIALS AND METHODS This historical cohort study including 218 PGS cases referring to Isfahan Fertility and Infertility Center (IFIC). Couples were grouped as those who their male child passed away or her husbands' has a son(s) from their previous marriage (n=70) and couples who just have daughter (n=148). Male normal blastocysts were transferred for both groups. The outcomes of PGS including pregnancy, implantation and abortion rates, along with possible confounding factors were compared between the two groups. RESULTS Significant differences in pregnancy, implantation and abortion rates were observed between couples whose their male partner had/has one boy (n=70) compared to those who have just girl(s) (n=148) despite similar number and quality of male normal blastocyst transferred in the two groups. Confounding factors were also considered. CONCLUSION The Ybearing spermatozoa in male partners with no history of previous boy have lower ability to support a normal development to term, compared to male partners with previous history of boy requesting family balancing.
Collapse
Affiliation(s)
- Soryya Panahi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Midwifery, School of Nursing and Midwifery Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariba Fahami
- Department of Midwifery, School of Nursing and Midwifery Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Deemeh
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Hossain Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
63
|
Acuña OS, Avilés M, López-Úbeda R, Guillén-Martínez A, Soriano-Úbeda C, Torrecillas A, Coy P, Izquierdo-Rico MJ. Differential gene expression in porcine oviduct during the oestrous cycle. Reprod Fertil Dev 2017; 29:2387-2399. [DOI: 10.1071/rd16457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/03/2017] [Indexed: 12/29/2022] Open
Abstract
The oviduct undergoes changes under the influence of steroid hormones during the oestrous cycle. However, the molecular mechanisms underlying oviductal regulation are not fully understood. The aim of the present study was to identify the gene expression profile of the porcine oviduct in different stages of the cycle using microarray technology. A systematic study was performed on animals at four different stage: prepubertal gilts, and sows in the preovulatory, postovulatory and luteal phase of the oestrous cycle. The porcine oviduct expressed a total of 4929 genes. Moreover, significant differences in the expression of several genes were detected as the oestrous cycle progressed. Analysis of the differentially expressed genes indicated that a total of 86, 89 and 15 genes were upregulated in prepubertal gilts, preovulatory and luteal sows respectively compared with levels observed in postovulatory sows. Moreover, 80, 51 and 64 genes were downregulated in prepubertal, preovulatory and luteal animals respectively compared with the postovulatory sows. The concentrations of 10 selected transcripts were quantified by real-time reverse transcription–polymerase chain reaction to validate the cDNA array hybridisation data. Conversely, for some genes, localisation of corresponding protein expression in the oviduct was analysed by immunohistochemistry (i.e. cholecystokinin, glutathione peroxidase 2, mucin 1, phosphatidylethanolamine binding protein 4 and tachykinin 3) and mass spectrometry analysis of oviductal fluid allowed identification of peptides from all five proteins. The results of the present study demonstrate that gene expression in the porcine oviduct is clearly regulated during the oestrous cycle, with some oviductal proteins that could be related to several reproductive processes described here for the first time.
Collapse
|
64
|
Cameron EZ, Edwards AM, Parsley LM. Developmental sexual dimorphism and the evolution of mechanisms for adjustment of sex ratios in mammals. Ann N Y Acad Sci 2016; 1389:147-163. [PMID: 27862006 DOI: 10.1111/nyas.13288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 12/15/2022]
Abstract
Sex allocation theory predicts biased offspring sex ratios in relation to local conditions if they would maximize parental lifetime reproductive return. In mammals, the extent of the birth sex bias is often unpredictable and inconsistent, leading some to question its evolutionary significance. For facultative adjustment of sex ratios to occur, males and females would need to be detectably different from an early developmental stage, but classic sexual dimorphism arises from hormonal influences after gonadal development. Recent advances in our understanding of early, pregonadal sexual dimorphism, however, indicate high levels of dimorphism in gene expression, caused by chromosomal rather than hormonal differences. Here, we discuss how such dimorphism would interact with and link previously hypothesized mechanisms for sex-ratio adjustment. These differences between males and females are sufficient for offspring sex both to be detectable to parents and to provide selectable cues for biasing sex ratios from the earliest stages. We suggest ways in which future research could use the advances in our understanding of sexually dimorphic developmental physiology to test the evolutionary significance of sex allocation in mammals. Such an approach would advance our understanding of sex allocation and could be applied to other taxa.
