51
|
AAV8-mediated Sirt1 gene transfer to the liver prevents high carbohydrate diet-induced nonalcoholic fatty liver disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14039. [PMID: 26015978 PMCID: PMC4362360 DOI: 10.1038/mtm.2014.39] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/26/2014] [Accepted: 07/18/2014] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic disease worldwide, and evidence suggests that it promotes insulin resistance and type 2 diabetes. Caloric restriction (CR) is the only available strategy for NAFLD treatment. The protein deacetylase Sirtuin1 (SIRT1), which is activated by CR, increases catabolic metabolism and decreases lipogenesis and inflammation, both involved in the development of NAFLD. Here we show that adeno-associated viral vectors of serotype 8 (AAV8)-mediated liver-specific Sirt1 gene transfer prevents the development of NAFLD induced by a high carbohydrate (HC) diet. Long-term hepatic SIRT1 overexpression led to upregulation of key hepatic genes involved in β-oxidation, prevented HC diet-induced lipid accumulation and reduced liver inflammation. AAV8-Sirt1-treated mice showed improved insulin sensitivity, increased oxidative capacity in skeletal muscle and reduced white adipose tissue inflammation. Moreover, HC feeding induced leptin resistance, which was also attenuated in AAV8-Sirt1-treated mice. Therefore, AAV-mediated gene transfer to overexpress SIRT1 specifically in the liver may represent a new gene therapy strategy to counteract NAFLD and related diseases such as type 2 diabetes.
Collapse
|
52
|
Krośniak M, Francik R, Wojtanowska-Krośniak A, Tedeschi C, Krasoń-Nowak M, Chłopicka J, Gryboś R. Vanadium methyl-bipyridine organoligand and its influence on energy balance and organs mass. Biol Trace Elem Res 2014; 160:376-82. [PMID: 25015881 PMCID: PMC4127192 DOI: 10.1007/s12011-014-0064-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/01/2014] [Indexed: 12/01/2022]
Abstract
In the treatment of lifestyle diseases, including metabolic syndrome and type 2 diabetes, it is important to lower body mass and fat tissue, and consequently, to increase insulin-sensitivity. Unfortunately, it often happens that low-energy diet which would lower overweight is not observed and, thus, it does not bring the expected effects. This paper discusses the influence of three diets-control, high-fructose, and high-fatty diet-on absorption of energy from food in order to transform it into body mass. The kJ/g ratio which describes this process has been calculated. In the tested diets, the addition of fructose (79.13 ± 2.47 kJ/g) or fat (82.48 ± 2.28 kJ/g) results in higher transformation of energy into body mass than in the case of control diet (89.60 ± 1.86 kJ/g). The addition of Na[VO(O2)2(4,4′-Me2-2,2′-bpy)]•8H2O (where 4,4′-Me2-2,2′-bpy = 4,4′-dimethyl-2,2′-bipyridine) results in statistical increase of that ratio: fructose diet (86.88 ± 0.44 kJ/g), fat diet (104.68 ± 3.01 kJ/g), and control diet (115.98 ± 0.56 kJ/g), respectively. Fat diet statistically influences the decrease of kidney mass in comparison to the other diets. The application of the tested vanadium compound results also in the statistical decrease of the fatty liver caused by fructose and fat diet.
