51
|
Nuruzzaman M, Cao H, Xiu H, Luo T, Li J, Chen X, Luo J, Luo Z. Transcriptomics-based identification of WRKY genes and characterization of a salt and hormone-responsive PgWRKY1 gene in Panax ginseng. Acta Biochim Biophys Sin (Shanghai) 2016; 48:117-31. [PMID: 26685304 DOI: 10.1093/abbs/gmv122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/30/2015] [Indexed: 12/23/2022] Open
Abstract
WRKY proteins belong to a transcription factor (TF) family and play dynamic roles in many plant processes, including plant responses to abiotic and biotic stresses, as well as secondary metabolism. However, no WRKY gene in Panax ginseng C.A. Meyer has been reported to date. In this study, a number of WRKY unigenes from methyl jasmonate (MeJA)-treated adventitious root transcriptome of this species were identified using next-generation sequencing technology. A total of 48 promising WRKY unigenes encoding WRKY proteins were obtained by eliminating wrong and incomplete open reading frame (ORF). Phylogenetic analysis reveals 48 WRKY TFs, including 11 Group I, 36 Group II, and 1 Group III. Moreover, one MeJA-responsive unigene designated as PgWRKY1 was cloned and characterized. It contains an entire ORF of 1077 bp and encodes a polypeptide of 358 amino acid residues. The PgWRKY1 protein contains a single WRKY domain consisting of a conserved amino acid sequence motif WRKYGQK and a C2H2-type zinc-finger motif belonging to WRKY subgroup II-d. Subcellular localization of PgWRKY1-GFP fusion protein in onion and tobacco epidermis cells revealed that PgWRKY1 was exclusively present in the nucleus. Quantitative real-time polymerase chain reaction analysis demonstrated that the expression of PgWRKY1 was relatively higher in roots and lateral roots compared with leaves, stems, and seeds. Importantly, PgWRKY1 expression was significantly induced by salicylic acid, abscisic acid, and NaCl, but downregulated by MeJA treatment. These results suggested that PgWRKY1 might be a multiple stress-inducible gene responding to hormones and salt stresses.
Collapse
Affiliation(s)
- Mohammed Nuruzzaman
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Hongzhe Cao
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Hao Xiu
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Tiao Luo
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Jijia Li
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Xianghui Chen
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Junli Luo
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Zhiyong Luo
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
52
|
Jiang CH, Huang ZY, Xie P, Gu C, Li K, Wang DC, Yu YY, Fan ZH, Wang CJ, Wang YP, Guo YH, Guo JH. Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:157-74. [PMID: 26433201 DOI: 10.1093/jxb/erv445] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The activation of both the SA and JA/ETsignalling pathways may lead to more efficient general and broad resistance to Pst DC3000 by non-pathogenic rhizobacteria. However, the mechanisms that govern this simultaneous activation are unclear. Using Arabidopsis as a model system, two transcription factors, WRKY11 and WRKY70, were identified as important regulators involved in Induced Systemic Resistance (ISR) triggered by Bacillus cereus AR156. The results revealed that AR156 treatment significantly stimulated the transcription of WRKY70, but suppressed that of WRKY11 in Arabidopsis leaves. Furthermore, they were shown to be required for AR156 enhancing the activation of cellular defence responses and the transcription level of the plant defence response gene. Overexpression of the two transcription factors in Arabidopsis also showed that they were essential for AR156 to elicit ISR. AR156-triggered ISR was completely abolished in the double mutant of the two transcription factors, but still partially retained in the single mutants, indicating that the regulation of the two transcription factors depend on two different pathways. The target genes of the two transcription factors and epistasis analysis suggested that WRKY11 regulated AR156-triggered ISR through activating the JA signalling pathway, and WRKY70 regulated the ISR through activating the SA signalling pathway. In addition, both WRKY11 and WRKY70 modulated AR156-triggered ISR in a NPR1-dependent manner. In conclusion, WRKY11 and WRKY70 played an important role in regulating the signalling transduction pathways involved in AR156-triggered ISR. This study is the first to illustrate the mechanism by which a single rhizobacterium elicits ISR by simultaneously activating both the SA and JA/ET signalling pathways.