Collapse
Affiliation(s)
- Elissa Z Cameron
- School of Biological Sciences, University of Tasmania, Hobart, Australia.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Amy M Edwards
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| | - Laura M Parsley
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
65
|
Maillo V, Sánchez-Calabuig MJ, Lopera-Vasquez R, Hamdi M, Gutierrez-Adan A, Lonergan P, Rizos D. Oviductal response to gametes and early embryos in mammals. Reproduction 2016; 152:R127-41. [DOI: 10.1530/rep-16-0120] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/04/2016] [Indexed: 01/20/2023]
Abstract
The oviduct is a complex and organized thin tubular structure connecting the ovary with the uterus. It is the site of final sperm capacitation, oocyte fertilization and, in most species, the first 3–4days of early embryo development. The oviductal epithelium is made up of ciliary and secretory cells responsible for the secretion of proteins and other factors which contribute to the formation of the oviductal fluid. Despite significant research, most of the pathways and oviductal factors implicated in the crosstalk between gametes/early embryo and the oviduct remain unknown. Therefore, studying the oviductal environment is crucial to improve our understanding of the regulatory mechanisms controlling fertilization and embryo development. In vitro systems are a valuable tool to study in vivo pathways and mechanisms, particularly those in the oviducts which in livestock species are challenging to access. In studies of gamete and embryo interaction with the reproductive tract, oviductal epithelial cells, oviductal fluid and microvesicles co-cultured with gametes/embryos represent the most appropriate in vitro models to mimic the physiological conditions in vivo.
Collapse
|
66
|
Abstract
Tribbles (TRIB) proteins, a family of evolutionary conserved psuedokinase proteins, modulate various signalling pathways within the cell. The regulatory roles of TRIB make them an important part of a number of biological processes ranging from cell proliferation to metabolism, immunity, inflammation and carcinogenesis. Innate immune system plays a pivotal role during the regulation of reproductive processes that allows successful creation of an offspring. Its involvement initiates from fertilization of the oocyte by spermatozoon and lasts throughout early embryonic development, pregnancy and labour. Therefore, there is a close cooperation between the reproductive system and the innate immune system. Evidence from our lab has demonstrated that improper activation of the innate immune system can reduce embryo implantation, thus leading to infertility. Therefore, control mechanisms regulating the innate immune system function can be critical for successful reproductive events.
Collapse
|
67
|
Li CJ, Wang D, Zhou X. Sperm proteome and reproductive technologies in mammals. Anim Reprod Sci 2016; 173:1-7. [PMID: 27576173 DOI: 10.1016/j.anireprosci.2016.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/20/2016] [Accepted: 08/22/2016] [Indexed: 11/16/2022]
Abstract
Sperm is highly differentiated cell that can be easily obtained and purified. Mature sperm is considered to be transcriptionally and translationally silent and incapable of protein synthesis. Recently, a large number of proteins have been identified in sperm from different species by using the proteomic approaches. Clinically, sperm proteins can be used as markers for male infertility due to different protein profiles identified in sperm from fertile and infertile male animals. Recent evidences have shown that the conditions of sperm preservation in vitro can also change the sperm protein profiles. This paper reviews the recent scientific publications available to address sperm proteome and their relationship with sperm cryopreservation, capacitation, fertilization, and separation of X and Y sperm. Future directions in the application of sperm proteomics to develop or optimize reproductive technologies in mammals are also discussed.
Collapse
Affiliation(s)
- Chun-Jin Li
- College of Animal Sciences, Jilin University, 5333 Xian Road, Changchun 130062, PR China
| | - Dong Wang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, PR China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, 5333 Xian Road, Changchun 130062, PR China.
| |
Collapse
|
68
|
López-Úbeda R, Muñoz M, Vieira L, Hunter RHF, Coy P, Canovas S. The oviductal transcriptome is influenced by a local ovarian effect in the sow. J Ovarian Res 2016; 9:44. [PMID: 27448656 PMCID: PMC4957888 DOI: 10.1186/s13048-016-0252-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oviducts participate in fertilization and early embryo development, and they are influenced by systemic and local circulation. Local functional interplay between ovary, oviduct and uterus is important, as deduced from the previously observed differences in hormone concentrations, presence of sperm, or patterns of motility in the oviduct after unilateral ovariectomy (UO). However, the consequences of unilateral ovariectomy on the oviductal transcriptome remain unexplored. In this study, we have investigated the consequences of UO in a higher animal model as the pig. METHODS The influence of UO was analyzed on the number of ovulations on the contra ovary, which was increased, and on the ipsilateral oviductal transcriptome. Microarray analysis was performed and the results were validated by PCR. Differentially expressed genes (DEGs) with a fold change ≥ 2 and a false discovery rate of 10 % were analyzed by Ingenuity Pathway Analysis (IPA) to identify the main biofunctions affected by UO. RESULTS Data revealed two principal effects in the ipsilateral oviduct after UO: i) down-regulation of genes involved in the survival of sperm in the oviduct and early embryonic development, and ii) up-regulation of genes involved in others functions as protection against external agents and tumors. CONCLUSIONS Results showed that unilateral ovariectomy results in an increased number of ovulation points on the contra ovary and changes in the transcriptome of the ipsilateral oviduct with consequences on key biological process that could affect fertility output.