Collapse
Affiliation(s)
- Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Krakow, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Krakow, Poland
- State Higher Vocational School, Institute of Health, Staszica 1 Str, 33-300 Nowy Sącz, Poland
| | - Agnieszka Wojtanowska-Krośniak
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Krakow, Poland
| | - Cinzia Tedeschi
- Department of Food Chemistry and Nutrition, Student at the Faculty of Pharmacy Nutritional and Health Sciences–Calabria University, Arcavacata di Rende, Italy; participant of Erasmus Program in the, Jagiellonian University, Medical College, Krakow, Poland
| | - Małgorzata Krasoń-Nowak
- Department of Bioorganic Chemistry, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Krakow, Poland
| | - Joanna Chłopicka
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Krakow, Poland
| | - Ryszard Gryboś
- Faculty of Chemistry, Jagiellonian University, 3 Ingardena Str, 30-060 Krakow, Poland
| |
Collapse
|
53
|
Romero-Weaver A, Ni J, Lin L, Kennedy A. Orally Administered Fructose Increases the Numbers of Peripheral Lymphocytes Reduced by Exposure of Mice to Gamma or SPE-like Proton Radiation. LIFE SCIENCES IN SPACE RESEARCH 2014; 2:80-85. [PMID: 25360417 PMCID: PMC4209748 DOI: 10.1016/j.lssr.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Exposure of the whole body or a major portion of the body to ionizing radiation can result in Acute Radiation Sickness (ARS), which can cause symptoms that range from mild to severe, and include death. One of the syndromes that can occur during ARS is the hematopoietic syndrome, which is characterized by a reduction in bone marrow cells as well as the number of circulating blood cells. Doses capable of causing this syndrome can result from conventional radiation therapy and accidental exposure to ionizing radiation. It is of concern that this syndrome could also occur during space exploration class missions in which astronauts could be exposed to significant doses of solar particle event (SPE) radiation. Of particular concern is the reduction of lymphocytes and granulocytes, which are major components of the immune system. A significant reduction in their numbers can compromise the immune system, causing a higher risk for the development of infections which could jeopardize the success of the mission. Although there are no specific countermeasures utilized for the ARS resulting from exposure to space radiation(s), granulocyte colony-stimulating factor (G-CSF) has been proposed as a countermeasure for the low number of neutrophils caused by SPE radiation, but so far no countermeasure exists for a reduced number of circulating lymphocytes. The present study demonstrates that orally administered fructose significantly increases the number of peripheral lymphocytes reduced by exposure of mice to 2 Gy of gamma- or SPE-like proton radiation, making it a potential countermeasure for this biological end-point.
Collapse
Affiliation(s)
- A.L. Romero-Weaver
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - J. Ni
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, PR China, 200433
| | - L. Lin
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - A.R. Kennedy
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Corresponding author: Kennedy A.R., Phone: 215-898-0079, Fax: 215-898-1411,
| |
Collapse
|
54
|
Jia G, Aroor AR, Whaley-Connell AT, Sowers JR. Fructose and uric acid: is there a role in endothelial function? Curr Hypertens Rep 2014; 16:434. [PMID: 24760443 PMCID: PMC4084511 DOI: 10.1007/s11906-014-0434-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Population level data support that consumption of fructose and fructose-based sweeteners has dramatically increased and suggest that high dietary intake of fructose is an important factor in the development of the cardiorenal metabolic syndrome (CRS). The CRS is a constellation of cardiac, kidney and metabolic disorders including insulin resistance, obesity, metabolic dyslipidemia, high blood pressure, and evidence of early cardiac and kidney disease. The consequences of fructose metabolism may result in intracellular ATP depletion, increased uric acid production, oxidative stress, inflammation, and increased lipogenesis, which are associated with endothelial dysfunction. Endothelial dysfunction is an early manifestation of vascular disease and a driver for the development of CRS. A better understanding of fructose overconsumption in the development of CRS may provide new insights into pathogenesis and future therapeutic strategies.
Collapse
Affiliation(s)
- Guanghong Jia
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Research Service Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65212, USA
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA
| | - Annayya R. Aroor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Research Service Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65212, USA
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA
| | - Adam T. Whaley-Connell
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Division of Nephrology and Hypertension, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Research Service Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65212, USA
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA
| | - James R. Sowers
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Research Service Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
55
|
Abstract
A causal role of fructose intake in the aetiology of the global obesity epidemic has been proposed in recent years. This proposition, however, rests on controversial interpretations of two distinct lines of research. On one hand, in mechanistic intervention studies, detrimental metabolic effects have been observed after excessive isolated fructose intakes in animals and human subjects. On the other hand, food disappearance data indicate that fructose consumption from added sugars has increased over the past decades and paralleled the increase in obesity. Both lines of research are presently insufficient to demonstrate a causal role of fructose in metabolic diseases, however. Most mechanistic intervention studies were performed on subjects fed large amounts of pure fructose, while fructose is ordinarily ingested together with glucose. The use of food disappearance data does not accurately reflect food consumption, and hence cannot be used as evidence of a causal link between fructose intake and obesity. Based on a thorough review of the literature, we demonstrate that fructose, as commonly consumed in mixed carbohydrate sources, does not exert specific metabolic effects that can account for an increase in body weight. Consequently, public health recommendations and policies aiming at reducing fructose consumption only, without additional diet and lifestyle targets, would be disputable and impractical. Although the available evidence indicates that the consumption of sugar-sweetened beverages is associated with body-weight gain, and it may be that fructose is among the main constituents of these beverages, energy overconsumption is much more important to consider in terms of the obesity epidemic.