Collapse
Affiliation(s)
- Chun-Hao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Zi-Yang Huang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Ping Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Chun Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Ke Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Da-Chen Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Yi-Yang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Zhi-Hang Fan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Chun-Juan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China Plant Protection Station of Guangxi Zhuang Autonomous Region, Nanning Guangxi 530022, People's Republic of China
| | - Yun-Peng Wang
- Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Ya-Hui Guo
- Agriculture Institute, Hebei University of Engineering, Handan 056021, People's Republic of China
| | - Jian-Hua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| |
Collapse
|
53
|
Pathania S, Bagler G, Ahuja PS. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2016; 7:1229. [PMID: 27588023 PMCID: PMC4988974 DOI: 10.3389/fpls.2016.01229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 08/02/2016] [Indexed: 05/07/2023]
Abstract
Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites.
Collapse
Affiliation(s)
- Shivalika Pathania
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial ResearchPalampur, India
- *Correspondence: Shivalika Pathania
| | - Ganesh Bagler
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial ResearchPalampur, India
- Center for Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi)New Delhi, India
- Centre for Biologically Inspired System Science, Indian Institute of Technology JodhpurJodhpur, India
- Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagar, India
- Ganesh Bagler
| | - Paramvir S. Ahuja
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial ResearchPalampur, India
- Indian Institute of Science Education and Research (IISER) MohaliMohali, India
| |
Collapse
|
54
|
Phukan UJ, Jeena GS, Shukla RK. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:760. [PMID: 27375634 PMCID: PMC4891567 DOI: 10.3389/fpls.2016.00760] [Citation(s) in RCA: 424] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/17/2016] [Indexed: 05/17/2023]
Abstract
Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological, and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational, and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research.
Collapse
|
55
|
Udomsom N, Rai A, Suzuki H, Okuyama J, Imai R, Mori T, Nakabayashi R, Saito K, Yamazaki M. Function of AP2/ERF Transcription Factors Involved in the Regulation of Specialized Metabolism in Ophiorrhiza pumila Revealed by Transcriptomics and Metabolomics. FRONTIERS IN PLANT SCIENCE 2016; 7:1861. [PMID: 28018397 PMCID: PMC5145908 DOI: 10.3389/fpls.2016.01861] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/25/2016] [Indexed: 05/20/2023]
Abstract
The hairy roots (HR) of Ophiorrhiza pumila produce camptothecin (CPT), a monoterpenoid indole alkaloid used as a precursor in the synthesis of chemotherapeutic drugs. O. pumila HR culture is considered as a promising alternative source of CPT, however, the knowledge about the biosynthetic pathway and regulatory mechanism is still limited. In this study, five genes that encode AP2/ERF transcription factors, namely OpERF1-OpERF5, were isolated from HR of O. pumila. Phylogenetic analysis of AP2/ERF protein sequences suggested the close evolutionary relationship of OpERF1 with stress-responsive ERF factors in Arabidopsis and of OpERF2 with ERF factors reported to regulate alkaloid production, such as ORCA3 in Catharanthus roseus, NIC2 locus ERF in tobacco, and JRE4 in tomato. We generated the transgenic HR lines of O. pumila, ERF1i and ERF2i, in which the expression of OpERF1 and OpERF2, respectively, was suppressed using RNA interference technique. The transcriptome and metabolome of these suppressed HR were analyzed for functional characterization of OpERF1 and OpERF2. Although significant changes were not observed in the metabolome, including CPT and related compounds, the suppression of OpERF2 resulted in reduced expression of genes in the 2-C-methyl-d-erythritol 4-phosphate and secologanin-strictosidine pathways, which supply a precursor, strictosidine, for CPT biosynthesis. Furthermore, while it was not conclusive for OpERF1, enrichment analysis of differentially expressed genes in the suppressed HR showed that the gene ontology terms for oxidation-reduction, presumably involved in secondary metabolite pathways, were enriched in the ERF2i downregulated gene set. These results suggest a positive role of OpERF2 in regulating specialized metabolism in O. pumila.