Collapse
Affiliation(s)
- Rebeca López-Úbeda
- Department of Physiology, Veterinary Faculty, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.,International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Marta Muñoz
- Centro de Biotecnología Animal - SERIDA, Deva, Gijón, Asturias, Spain
| | - Luis Vieira
- Department of Physiology, Veterinary Faculty, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.,International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | | | - Pilar Coy
- Department of Physiology, Veterinary Faculty, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain. .,International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain. .,IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain.
| | - Sebastian Canovas
- Department of Physiology, Veterinary Faculty, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain. .,International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain. .,IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain.
| |
Collapse
|
69
|
Maternal-embryo interaction in the bovine oviduct: Evidence from in vivo and in vitro studies. Theriogenology 2016; 86:443-50. [DOI: 10.1016/j.theriogenology.2016.04.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/10/2015] [Accepted: 03/14/2016] [Indexed: 11/20/2022]
|
70
|
Kölle S. Transport, Distribution and Elimination of Mammalian Sperm Following Natural Mating and Insemination. Reprod Domest Anim 2016; 50 Suppl 3:2-6. [PMID: 26382022 DOI: 10.1111/rda.12576] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/14/2015] [Indexed: 01/10/2023]
Abstract
The integrity of transport, distribution and elimination of sperm in the female genital tract plays a pivotal role for successful reproduction in mammals. At coitus, millions or billions of sperm are deposited either into the anterior vagina (human, primates), the cervix (most mammalian species) or the uterus (pig). In most species, the first anatomical barrier is the cervix, where spermatozoa with poor morphology and motility are filtered out by sticking to the cervical mucus. The second anatomical barrier is the uterotubal junction (UTJ) with its tortuous and narrow lumen. Finally, only a few thousand sperm enter the oviduct and less than 100 sperm reach the site of fertilization. As soon as the sperm enter the oviduct, they form a sperm reservoir enabling them to stay vital and maintain fertilizing capacity for 3-4 days (cow, horse) up to several months (bats). After ovulation, mammalian sperm show hyperactivation which allows them to detach from the tubal epithelium and migrate to the site of fertilization. This review will focus on recent insights of sperm transport, sperm storage and sperm-oviduct interaction in mammals which have been gained by live cell imaging in cows and mice under near in vivo conditions. Detailed knowledge of the biology of spermatozoa within the female genital tract creates the basis for new therapeutic concepts for male subfertility and infertility - an essential prerequisite to increase success rates in assisted reproduction.
Collapse
Affiliation(s)
- S Kölle
- Health Sciences Centre, UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
71
|
Fazeli A, Holt WV. Cross talk during the periconception period. Theriogenology 2016; 86:438-42. [PMID: 27160448 DOI: 10.1016/j.theriogenology.2016.04.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/11/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
The cross talk between gametes, embryos, and female reproductive tract plays a crucial role in fine tuning of different reproductive events as well as influencing the epigenetic profile of offspring and their health in adulthood. Here, we describe some background to the recent investigations leading to the discovery of this cross talk. We will also point to important requirements for understanding the maternal communication with gametes and embryos. Finally, we mention two probable hypotheses regarding how gametes and embryos are recognized by the female reproductive tract. It is clear that understanding this cross talk is leading to the production of new means for increasing fertility and potentials for affecting the epigenomic profile of an individual.
Collapse
Affiliation(s)
- Alireza Fazeli
- Department of Oncology & Metabolism, Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield, UK.