Collapse
|
56
|
Chiavaroli L, Ha V, de Souza RJ, Kendall CW, Sievenpiper JL. Fructose in obesity and cognitive decline: is it the fructose or the excess energy? Nutr J 2014; 13:27. [PMID: 24666585 PMCID: PMC3987663 DOI: 10.1186/1475-2891-13-27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/24/2014] [Indexed: 01/06/2023] Open
Abstract
We read with interest the review by Lakhan and Kirchgessner, proposing that high fructose intake promotes obesity, metabolic syndrome, diabetes, and cognitive decline. Their focus on the role of fructose seems premature due to confounding from energy and the heavy reliance on low quality evidence from animal models. There is a lack of high quality evidence directly assessing the role of fructose in cognitive decline. Although one cannot exclude the possibility of a link, it remains an unconfirmed hypothesis.
Collapse
Affiliation(s)
| | | | | | | | - John L Sievenpiper
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St, Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
57
|
Abstract
During critical periods of development early in life, excessive or scarce nutritional environments can disrupt the development of central feeding and metabolic neural circuitry, leading to obesity and metabolic disorders in adulthood. A better understanding of the genetic networks that control the development of feeding and metabolic neural circuits, along with knowledge of how and where dietary signals disrupt this process, can serve as the basis for future therapies aimed at reversing the public health crisis that is now building as a result of the global obesity epidemic. This review of animal and human studies highlights recent insights into the molecular mechanisms that regulate the development of central feeding circuitries, the mechanisms by which gestational and early postnatal nutritional status affects this process, and approaches aimed at counteracting the deleterious effects of early over- and underfeeding.
Collapse
Affiliation(s)
- Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
58
|
Tan L, Yu JT, Liu QY, Tan MS, Zhang W, Hu N, Wang YL, Sun L, Jiang T, Tan L. Circulating miR-125b as a biomarker of Alzheimer's disease. J Neurol Sci 2013; 336:52-6. [PMID: 24139697 DOI: 10.1016/j.jns.2013.10.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/10/2013] [Accepted: 10/01/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous small RNAs of 21-25 nucleotides that post-transcriptionally regulate gene expressions. Recently, circulating miRNAs have been reported as promising biomarkers for neurodegenerative disorders and processes affecting the central nervous system. This study was conducted to investigate the potential role of serum miRNAs as diagnostic biomarkers for Alzheimer's disease (AD). METHODS Serum samples were obtained from 105 probable AD patients and 150 age- and gender-matched normal controls. The serum concentrations of miRNAs miR-9, miR-29a, miR-29b, miR-101, miR-125b, and miR-181c were measured with a real-time quantitative reverse transcriptase PCR (qRT-PCR) method. RESULTS We found both miR-125b and miR-181c were down-regulated while miR-9 was up-regulated in serum of AD patients compared with that of normal controls. Among the receiver operating characteristic (ROC) results, miR-125b alone showed its priority with a specificity up to 68.3% and a sensitivity of 80.8%. Importantly, miR-125b was correlated with the Mini Mental State Examination (MMSE) in AD patients. CONCLUSIONS Our results indicate that serum miR-125b may serve as a useful noninvasive biomarker for AD.
Collapse
Affiliation(s)
- Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China; Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, PR China; Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, PR China.
| | - Qiu-Yan Liu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, PR China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Nan Hu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Ying-Li Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Lei Sun
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Teng Jiang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, PR China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China; Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, PR China; Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|