51
|
Wen D, Xu H, Xie L, He M, Hou H, Zhang C. A loose endosperm structure of wheat seed produced under low nitrogen level promotes early germination by accelerating water uptake. Sci Rep 2017; 7:3116. [PMID: 28596607 PMCID: PMC5465190 DOI: 10.1038/s41598-017-03333-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/26/2017] [Indexed: 02/01/2023] Open
Abstract
Water uptake is the fundamental requirement for the initiation and completion of seed germination that is a vital phase in the life cycle of seed plants. We found that seeds produced under four nitrogen levels showed significantly different germination speed. The objective of this study was to study the mechanism of rapid seed germination and explore which pathways and genes play critical roles in radicle protrusion. Anatomical data revealed that seed protein content affected endosperm structure of seeds. Moreover, scanning electron microscope maps showed that faster germinated seeds had a looser endosperm structure compared with other seeds. Subsequently, high throughout RNA-seq data were used to compare the transcriptomes of imbibed seeds with different germination speed. Gene ontology (GO) term enrichment analysis revealed that cell wall metabolism related genes significantly up-regulated in faster germinated seeds. In these genes, the top four were chitinase that had about fourfold higher expression in faster germinated seeds. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that faster germinated seeds had enhanced expression in glutathione metabolism. By combining these results, we propose a model for nitrogen fertilizer affects germination speed of wheat seed, which provide new insights into seed germination.
Collapse
Affiliation(s)
- Daxing Wen
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province, 271018, P.R. China
| | - Haicheng Xu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province, 271018, P.R. China
| | - Liuyong Xie
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province, 271018, P.R. China
| | - Mingrong He
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province, 271018, P.R. China
| | - Hongcun Hou
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province, 271018, P.R. China
| | - Chunqing Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province, 271018, P.R. China.
| |
Collapse
|
52
|
Han C, Zhen S, Zhu G, Bian Y, Yan Y. Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:320-327. [PMID: 28415032 DOI: 10.1016/j.plaphy.2017.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
In this study, we performed the first comparative metabolomic analysis of the wheat embryo and endosperm during seed germination using GC-MS/MS. In total, 82 metabolites were identified in the embryo and endosperm. Principal component analysis (PCA), metabolite-metabolite correlation and hierarchical cluster analysis (HCA) revealed distinct dynamic changes in metabolites between the embryo and endosperm during seed germination. Generally, the metabolite changes in the embryo were much greater than those in the endosperm, suggesting that the embryo is more active than the endosperm during seed germination. Most amino acids were upregulated in both embryo and endosperm, while polysaccharides and organic acids associated with sugars were mainly downregulated in the embryo. Most of the sugars showed an upregulated trend in the endosperm, but significant changes in lipids occurred only in the embryo. Our results suggest that the embryo mobilises mainly protein and lipid metabolism, while the endosperm mobilises storage starch and minor protein metabolism during seed germination. The primary energy was generated mainly in the embryo by glycolysis during seed imbibition. The embryo containing most of the genetic information showed increased nucleotides during seed germination process, indicating more active transcription and translation metabolisms.
Collapse
Affiliation(s)
- Caixia Han
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Shoumin Zhen
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Gengrui Zhu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yanwei Bian
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025 Jingzhou, China.
| |
Collapse
|
53
|
Bai B, Peviani A, van der Horst S, Gamm M, Snel B, Bentsink L, Hanson J. Extensive translational regulation during seed germination revealed by polysomal profiling. THE NEW PHYTOLOGIST 2017; 214:233-244. [PMID: 27935038 PMCID: PMC5347915 DOI: 10.1111/nph.14355] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 05/18/2023]
Abstract
This work investigates the extent of translational regulation during seed germination. The polysome occupancy of each gene is determined by genome-wide profiling of total mRNA and polysome-associated mRNA. This reveals extensive translational regulation during Arabidopsis thaliana seed germination. The polysome occupancy of thousands of individual mRNAs changes to a large extent during the germination process. Intriguingly, these changes are restricted to two temporal phases (shifts) during germination, seed hydration and germination. Sequence features, such as upstream open reading frame number, transcript length, mRNA stability, secondary structures, and the presence and location of specific motifs correlated with this translational regulation. These features differed significantly between the two shifts, indicating that independent mechanisms regulate translation during seed germination. This study reveals substantial translational dynamics during seed germination and identifies development-dependent sequence features and cis elements that correlate with the translation control, uncovering a novel and important layer of gene regulation during seed germination.