| | - William V Holt
- Department of Oncology & Metabolism, Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield, UK
| |
Collapse
|
72
|
Maillo V, de Frutos C, O'Gaora P, Forde N, Burns GW, Spencer TE, Gutierrez-Adan A, Lonergan P, Rizos D. Spatial differences in gene expression in the bovine oviduct. Reproduction 2016; 152:37-46. [PMID: 27069007 DOI: 10.1530/rep-16-0074] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
Abstract
The aim of this study was to compare the transcriptome of the oviductal isthmus of pregnant heifers with that of cyclic heifers as well as to investigate spatial differences between the transcriptome of the isthmus and ampulla of the oviduct in pregnant heifers. After synchronizing crossbred beef heifers, those in standing oestrus (=Day 0) were randomly assigned to cyclic (non-bred, n=6) or pregnant (artificially inseminated, n=11) groups. They were slaughtered on Day 3 and both oviducts from each animal were isolated and cut in half to separate ampulla and isthmus. Each portion was flushed to confirm the presence of an oocyte/embryo and was then opened longitudinally and scraped to obtain epithelial cells which were snap-frozen. Oocytes and embryos were located in the isthmus of the oviduct ipsilateral to the corpus luteum Microarray analysis of oviductal cells revealed that proximity to the corpus luteum did not affect the transcriptome of the isthmus, irrespective of pregnancy status. However, 2287 genes were differentially expressed (P<0.01) between the ampulla and isthmus of the oviduct ipsilateral to the corpus luteum in pregnant animals. Gene ontology revealed that the main biological processes overrepresented in the isthmus were synthesis of nitrogen, lipids, nucleotides, steroids and cholesterol as well as vesicle-mediated transport, cell cycle, apoptosis, endocytosis and exocytosis, whereas cell motion, motility and migration, DNA repair, calcium ion homeostasis, carbohydrate biosynthesis, and regulation of cilium movement and beat frequency were overrepresented in the ampulla. In conclusion, large differences in gene expression were observed between the isthmus and ampulla of pregnant animals at Day 3 after oestrus.
Collapse
Affiliation(s)
- Veronica Maillo
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Celia de Frutos
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Peadar O'Gaora
- School of Biomolecular and Biomedical SciencesUniversity College Dublin, Belfield, Dublin 4, Ireland
| | - Niamh Forde
- Division of Reproduction and Early DevelopmentLeeds Institute of Cardiovascular and Molecular Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, UK
| | - Gregory W Burns
- Division of Animal Sciences and Department of Obstetrics, Gynecology and Women's HealthUniversity of Missouri, Columbia, Missouri
| | - Thomas E Spencer
- Division of Animal Sciences and Department of Obstetrics, Gynecology and Women's HealthUniversity of Missouri, Columbia, Missouri
| | - Alfonso Gutierrez-Adan
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Patrick Lonergan
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin 4, Ireland
| | - Dimitrios Rizos
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
73
|
Desantis S, Accogli G, Silvestre F, Binetti F, Cox SN, Roscino M, Caira M, Lacalandra GM. Glycan profile of oviductal isthmus epithelium in normal and superovulated ewes. Theriogenology 2016; 85:1192-202. [DOI: 10.1016/j.theriogenology.2015.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022]
|
74
|
Proteomics of reproductive systems: Towards a molecular understanding of postmating, prezygotic reproductive barriers. J Proteomics 2016; 135:26-37. [DOI: 10.1016/j.jprot.2015.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 10/11/2015] [Indexed: 11/20/2022]
|
75
|
Junien C, Panchenko P, Fneich S, Pirola L, Chriett S, Amarger V, Kaeffer B, Parnet P, Torrisani J, Bolaños Jimenez F, Jammes H, Gabory A. [Epigenetics in transgenerational responses to environmental impacts: from facts and gaps]. Med Sci (Paris) 2016; 32:35-44. [PMID: 26850605 DOI: 10.1051/medsci/20163201007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The existence of non-genetic and non-cultural mechanisms that transfer information on the memory of parental exposures to various environments, determining the reactivity of the following generations to their environments during their life, are of growing interest. Yet fundamental questions remain about the nature, the roles and relative importance of epigenetic marks and processes, non-coding RNAs, or other mechanisms, and their persistence over generations. A model incorporating the various transmission systems, their cross-talks and windows of susceptibility to the environment as a function of sex/gender of parent and offspring, has yet to be built.