Collapse
Affiliation(s)
- Nirin Udomsom
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Amit Rai
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research InstituteChiba, Japan
| | - Jun Okuyama
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Ryosuke Imai
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource ScienceKanagawa, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource ScienceKanagawa, Japan
| | - Kazuki Saito
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
- RIKEN Center for Sustainable Resource ScienceKanagawa, Japan
| | - Mami Yamazaki
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
- *Correspondence: Mami Yamazaki
| |
Collapse
|
56
|
Yazan LS, Ong YS, Zaaba NE, Ali RM, Foo JB, Tor YS. Anti-breast cancer properties and toxicity of Dillenia suffruticosa root aqueous extract in BALB/c mice. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
57
|
Liu Z, Zhang S, Sun N, Liu H, Zhao Y, Liang Y, Zhang L, Han Y. Functional diversity of jasmonates in rice. RICE (NEW YORK, N.Y.) 2015; 8:42. [PMID: 26054241 PMCID: PMC4773313 DOI: 10.1186/s12284-015-0042-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/14/2015] [Indexed: 05/18/2023]
Abstract
Phytohormone jasmonates (JA) play essential roles in plants, such as regulating development and growth, responding to environmental changes, and resisting abiotic and biotic stresses. During signaling, JA interacts, either synergistically or antagonistically, with other hormones, such as salicylic acid (SA), gibberellin (GA), ethylene (ET), auxin, brassinosteroid (BR), and abscisic acid (ABA), to regulate gene expression in regulatory networks, conferring physiological and metabolic adjustments in plants. As an important staple crop, rice is a major nutritional source for human beings and feeds one third of the world's population. Recent years have seen significant progress in the understanding of the JA pathway in rice. In this review, we summarize the diverse functions of JA, and discuss the JA interplay with other hormones, as well as light, in this economically important crop. We believe that a better understanding of the JA pathway will lead to practical biotechnological applications in rice breeding and cultivation.
Collapse
Affiliation(s)
- Zheng Liu
- />College of Life Sciences, Hebei University, Baoding, China
| | - Shumin Zhang
- />College of Life Sciences, Hebei University, Baoding, China
| | - Ning Sun
- />The Affiliated School of Hebei Baoding Normal, Baoding, China
| | - Hongyun Liu
- />College of Life Sciences, Hebei University, Baoding, China
| | - Yanhong Zhao
- />College of Agriculture, Ludong University, Yantai, China
| | - Yuling Liang
- />College of Life Sciences, Hebei University, Baoding, China
| | - Liping Zhang
- />College of Life Sciences, Hebei University, Baoding, China
| | - Yuanhuai Han
- />School of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong, China
- />Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan, China
| |
Collapse
|
58
|
Fan Q, Song A, Xin J, Chen S, Jiang J, Wang Y, Li X, Chen F. CmWRKY15 Facilitates Alternaria tenuissima Infection of Chrysanthemum. PLoS One 2015; 10:e0143349. [PMID: 26600125 PMCID: PMC4658048 DOI: 10.1371/journal.pone.0143349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/03/2015] [Indexed: 01/08/2023] Open
Abstract
Abscisic acid (ABA) has an important role in the responses of plants to pathogens due to its ability to induce stomatal closure and interact with salicylic acid (SA) and jasmonic acid (JA). WRKY transcription factors serve as antagonistic or synergistic regulators in the response of plants to a variety of pathogens. Here, we demonstrated that CmWRKY15, a group IIa WRKY family member, was not transcriptionally activated in yeast cells. Subcellular localization experiments in which onion epidermal cells were transiently transfected with CmWRKY15 indicated that CmWRKY15 localized to the nucleus in vivo. The expression of CmWRKY15 could be markedly induced by the presence of Alternaria tenuissima inoculum in chrysanthemum. Furthermore, the disease severity index (DSI) data of CmWRKY15-overexpressing plants indicated that CmWRKY15 overexpression enhanced the susceptibility of chrysanthemum to A. tenuissima infection compared to controls. To illustrate the mechanisms by which CmWRKY15 regulates the response to A. tenuissima inoculation, the expression levels of ABA-responsive and ABA signaling genes, such as ABF4, ABI4, ABI5, MYB2, RAB18, DREB1A, DREB2A, PYL2, PP2C, RCAR1, SnRK2.2, SnRK2.3, NCED3A, NCED3B, GTG1, AKT1, AKT2, KAT1, KAT2, and KC1were compared between transgenic plants and controls. In summary, our data suggest that CmWRKY15 might facilitate A. tenuissima infection by antagonistically regulating the expression of ABA-responsive genes and genes involved in ABA signaling, either directly or indirectly.