Collapse
Affiliation(s)
- Bing Bai
- Department of Molecular Plant PhysiologyUtrecht University3584 CHUtrechtthe Netherlands
- Wageningen Seed LaboratoryLaboratory of Plant PhysiologyWageningen University6708 PBWageningenthe Netherlands
| | - Alessia Peviani
- Theoretical Biology and BioinformaticsUtrecht University3584 CHUtrechtthe Netherlands
| | - Sjors van der Horst
- Wageningen Seed LaboratoryLaboratory of Plant PhysiologyWageningen University6708 PBWageningenthe Netherlands
- Theoretical Biology and BioinformaticsUtrecht University3584 CHUtrechtthe Netherlands
| | - Magdalena Gamm
- Department of Molecular Plant PhysiologyUtrecht University3584 CHUtrechtthe Netherlands
| | - Berend Snel
- Theoretical Biology and BioinformaticsUtrecht University3584 CHUtrechtthe Netherlands
| | - Leónie Bentsink
- Department of Molecular Plant PhysiologyUtrecht University3584 CHUtrechtthe Netherlands
- Wageningen Seed LaboratoryLaboratory of Plant PhysiologyWageningen University6708 PBWageningenthe Netherlands
| | - Johannes Hanson
- Department of Molecular Plant PhysiologyUtrecht University3584 CHUtrechtthe Netherlands
- Umeå Plant Science CentreDepartment of Plant PhysiologyUniversity of UmeåUmeåSE‐901 87Sweden
| |
Collapse
|
54
|
Bredow M, Vanderbeld B, Walker VK. Knockdown of Ice-Binding Proteins in Brachypodium distachyon Demonstrates Their Role in Freeze Protection. PLoS One 2016; 11:e0167941. [PMID: 27959937 PMCID: PMC5154533 DOI: 10.1371/journal.pone.0167941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022] Open
Abstract
Sub-zero temperatures pose a major threat to the survival of cold-climate perennials. Some of these freeze-tolerant plants produce ice-binding proteins (IBPs) that offer frost protection by restricting ice crystal growth and preventing expansion-induced lysis of the plasma membranes. Despite the extensive in vitro characterization of such proteins, the importance of IBPs in the freezing stress response has not been investigated. Using the freeze-tolerant grass and model crop, Brachypodium distachyon, we characterized putative IBPs (BdIRIs) and generated the first 'IBP-knockdowns'. Seven IBP sequences were identified and expressed in Escherichia coli, with all of the recombinant proteins demonstrating moderate to high levels of ice-recrystallization inhibition (IRI) activity, low levels of thermal hysteresis (TH) activity (0.03-0.09°C at 1 mg/mL) and apparent adsorption to ice primary prism planes. Following plant cold acclimation, IBPs purified from wild-type B. distachyon cell lysates similarly showed high levels of IRI activity, hexagonal ice-shaping, and low levels of TH activity (0.15°C at 0.5 mg/mL total protein). The transfer of a microRNA construct to wild-type plants resulted in the attenuation of IBP activity. The resulting knockdown mutant plants had reduced ability to restrict ice-crystal growth and a 63% reduction in TH activity. Additionally, all transgenic lines were significantly more vulnerable to electrolyte leakage after freezing to -10°C, showing a 13-22% increase in released ions compared to wild-type. IBP-knockdown lines also demonstrated a significant decrease in viability following freezing to -8°C, with some lines showing only two-thirds the survival seen in control lines. These results underscore the vital role IBPs play in the development of a freeze-tolerant phenotype and suggests that expression of these proteins in frost-susceptible plants could be valuable for the production of more winter-hardy crops.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | | | - Virginia K. Walker
- Department of Biology, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, and School of Environmental Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
55
|