Collapse
Affiliation(s)
- Claudine Junien
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78350 Jouy-en-Josas, France
| | - Polina Panchenko
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78350 Jouy-en-Josas, France
| | - Sara Fneich
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78350 Jouy-en-Josas, France
| | | | | | - Valérie Amarger
- Inra, UMR 1280, université de Nantes, Institut des maladies de l'appareil digestif, F-44000 Nantes, France
| | - Bertrand Kaeffer
- Inra, UMR 1280, université de Nantes, Institut des maladies de l'appareil digestif, F-44000 Nantes, France
| | - Patricia Parnet
- Inra, UMR 1280, université de Nantes, Institut des maladies de l'appareil digestif, F-44000 Nantes, France
| | - Jérome Torrisani
- Inserm UMR1037, Centre de recherches en cancérologie de Toulouse, Université de Toulouse III Paul Sabatier, F-31037 Toulouse, France
| | - Francisco Bolaños Jimenez
- Inra, UMR 1280, université de Nantes, Institut des maladies de l'appareil digestif, F-44000 Nantes, France
| | - Hélène Jammes
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78350 Jouy-en-Josas, France
| | - Anne Gabory
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78350 Jouy-en-Josas, France
| |
Collapse
|
76
|
Bae J, Kim S, Kannan K, Buck Louis GM. Couples' urinary concentrations of benzophenone-type ultraviolet filters and the secondary sex ratio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:28-36. [PMID: 26575635 PMCID: PMC4688162 DOI: 10.1016/j.scitotenv.2015.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/16/2015] [Accepted: 11/04/2015] [Indexed: 05/21/2023]
Abstract
The secondary sex ratio (SSR), defined as the ratio of males to females at birth, has been investigated in relation to endocrine disruptors to search for environmental toxicants perturbing human sex selection. Benzophenone (BP)-type ultraviolet (UV) filters, which are used in sunscreens and personal care products, have been reported to exert estrogenic and anti-androgenic activities. This study aimed to evaluate the association between maternal, paternal, and couple urinary concentrations of BP-type UV filters and the SSR, given the absence of previous investigation. The study cohort comprised 220 couples who were enrolled in the Longitudinal Investigation of Fertility and the Environment (LIFE) Study between 2005 and 2009 prior to conception and who had a singleton birth during the follow-up period. Couples' urinary concentrations of five BP-type UV filters (ng/mL) were measured using triple-quadrupole tandem mass spectrometry: 2,4-dihydroxybenzophenone (BP-1), 2,2',4,4'-tetrahydroxybenzophenone (BP-2), 2-hydroxy-4-methoxybenzophenone (BP-3), 2,2'-dihydroxy-4-methoxybenzophenone (BP-8), and 4-hydroxybenzophenone (4-OH-BP). Modified Poisson regression models were used to estimate the relative risks (RRs) of a male birth for each BP-type UV filter, after adjusting for potential confounders. When maternal and paternal urinary BP-type UV filter concentrations were modeled jointly, both maternal BP-2 (2nd vs 1st tertile, RR, 0.62, 95% confidence interval [CI], 0.43-0.91) and paternal BP-2 (3rd vs 1st tertile, RR, 0.67, 95% CI, 0.45-0.99; p-trend, 0.04) were significantly associated with an excess of female births. Contrarily, maternal 4-OH-BP was significantly associated with an excess of male births (2nd vs 1st tertile, RR, 1.87, 95% CI, 1.27-2.74; 3rd vs 1st tertile, RR, 1.80, 95% CI, 1.13-2.87; p-trend, 0.02). Our findings provide the first evidence suggesting that BP-type UV filters may affect the SSR. However, future corroboration is needed, given the exploratory design of this study.
Collapse
Affiliation(s)
- Jisuk Bae
- Department of Preventive Medicine, Catholic University of Daegu School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6100 Executive Boulevard, Rockville, MD 20852, USA.
| | - Sungduk Kim
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6100 Executive Boulevard, Rockville, MD 20852, USA.
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, USA; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, USA.
| | - Germaine M Buck Louis
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6100 Executive Boulevard, Rockville, MD 20852, USA.
| |
Collapse
|
77
|
Holt W, Fazeli A. Sperm selection in the female mammalian reproductive tract. Focus on the oviduct: Hypotheses, mechanisms, and new opportunities. Theriogenology 2016; 85:105-12. [DOI: 10.1016/j.theriogenology.2015.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 12/19/2022]
|
78
|
Effects of diets supplemented by fish oil on sex ratio of pups in bitch. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2016; 7:105-10. [PMID: 27482354 PMCID: PMC4959337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/07/2015] [Indexed: 11/22/2022]
Abstract
The present study was conducted to evaluate the effect of fish oil supplementation prior to mating on secondary sex ratio of pups (the proportion of males at birth) in bitches. Sixty five bitches (German Shepherd, n = 35; Husky, n = 30) were enrolled in the study. Bitches (140-150 days post-estrus) were given 2% per dry matter intake palm oil and fish oil in the control (n = 33) and treatment (n = 32) groups, respectively. To induce estrus, bitches were received equine chorionic gonadotropin (eCG) administration (50 IU kg(-1)) 30 days after nutritional supplementation followed by human chorionic gonadotropin (hCG) administration (500 IU per dog) seven days later. Bitches were introduced to dogs of the same breed after hCG administration. The weight of bitches was increased over time (p < 0.05), but their weight change was not different between two groups (p > 0.05). The mating rate, pregnancy rate and litter size were not influenced by treatment and breed. Secondary sex ratio was higher in the treatment (105/164; 64.00%) than in the control (68/147; 46.30%) group (p < 0.05; adjusted odds ratio = 2.068). Moreover, secondary sex ratio was higher in Husky bitches (88/141; 62.40%) compared to German Shepherd (85/170; 50.00%; p < 0.05; adjusted odds ratio = 1.661). In conclusion, the present study showed that inclusion of fish oil in the diet of bitches prior to mating could increase the proportion of male pups at birth. In addition, it appears that there might be variation among dog breeds with regard to the sex ratio of offspring.