Collapse
Affiliation(s)
- Qingqing Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yinjie Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiran Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, China
- * E-mail:
| |
Collapse
|
59
|
Afrin S, Huang JJ, Luo ZY. JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0813-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
60
|
Yang X, Deng C, Zhang Y, Cheng Y, Huo Q, Xue L. The WRKY transcription factor genes in eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.). Int J Mol Sci 2015; 16:7608-26. [PMID: 25853261 PMCID: PMC4425038 DOI: 10.3390/ijms16047608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/02/2015] [Accepted: 03/10/2015] [Indexed: 11/16/2022] Open
Abstract
WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I–III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups. Positively-selected sites were found in Groups IIc and III. Branch-specific selection pressure analysis indicated that most WRKY domains from SmelWRKYs and StorWRKYs are conserved and have evolved at low rates since their divergence. Comparison to homologous WRKY genes in Arabidopsis revealed several potential pathogen resistance-related SmelWRKYs and StorWRKYs, providing possible candidate genetic resources for improving stress tolerance in eggplant and probably other Solanaceae plants. To our knowledge, this is the first report of a genome-wide analyses of the SmelWRKYs and StorWRKYs.
Collapse
Affiliation(s)
- Xu Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Cao Deng
- DNA Stories Bioinformatics Services Co., Ltd., Chengdu 610000, China.
| | - Yu Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Yufu Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Qiuyue Huo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Linbao Xue
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
61
|
Phylogenetic and stress-responsive expression analysis of 20 WRKY genes in Populus simonii × Populus nigra. Gene 2015; 565:130-9. [PMID: 25843624 DOI: 10.1016/j.gene.2015.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 01/21/2015] [Accepted: 04/01/2015] [Indexed: 11/24/2022]
Abstract
WRKY transcription factors play important roles in regulating biotic and abiotic stress responses in plants. Although a plethora of studies have revealed the functions and mechanisms of some WRKYs in various plants, the studies of WRKYs in woody plants especially tree species under different abiotic and biotic stress conditions are still not well characterized. In this study, we selected 20 Populus simonii×Populus nigra WRKY genes based on our previous transcriptome study, and characterized these genes by phylogenetic analysis to investigate their evolutionary relations, then studied their expression patterns under NaCl, NaHCO3, PEG6000, CdCl2 and Alternaria alternata (Fr.) Keissl treatments that mimic the salt, alkalinity, drought, heavy metal and fungal infection conditions. The phylogenetic analysis showed that these 20 genes can be divided into five clades (Groups I, IIa, IIb, IIc and III) and all of their WRKY domains are conserved except for an N-terminal single amino acid mutation in PsnWRKY8. Before conducting quantitative real time PCR calculation, we evaluated five candidate reference genes under different stress treatments, and chose At4g33380-like as the reference gene for salt stress, Actin for alkalinity stress, UBQ for drought stress, TUA for heavy metal stress, and 18S rRNA for pathogen infection stress. The final qRT-PCR analysis indicated that 20/20, 20/20, and 15/20 PsnWRKYs were downregulated under salt, alkali and drought stresses, and 14/20 and 19/20 PsnWRKYs were upregulated under heavy metal and pathogen stresses. Members from the same clade tended to present similar expression patterns. In addition, we observed noticeable changes in the expression of PsnWRKY11 (increased by 41 times) and PsnWRKY20 (increased by 141 times) under pathogen infection condition, implying that these two genes are potentially important for the disease resistance of P. simonii × P. nigra.