Ma L, Wang Y, Yan G, Wei S, Zhou D, Kuang M, Fang D, Xu S, Yang W. Global analysis of the developmental dynamics of Gossypium hirsutum based on strand-specific transcriptome. PHYSIOLOGIA PLANTARUM 2016; 158:106-121. [PMID: 26892265 DOI: 10.1111/ppl.12432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/06/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Cotton is an economically important crop that provides both natural fiber and by-products such as oil and protein. Its global gene expression could provide insight into the biological processes underlying growth and development, which involve suites of genes expressed with temporal and spatial control by regulatory networks. Generally, the goal for cotton breeding is improvement of the fiber; thus, most previous research has focused on identifying genes specific to the fiber. However, seeds may also play an important role in fiber development. In this study, we constructed and systematically analyzed 21 strand-specific RNA-Seq libraries for Gossypium hirsutum, covering different tissues, organs and development stages, from which approximately 970 million reads were generated to provide a global view of gene expression during cotton development. The organ (tissue)-specific gene expression patterns were investigated, providing further insight into the dynamic programming associated with developmental processes and a way to study the coordination of development between fiber cells and ovules. Series of transcription factors and seed-specific genes have been identified as candidate genes that could elucidate key mechanisms and regulatory networks in nutrient accumulation during ovule development and in fiber development. This study reports comprehensive transcriptome dynamics at various stages of cotton development and will serve as a valuable genome-wide transcriptome resource for initial gene discovery and functional characterization of genes in cotton.
Collapse
Affiliation(s)
- Lei Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Yanqin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Gentu Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Shoujun Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Dayun Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Meng Kuang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Dan Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Shuangjiao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Weihua Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| |
Collapse
|
56
|
Global Transcriptomic Analysis Reveals the Mechanism of Phelipanche aegyptiaca Seed Germination. Int J Mol Sci 2016; 17:ijms17071139. [PMID: 27428962 PMCID: PMC4964512 DOI: 10.3390/ijms17071139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/24/2022] Open
Abstract
Phelipanche aegyptiaca is one of the most destructive root parasitic plants of Orobanchaceae. This plant has significant impacts on crop yields worldwide. Conditioned and host root stimulants, in particular, strigolactones, are needed for unique seed germination. However, no extensive study on this phenomenon has been conducted because of insufficient genomic information. Deep RNA sequencing, including de novo assembly and functional annotation was performed on P. aegyptiaca germinating seeds. The assembled transcriptome was used to analyze transcriptional dynamics during seed germination. Key gene categories involved were identified. A total of 274,964 transcripts were determined, and 53,921 unigenes were annotated according to the NR, GO, COG, KOG, and KEGG databases. Overall, 5324 differentially expressed genes among dormant, conditioned, and GR24-treated seeds were identified. GO and KEGG enrichment analyses demonstrated numerous DEGs related to DNA, RNA, and protein repair and biosynthesis, as well as carbohydrate and energy metabolism. Moreover, ABA and ethylene were found to play important roles in this process. GR24 application resulted in dramatic changes in ABA and ethylene-associated genes. Fluridone, a carotenoid biosynthesis inhibitor, alone could induce P. aegyptiaca seed germination. In addition, conditioning was probably not the indispensable stage for P. aegyptiaca, because the transcript level variation of MAX2 and KAI2 genes (relate to strigolactone signaling) was not up-regulated by conditioning treatment.