Collapse
|
79
|
Gonella-Diaza AM, da Silva Andrade SC, Sponchiado M, Pugliesi G, Mesquita FS, Van Hoeck V, de Francisco Strefezzi R, Gasparin GR, Coutinho LL, Binelli M. Size of the Ovulatory Follicle Dictates Spatial Differences in the Oviductal Transcriptome in Cattle. PLoS One 2015; 10:e0145321. [PMID: 26699362 PMCID: PMC4689418 DOI: 10.1371/journal.pone.0145321] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
In cattle, molecular control of oviduct receptivity to the embryo is poorly understood. Here, we used a bovine model for receptivity based on size of the pre-ovulatory follicle to compare oviductal global and candidate gene transcript abundance on day 4 of the estrous cycle. Growth of the pre-ovulatory follicle (POF) of Nelore (Bos indicus) cows was manipulated to produce two groups: large POF large corpus luteum (CL) group (LF-LCL; greater receptivity) and small POF-small CL group (SF-SCL). Oviductal samples were collected four days after GnRH-induced ovulation. Ampulla and isthmus transcriptome was obtained by RNA-seq, regional gene expression was assessed by qPCR, and PGR and ERa protein distribution was evaluated by immunohistochemistry. There was a greater abundance of PGR and ERa in the oviduct of LF-LCL animals thus indicating a greater availability of receptors and possibly sex steroids stimulated signaling in both regions. Transcriptomic profiles indicated a series of genes associated with functional characteristics of the oviduct that are regulated by the periovulatory sex steroid milieu and that potentially affect oviductal receptivity and early embryo development. They include tissue morphology changes (extra cellular matrix remodeling), cellular changes (proliferation), and secretion changes (growth factors, ions and metal transporters), and were enriched for the genes with increased expression in the LF-LCL group. In conclusion, differences in the periovulatory sex steroid milieu lead to different oviductal gene expression profiles that could modify the oviductal environment to affect embryo survival and development.
Collapse
Affiliation(s)
- Angela María Gonella-Diaza
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Sónia Cristina da Silva Andrade
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av Pádua Dias, 11, Piracicaba, SP, Brazil
| | - Mariana Sponchiado
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Guilherme Pugliesi
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Veerle Van Hoeck
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Gustavo R. Gasparin
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av Pádua Dias, 11, Piracicaba, SP, Brazil
| | - Luiz L. Coutinho
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av Pádua Dias, 11, Piracicaba, SP, Brazil
| | - Mario Binelli
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
80
|
Miller DJ. Regulation of Sperm Function by Oviduct Fluid and the Epithelium: Insight into the Role of Glycans. Reprod Domest Anim 2015; 50 Suppl 2:31-9. [DOI: 10.1111/rda.12570] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 01/18/2023]
Affiliation(s)
- DJ Miller
- Department of Animal Sciences; University of Illinois; Urbana-Champaign IL USA
| |
Collapse
|
81
|
Firman RC, Simmons LW. Gametic interactions promote inbreeding avoidance in house mice. Ecol Lett 2015; 18:937-43. [DOI: 10.1111/ele.12471] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/27/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology; School of Animal Biology; M092; The University of Western Australia; Nedlands WA 6009 Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology; School of Animal Biology; M092; The University of Western Australia; Nedlands WA 6009 Australia
| |
Collapse
|
82
|
López-Úbeda R, García-Vázquez FA, Romar R, Gadea J, Muñoz M, Hunter RHF, Coy P. Oviductal Transcriptome Is Modified after Insemination during Spontaneous Ovulation in the Sow. PLoS One 2015; 10:e0130128. [PMID: 26098421 PMCID: PMC4476686 DOI: 10.1371/journal.pone.0130128] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Gene Expression Microarray technology was used to compare oviduct transcriptome between inseminated and non-inseminated pigs during spontaneous oestrus. We used an in vivo model approaching the study from a physiological point of view in which no hormonal treatment (animals were in natural oestrus) and no artificial sperm selection (selection was performed within the female genital) were imposed. It is therefore emphasised that no surgical introduction of spermatozoa and no insemination at a site other than the physiological one were used. This approach revealed 17 genes that were two-fold or more up-regulated in oviducts exposed to spermatozoa and/or developing embryos and 9 genes that were two-fold or more down-regulated. Functional analysis of the genes revealed that the top canonical pathways affected by insemination were related to the inflammatory response and immune system (Network 1) to molecular transport, protein trafficking and developmental disorder (Network 2) and to cell-to-cell signalling and interaction (Network 3). Some of the genes in network 1 had been previously detected in the oviduct of human and animals, where they were over-expressed in the presence of spermatozoa or pre-implantation embryos (C3, IGHG1, ITIH4, TNF and SERPINE1) whereas others were not previously reported (SAA2, ALOX12, CD1D and SPP1). Genes in Network 2 included RAB1B and TOR3A, the latter being described for the first time in the oviduct and clearly expressed in the epithelial cells of the mucosa layer. Network 3 integrated the genes with the highest down-regulation level (CYP51, PTH1R and TMOD3). Data in the present study indicate a change in gene expression during gamete encounter at the site of fertilization after a natural sperm selection within the female genital tract. These changes would indicate a modification of the environment preparing the oviduct for a successful fertilization and for an adequate embryo early development.