Collapse
|
62
|
Li C, Li D, Shao F, Lu S. Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza. BMC Genomics 2015; 16:200. [PMID: 25881056 PMCID: PMC4371873 DOI: 10.1186/s12864-015-1411-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/27/2015] [Indexed: 12/02/2022] Open
Abstract
Background WRKY proteins comprise a large family of transcription factors and play important regulatory roles in plant development and defense response. The WRKY gene family in Salvia miltiorrhiza has not been characterized. Results A total of 61 SmWRKYs were cloned from S. miltiorrhiza. Multiple sequence alignment showed that SmWRKYs could be classified into 3 groups and 8 subgroups. Sequence features, the WRKY domain and other motifs of SmWRKYs are largely conserved with Arabidopsis AtWRKYs. Each group of WRKY domains contains characteristic conserved sequences, and group-specific motifs might attribute to functional divergence of WRKYs. A total of 17 pairs of orthologous SmWRKY and AtWRKY genes and 21 pairs of paralogous SmWRKY genes were identified. Maximum likelihood analysis showed that SmWRKYs had undergone strong selective pressure for adaptive evolution. Functional divergence analysis suggested that the SmWRKY subgroup genes and many paralogous SmWRKY gene pairs were divergent in functions. Various critical amino acids contributed to functional divergence among subgroups were detected. Of the 61 SmWRKYs, 22, 13, 4 and 1 were predominantly expressed in roots, stems, leaves, and flowers, respectively. The other 21 were mainly expressed in at least two tissues analyzed. In S. miltiorrhiza roots treated with MeJA, significant changes of gene expression were observed for 49 SmWRKYs, of which 26 were up-regulated, 18 were down-regulated, while the other 5 were either up-regulated or down-regulated at different time-points of treatment. Analysis of published RNA-seq data showed that 42 of the 61 identified SmWRKYs were yeast extract and Ag+-responsive. Through a systematic analysis, SmWRKYs potentially involved in tanshinone biosynthesis were predicted. Conclusion These results provide insights into functional conservation and diversification of SmWRKYs and are useful information for further elucidating SmWRKY functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1411-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| | - Dongqiao Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| | - Fenjuan Shao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
63
|
Schluttenhofer C, Yuan L. Regulation of specialized metabolism by WRKY transcription factors. PLANT PHYSIOLOGY 2015; 167:295-306. [PMID: 25501946 PMCID: PMC4326757 DOI: 10.1104/pp.114.251769] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/08/2014] [Indexed: 05/19/2023]
Abstract
WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years.
Collapse
Affiliation(s)
- Craig Schluttenhofer
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
| |
Collapse
|
64
|
Shukla D, Krishnamurthy S, Sahi SV. Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl(-) 4) treatment. FRONTIERS IN PLANT SCIENCE 2014; 5:652. [PMID: 25506348 PMCID: PMC4246665 DOI: 10.3389/fpls.2014.00652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/03/2014] [Indexed: 05/21/2023]
Abstract
The unique physico-chemical properties of gold nanoparticles (AuNPs) find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl(-) 4 In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- h in presence of gold solution (HAuCl4) using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit), ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4(-) treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE), suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE) points to the operation of a predominant signaling mechanism in response to AuCl(-) 4 exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of candidate genes involved in nanogold synthesis.
Collapse
Affiliation(s)
| | | | - Shivendra V. Sahi
- *Correspondence: Shivendra V. Sahi, Department of Biology, Western Kentucky University, 1906 College Heights, Bowling Green, KY 42101-1080, USA e-mail:
| |
Collapse
|