Collapse
|
57
|
Sew YS, Ströher E, Fenske R, Millar AH. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis. PLANT PHYSIOLOGY 2016; 171:849-63. [PMID: 27208265 PMCID: PMC4902577 DOI: 10.1104/pp.16.01654] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 05/22/2023]
Abstract
Mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37) has multiple roles; the most commonly described is its catalysis of the interconversion of malate and oxaloacetate in the tricarboxylic acid cycle. The roles of mMDH in Arabidopsis (Arabidopsis thaliana) seed development and germination were investigated in mMDH1 and mMDH2 double knockout plants. A significant proportion of mmdh1mmdh2 seeds were nonviable and developed only to torpedo-shaped embryos, indicative of arrested seed embryo growth during embryogenesis. The viable mmdh1mmdh2 seeds had an impaired maturation process that led to slow germination rates as well as retarded post-germination growth, shorter root length, and decreased root biomass. During seed development, mmdh1mmdh2 showed a paler green phenotype than the wild type and exhibited deficiencies in reserve accumulation and reduced final seed biomass. The respiration rate of mmdh1mmdh2 seeds was significantly elevated throughout their maturation, consistent with the previously reported higher respiration rate in mmdh1mmdh2 leaves. Mutant seeds showed a consistently higher content of free amino acids (branched-chain amino acids, alanine, serine, glycine, proline, and threonine), differences in sugar and sugar phosphate levels, and lower content of 2-oxoglutarate. Seed-aging assays showed that quiescent mmdh1mmdh2 seeds lost viability more than 3 times faster than wild-type seeds. Together, these data show the important role of mMDH in the earliest phases of the life cycle of Arabidopsis.
Collapse
Affiliation(s)
- Yun Shin Sew
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Elke Ströher
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Ricarda Fenske
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
58
|
Yu Y, Zhu D, Ma C, Cao H, Wang Y, Xu Y, Zhang W, Yan Y. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
59
|
Yu Y, Zhen S, Wang S, Wang Y, Cao H, Zhang Y, Li J, Yan Y. Comparative transcriptome analysis of wheat embryo and endosperm responses to ABA and H2O2 stresses during seed germination. BMC Genomics 2016; 17:97. [PMID: 26846093 PMCID: PMC4743158 DOI: 10.1186/s12864-016-2416-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat embryo and endosperm play important roles in seed germination, seedling survival, and subsequent vegetative growth. ABA can positively regulate dormancy induction and negatively regulates seed germination at low concentrations, while low H2O2 concentrations promote seed germination of cereal plants. In this report, we performed the first integrative transcriptome analysis of wheat embryo and endosperm responses to ABA and H2O2 stresses. RESULTS We used the GeneChip® Wheat Genome Array to conduct a comparative transcriptome microarray analysis of the embryo and endosperm of elite Chinese bread wheat cultivar Zhengmai 9023 in response to ABA and H2O2 treatments during seed germination. Transcriptome profiling showed that after H2O2 and ABA treatments, the 64 differentially expressed genes in the embryo were closely related to DNA synthesis, CHO metabolism, hormone metabolism, and protein degradation, while 121 in the endosperm were involved mainly in storage reserves, transport, biotic and abiotic stresses, hormone metabolism, cell wall metabolism, signaling, and development. Scatter plot analysis showed that ABA treatment increased the similarity of regulated patterns between the two tissues, whereas H2O2 treatment decreased the global expression similarity. MapMan analysis provided a global view of changes in several important metabolism pathways (e.g., energy reserves mobilization, cell wall metabolism, and photosynthesis), as well as related functional groups (e.g., cellular processes, hormones, and signaling and transport) in the embryo and endosperm following exposure of seeds to ABA and H2O2 treatments during germination. Quantitative RT-PCR analysis was used to validate the expression patterns of nine differentially expressed genes. CONCLUSIONS Wheat seed germination involves regulation of a large number of genes involved in many functional groups. ABA/H2O2 can repress/promote seed germination by coordinately regulating related gene expression. Our results provide novel insights into the transcriptional regulation mechanisms of embryo and endosperm in response to ABA and H2O2 treatments during seed germination.
Collapse
Affiliation(s)
- Yonglong Yu
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Shoumin Zhen
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Shu Wang
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Yaping Wang
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Hui Cao
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Yanzhen Zhang
- College of Applied Sciences and Humanities of Beijing Union University, Beijing, 100083, China.