Collapse
Affiliation(s)
- Rebeca López-Úbeda
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Francisco A. García-Vázquez
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Marta Muñoz
- Centro de Biotecnología Animal—SERIDA, Deva, Gijón, Asturias, Spain
| | | | - Pilar Coy
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
- * E-mail:
| |
Collapse
|
83
|
Maillo V, Gaora PÓ, Forde N, Besenfelder U, Havlicek V, Burns GW, Spencer TE, Gutierrez-Adan A, Lonergan P, Rizos D. Oviduct-Embryo Interactions in Cattle: Two-Way Traffic or a One-Way Street? Biol Reprod 2015; 92:144. [PMID: 25926440 DOI: 10.1095/biolreprod.115.127969] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022] Open
Abstract
This study examined the effect of the presence of single or multiple embryos on the transcriptome of the bovine oviduct. In experiment 1, cyclic (nonbred, n = 6) and pregnant (artificially inseminated, n = 11) heifers were slaughtered on Day 3 after estrus, and the ampulla and isthmic regions of the oviduct ipsilateral to the corpus luteum were separately flushed. Oviductal epithelial cells from the isthmus region, in which all oocytes/embryos were located, were snap-frozen for microarray analysis. In experiment 2, heifers were divided into cyclic (nonbred, n = 6) or pregnant (multiple embryo transfer, n = 10) groups. In vitro-produced presumptive zygotes were transferred endoscopically to the ipsilateral oviduct on Day 1.5 postestrus (n = 50 zygotes/heifer). Heifers were slaughtered on Day 3, and oviductal isthmus epithelial cells were recovered for RNA sequencing. Microarray analysis in experiment 1 failed to detect any difference in the transcriptome of the oviductal isthmus induced by the presence of a single embryo. In experiment 2, following multiple embryo transfer, RNA sequencing revealed 278 differentially expressed genes, of which 123 were up-regulated and 155 were down-regulated in pregnant heifers. Most of the down-regulated genes were related to immune function. In conclusion, the presence of multiple embryos in the oviduct resulted in the detection of differentially expressed genes in the oviductal isthmus; failure to detect changes in the oviduct transcriptome in the presence of a single embryo may be due to the effect being local and undetectable under the conditions of this study.
Collapse
Affiliation(s)
| | - Peadar Ó Gaora
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Urban Besenfelder
- Reproduction Centre-Wieselburg, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vitezslav Havlicek
- Reproduction Centre-Wieselburg, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gregory W Burns
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Thomas E Spencer
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | | | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | |
Collapse
|
84
|
García-Vázquez FA, Hernández-Caravaca I, Yánez-Quintana W, Matás C, Soriano-Úbeda C, Izquierdo-Rico MJ. Morphometry of boar sperm head and flagellum in semen backflow after insemination. Theriogenology 2015; 84:566-74. [PMID: 25998269 DOI: 10.1016/j.theriogenology.2015.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 11/18/2022]
Abstract
Once deposited in the female reproductive system, sperm begin their competition and undergo a selection to reach the site of fertilization. Little is known about the special characteristics of sperm that reach the oviduct and are able to fertilize, with even less information on the role of sperm dimension and shape in transport and fertilization. Here, we examine whether sperm morphometry could be involved in their journey within the uterus. For this purpose, sperm head dimension (length, width, area, and perimeter) and shape (shape factor, ellipticity, elongation, and regularity), and flagellum length were analyzed in the backflow at different times after insemination (0-15, 16-30, and 31-60 minutes). Sperm morphometry in the backflow was also analyzed taking into account the site of semen deposition (cervical vs. intrauterine). Finally, flagellum length was measured at the uterotubal junction. Sperm analyzed in the backflow were small (head and flagellum) with different head shapes compared with sperm observed in the dose before insemination. The site of deposition influenced head morphometry and tail size both being smaller in the backflow after cervical insemination compared with intrauterine insemination. Mean tail length of sperm collected in the backflow was smaller than that in the insemination dose and at the uterotubal junction. Overall, our results suggest that sperm size may be involved in sperm transport either because of environment or through sperm selection and competence on their way to encounter the female gamete.