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
- Hubei Collaborative Innovation Center for Grain Industry, 434025, Jingzhou, China.
| |
Collapse
|
60
|
Dong K, Zhen S, Cheng Z, Cao H, Ge P, Yan Y. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2015; 6:1017. [PMID: 26635843 PMCID: PMC4649031 DOI: 10.3389/fpls.2015.01017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/03/2015] [Indexed: 05/20/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser(355) was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination.
Collapse
Affiliation(s)
- Kun Dong
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Shoumin Zhen
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Zhiwei Cheng
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Hui Cao
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Pei Ge
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Yueming Yan
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
- Hubei Collaborative Innovation Center for Grain IndustryJingzhou, China
| |
Collapse
|
61
|
Liu SJ, Song SH, Wang WQ, Song SQ. De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:154-62. [PMID: 26263518 DOI: 10.1016/j.plaphy.2015.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 06/04/2023]
Abstract
At supraoptimal temperature, germination of lettuce (Lactuca sativa L.) seeds exhibits a typical germination thermoinhibition, which can be alleviated by sodium nitroprusside (SNP) in a nitric oxide-dependent manner. However, the molecular mechanism of seed germination thermoinhibition and its alleviation by SNP are poorly understood. In the present study, the lettuce seeds imbibed at optimal temperature in water or at supraoptimal temperature with or without 100 μM SNP for different periods of time were used as experimental materials, the total RNA was extracted and sequenced, we gained 147,271,347 raw reads using Illumina paired-end sequencing technique and assembled the transcriptome of germinating lettuce seeds. A total of 51,792 unigenes with a mean length of 849 nucleotides were obtained. Of these unigenes, a total of 29,542 unigenes were annotated by sequence similarity searching in four databases, NCBI non-redundant protein database, SwissProt protein database, euKaryotic Ortholog Groups database, and NCBI nucleotide database. Among the annotated unigenes, 22,276 unigenes were assigned to Gene Ontology database. When all the annotated unigenes were searched against the Kyoto Encyclopedia of Genes and Genomes Pathway database, a total of 8,810 unigenes were mapped to 5 main categories including 260 pathways. We first obtained a lot of unigenes encoding proteins involved in abscisic acid (ABA) signaling in lettuce, including 11 ABA receptors, 94 protein phosphatase 2Cs and 16 sucrose non-fermenting 1-related protein kinases. These results will help us to better understand the molecular mechanism of seed germination, thermoinhibition of seed germination and its alleviation by SNP.
Collapse
Affiliation(s)
- Shu-Jun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shun-Hua Song
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
62
|
He M, Zhu C, Dong K, Zhang T, Cheng Z, Li J, Yan Y. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC PLANT BIOLOGY 2015; 15:97. [PMID: 25888100 PMCID: PMC4407426 DOI: 10.1186/s12870-015-0471-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/16/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Wheat seeds provide a staple food and an important protein source for the world's population. Seed germination is vital to wheat growth and development and directly affects grain yield and quality. In this study, we performed the first comparative proteomic analysis of wheat embryo and endosperm during seed germination. RESULTS The proteomic changes in embryo and endosperm during the four different seed germination stages of elite Chinese bread wheat cultivar Zhengmai 9023 were first investigated. In total, 74 and 34 differentially expressed protein (DEP) spots representing 63 and 26 unique proteins were identified in embryo and endosperm, respectively. Eight common DEP were present in both tissues, and 55 and 18 DEP were specific to embryo and endosperm, respectively. These identified DEP spots could be sorted into 13 functional groups, in which the main group was involved in different metabolism pathways, particularly in the reserves necessary for mobilization in preparation for seed germination. The DEPs from the embryo were mainly related to carbohydrate metabolism, proteometabolism, amino acid metabolism, nucleic acid metabolism, and stress-related proteins, whereas those from the endosperm were mainly involved in protein storage, carbohydrate metabolism, inhibitors, stress response, and protein synthesis. During seed germination, both embryo and endosperm had a basic pattern of oxygen consumption, so the proteins related to respiration and energy metabolism were up-regulated or down-regulated along with respiration of wheat seeds. When germination was complete, most storage proteins from the endosperm began to be mobilized, but only a small amount was degraded during germination. Transcription expression of six representative DEP genes at the mRNA level was consistent with their protein expression changes. CONCLUSION Wheat seed germination is a complex process with imbibition, stirring, and germination stages, which involve a series of physiological, morphological, and proteomic changes. The first process is a rapid water uptake, in which the seed coat becomes softer and the physical state of storage materials change gradually. Then the germinated seed enters the second process (a plateau phase) and the third process (the embryonic axes elongation). Seed embryo and endosperm display distinct differentially expressed proteins, and their synergistic expression mechanisms provide a basis for the normal germination of wheat seeds.
Collapse
Affiliation(s)
- Miao He
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Chong Zhu
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Kun Dong
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Ting Zhang
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Zhiwei Cheng
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
- Hubei Collaborative Innovation Center for Grain Industry, 434025, Jingzhou, China.
| |
Collapse
|
63
|
Transcriptomic changes during tuber dormancy release process revealed by RNA sequencing in potato. J Biotechnol 2015; 198:17-30. [PMID: 25661840 DOI: 10.1016/j.jbiotec.2015.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 12/15/2022]
Abstract
Potato tuber dormancy release is a critical development process that allows potato to produce new plant. The first Illumina RNA sequencing to generate the expressed mRNAs at dormancy tuber (DT), dormancy release tuber (DRT) and sprouting tuber (ST) was performed. We identified 26,639 genes including 5,912 (3,450 up-regulated while 2,462 down-regulated) and 3,885 (2,141 up-regulated while 1,744 down-regulated) genes were differentially expressed from DT vs DRT and DRT vs ST. The RNA-Seq results were further verified using qRT-PCR. We found reserve mobilization events were activated before the bud emergence (DT vs DRT) and highlighted after dormancy release (DRT vs ST). Overexpressed genes related to metabolism of auxin, gibberellic acid, cytokinin and barssinosteriod were dominated in DT vs DRT, whereas overexpressed genes involved in metabolism of ethylene, jasmonate and salicylate were prominent in DRT vs ST. Various histone and cyclin isoforms associated genes involved in cell division/cycle were mainly up-regulated in DT vs DRT. Dormancy release process was also companied by stress response and redox regulation, those genes related to biotic stress, cell wall and second metabolism was preferentially overexpressed in DRT vs ST, which might accelerate dormancy breaking and sprout outgrowth. The metabolic processes activated during tuber dormancy release were also supported by plant seed models. These results represented the first comprehensive picture of a large number of genes involved in tuber dormancy release process.
Collapse
|
64
|
Ain QU, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X, He Z, Quraishi UM. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. FRONTIERS IN PLANT SCIENCE 2015; 6:743. [PMID: 26442056 PMCID: PMC4585131 DOI: 10.3389/fpls.2015.00743] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/31/2015] [Indexed: 05/18/2023]
Abstract
Genome-wide association studies (GWAS) were undertaken to identify SNP markers associated with yield and yield-related traits in 123 Pakistani historical wheat cultivars evaluated during 2011-2014 seasons under rainfed field conditions. The population was genotyped by using high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay, and finally 14,960 high quality SNPs were used in GWAS. Population structure examined using 1000 unlinked markers identified seven subpopulations (K = 7) that were representative of different breeding programs in Pakistan, in addition to local landraces. Forty four stable marker-trait associations (MTAs) with -log p > 4 were identified for nine yield-related traits. Nine multi-trait MTAs were found on chromosomes 1AL, 1BS, 2AL, 2BS, 2BL, 4BL, 5BL, 6AL, and 6BL, and those on 5BL and 6AL were stable across two seasons. Gene annotation and syntey identified that 14 trait-associated SNPs were linked to genes having significant importance in plant development. Favorable alleles for days to heading (DH), plant height (PH), thousand grain weight (TGW), and grain yield (GY) showed minor additive effects and their frequencies were slightly higher in cultivars released after 2000. However, no selection pressure on any favorable allele was identified. These genomic regions identified have historically contributed to achieve yield gains from 2.63 million tons in 1947 to 25.7 million tons in 2015. Future breeding strategies can be devised to initiate marker assisted breeding to accumulate these favorable alleles of SNPs associated with yield-related traits to increase grain yield. Additionally, in silico identification of 454-contigs corresponding to MTAs will facilitate fine mapping and subsequent cloning of candidate genes and functional marker development.