Collapse
Affiliation(s)
- Francisco Alberto García-Vázquez
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain.
| | - Iván Hernández-Caravaca
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Boehringer-Ingelheim S.A., Barcelona, Spain
| | - Wellington Yánez-Quintana
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Cristina Soriano-Úbeda
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - María José Izquierdo-Rico
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain; Department of Cell Biology and Histology, Faculty of Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
85
|
Holt WV, Fazeli A. Do sperm possess a molecular passport? Mechanistic insights into sperm selection in the female reproductive tract. ACTA ACUST UNITED AC 2015; 21:491-501. [DOI: 10.1093/molehr/gav012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/04/2015] [Indexed: 12/26/2022]
|
86
|
Ménézo Y, Guérin P, Elder K. The oviduct: a neglected organ due for re-assessment in IVF. Reprod Biomed Online 2015; 30:233-40. [DOI: 10.1016/j.rbmo.2014.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
|
87
|
Boulton RA, Fletcher AW. Do mothers prefer helpers or smaller litters? Birth sex ratio and litter size adjustment in cotton-top tamarins (Saguinus oedipus). Ecol Evol 2015; 5:598-606. [PMID: 25691984 PMCID: PMC4328765 DOI: 10.1002/ece3.1396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/15/2014] [Indexed: 11/21/2022] Open
Abstract
Sex allocation theory has been a remarkably productive field in behavioral ecology with empirical evidence regularly supporting quantitative theoretical predictions. Across mammals in general and primates in particular, however, support for the various hypotheses has been more equivocal. Population-level sex ratio biases have often been interpreted as supportive, but evidence for small-scale facultative adjustment has rarely been found. The helper repayment (HR) also named the local resource enhancement (LRE) hypothesis predicts that, in cooperatively breeding species, mothers invest more in the sex which assists with rearing future offspring and that this bias will be more pronounced in mothers who require extra assistance (i.e., due to inexperience or a lack of available alloparents). We tested these hypotheses in captive cotton-top tamarins (Saguinus oedipus) utilizing the international studbook and birth records obtained through a questionnaire from ISIS-registered institutions. Infant sex, litter size, mother's age, parity, and group composition (presence of nonreproductive subordinate males and females) were determined from these records. The HR hypothesis was supported over the entire population, which was significantly biased toward males (the "helpful" sex). We found little support for helper repayment at the individual level, as primiparous females and those in groups without alloparents did not exhibit more extreme tendencies to produce male infants. Primiparous females were, however, more likely to produce singleton litters. Singleton births were more likely to be male, which suggests that there may be an interaction between litter size adjustment and sex allocation. This may be interpreted as supportive of the HR hypothesis, but alternative explanations at both the proximate and ultimate levels are possible. These possibilities warrant further consideration when attempting to understand the ambiguous results of primate sex ratio studies so far.
Collapse
Affiliation(s)
- Rebecca A Boulton
- Department of Biological Sciences, University of ChesterChester, U.K
- School of Biology, University of St AndrewsSt Andrews, U.K
| | - Alison W Fletcher
- Department of Biological Sciences, University of ChesterChester, U.K
| |
Collapse
|
88
|
Avilés M, Coy P, Rizos D. The oviduct: A key organ for the success of early reproductive events. Anim Front 2015. [DOI: 10.2527/af.2015-0005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, IMIB-Arrixaca, Murcia, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, IMIB-Arrixaca, Murcia, Murcia, Spain
| | - Dimitrios Rizos
- Departamento de Reproducción Animal, INIA, Ctra. de la Coruña Km. 5,9 - 28040 Madrid, Spain
| |
Collapse
|
89
|
Fitzpatrick JL, Lüpold S. Sexual selection and the evolution of sperm quality. ACTA ACUST UNITED AC 2014; 20:1180-9. [DOI: 10.1093/molehr/gau067] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|