Collapse
Affiliation(s)
- Qurat-ul Ain
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Awais Rasheed
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT), C/O Chinese Academy of Agricultural SciencesBeijing, China
| | - Alia Anwar
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Tariq Mahmood
- Higher Education Commission, Research and DevelopmentIslamabad, Pakistan
| | - Muhammad Imtiaz
- International Maize and Wheat Improvement Center (CIMMYT), C/O National Agriculture Research CenterIslamabad, Pakistan
| | - Tariq Mahmood
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT), C/O Chinese Academy of Agricultural SciencesBeijing, China
| | - Umar M. Quraishi
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
- *Correspondence: Umar M. Quraishi, Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
65
|
Agarwal P, Parida SK, Mahto A, Das S, Mathew IE, Malik N, Tyagi AK. Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnol J 2014; 9:1480-92. [PMID: 25349922 DOI: 10.1002/biot.201400063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
The transcript pool of a plant part, under any given condition, is a collection of mRNAs that will pave the way for a biochemical reaction of the plant to stimuli. Over the past decades, transcriptome study has advanced from Northern blotting to RNA sequencing (RNA-seq), through other techniques, of which real-time quantitative polymerase chain reaction (PCR) and microarray are the most significant ones. The questions being addressed by such studies have also matured from a solitary process to expression atlas and marker-assisted genetic enhancement. Not only genes and their networks involved in various developmental processes of plant parts have been elucidated, but also stress tolerant genes have been highlighted. The transcriptome of a plant with altered expression of a target gene has given information about the downstream genes. Marker information has been used for breeding improved varieties. Fortunately, the data generated by transcriptome analysis has been made freely available for ample utilization and comparison. The review discusses this wide variety of transcriptome data being generated in plants, which includes developmental stages, abiotic and biotic stress, effect of altered gene expression, as well as comparative transcriptomics, with a special emphasis on microarray and RNA-seq. Such data can be used to determine the regulatory gene networks, which can subsequently be utilized for generating improved plant varieties.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
66
|
Lee TG, Lee YJ, Seo YW. Expression analysis of individual homoeologous wheat genome- and rye genome-specific transcripts in a 2BS.2RL wheat-rye translocation. Genes Genet Syst 2014; 89:159-68. [PMID: 25747040 DOI: 10.1266/ggs.89.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Wheat-rye translocations are widely used in wheat breeding to confer resistance against abiotic and biotic stress. Studying gene expression in wheat-rye translocations is complicated due to the presence of homoeologous genes in hexaploid wheat and high levels of synteny between wheat and rye chromatin. To distinguish transcripts expressed from each of the three wheat genomes and those from rye chromatin, genomic probes generated from diploid progenitors of wheat and rye were synthesized on a custom array. A total of 407 transcripts showed homoeologous genome ('A', 'B' or 'D' genome)- or rye genome ('R')-specific differential expression, based on unequal values of probe hybridization. In a 2BS.2RL wheat-rye translocation, thirteen of the 407 transcripts showed preferential expressions from rye chromatin. As well as quantifying variation in homoeologous transcript in wheat-rye translocations, this study also provides a potential aid to examine the contribution of the subgenomes to complex allohexapolyploids.
Collapse
Affiliation(s)
- Tong Geon Lee
- Division of Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| | | | | |
Collapse
|