51
|
Zhu C, Graves MJ, Yuan J, Sadat U, Gillard JH, Patterson AJ. Optimization of improved motion-sensitized driven-equilibrium (iMSDE) blood suppression for carotid artery wall imaging. J Cardiovasc Magn Reson 2014; 16:61. [PMID: 25160911 PMCID: PMC4145260 DOI: 10.1186/s12968-014-0061-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 07/28/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Improved motion-sensitized driven-equilibrium (iMSDE) preparations have been successfully used in carotid artery wall imaging to achieve blood suppression, but it causes notable signal loss, mostly due to inherent T2 decay, eddy current effects and B1 + inhomogeneity. In this study, we investigate the signal to noise ratio (SNR) and blood suppression performance of iMSDE using composite RF pulses and sinusoidal gradients. Optimized first moment (m1) values for iMSDE prepared T1- and T2- weighted (T1- and T2-w) imaging are presented. METHODS Twelve healthy volunteers and six patients with carotid artery disease underwent iMSDE and double inversion recovery (DIR) prepared T1- and T2-w fast spin echo (FSE) MRI of the carotid arteries. Modified iMSDE module using composite RF pulses and sinusoidal gradients were evaluated with a range of m1. SNR of adjacent muscle, vessel wall and the lumen were reported. The optimized iMSDE module was also tested in a 3D variable flip angle FSE (CUBE) acquisition. RESULTS The SNR of muscle was highest using sinusoidal gradients, and the relative improvement over the trapezoidal gradient increased with higher m1 (p<0.001). Optimal SNR was observed using an iMSDE preparation scheme containing two 180° composite pulses and standard 90° and -90° pulses (p=0.151). iMSDE produced better blood suppression relative to DIR preparations even with a small m1 of 487 mT*ms2/m (p<0.001). In T1-w iMSDE, there was a SNR decrease and an increased T2 weighting with increasing m1. In T2-w iMSDE, by matching the effective echo time (TE), the SNR was equivalent when m1 was <= 1518 mT*ms2/m, however, higher m1 values (2278 - 3108 mT*ms2/m) reduced the SNR. In the patient study, iMSDE improved blood suppression but reduced vessel wall CNR efficiency in both T1-w and T2-w imaging. iMSDE also effectively suppressed residual flow artifacts in the CUBE acquisition. CONCLUSIONS iMSDE preparation achieved better blood suppression than DIR preparation with reduced vessel wall CNR efficiency in T1-w and T2-w images. The optimized m1s are 487 mT*ms2/m for T1-w imaging and 1518 mT*ms2/m for T2-w imaging. Composite 180° refocusing pulses and sinusoidal gradients improve SNR performance. iMSDE further improves the inherent blood suppression of CUBE.
Collapse
Affiliation(s)
- Chengcheng Zhu
- University Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Martin J Graves
- University Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jianmin Yuan
- University Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Umar Sadat
- Cambridge Vascular Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jonathan H Gillard
- University Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Andrew J Patterson
- University Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
52
|
Wan T, Madabhushi A, Phinikaridou A, Hamilton JA, Hua N, Pham T, Danagoulian J, Kleiman R, Buckler AJ. Spatio-temporal texture (SpTeT) for distinguishing vulnerable from stable atherosclerotic plaque on dynamic contrast enhancement (DCE) MRI in a rabbit model. Med Phys 2014; 41:042303. [PMID: 24694153 PMCID: PMC3987744 DOI: 10.1118/1.4867861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To develop a new spatio-temporal texture (SpTeT) based method for distinguishing vulnerable versus stable atherosclerotic plaques on DCE-MRI using a rabbit model of atherothrombosis. METHODS Aortic atherosclerosis was induced in 20 New Zealand White rabbits by cholesterol diet and endothelial denudation. MRI was performed before (pretrigger) and after (posttrigger) inducing plaque disruption with Russell's-viper-venom and histamine. Of the 30 vascular targets (segments) under histology analysis, 16 contained thrombus (vulnerable) and 14 did not (stable). A total of 352 voxel-wise computerized SpTeT features, including 192 Gabor, 36 Kirsch, 12 Sobel, 52 Haralick, and 60 first-order textural features, were extracted on DCE-MRI to capture subtle texture changes in the plaques over the course of contrast uptake. Different combinations of SpTeT feature sets, in which the features were ranked by a minimum-redundancy-maximum-relevance feature selection technique, were evaluated via a random forest classifier. A 500 iterative 2-fold cross validation was performed for discriminating the vulnerable atherosclerotic plaque and stable atherosclerotic plaque on per voxel basis. Four quantitative metrics were utilized to measure the classification results in separating between vulnerable and stable plaques. RESULTS The quantitative results show that the combination of five classes of SpTeT features can distinguish between vulnerable (disrupted plaques with an overlying thrombus) and stable plaques with the best AUC values of 0.9631 ± 0.0088, accuracy of 89.98% ± 0.57%, sensitivity of 83.71% ± 1.71%, and specificity of 94.55% ± 0.48%. CONCLUSIONS Vulnerable and stable plaque can be distinguished by SpTeT based features. The SpTeT features, following validation on larger datasets, could be established as effective and reliable imaging biomarkers for noninvasively assessing atherosclerotic risk.
Collapse
Affiliation(s)
- Tao Wan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Alkystis Phinikaridou
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London SE1 7EH, United Kingdom
| | - James A Hamilton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Ning Hua
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Tuan Pham
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| | | | - Ross Kleiman
- Elucid Bioimaging Inc., Wenham, Massachusetts 01984
| | | |
Collapse
|
53
|
Koning W, de Rotte AA, Bluemink JJ, van der Velden TA, Luijten PR, Klomp DW, Zwanenburg JJ. MRI of the carotid artery at 7 Tesla: Quantitative comparison with 3 Tesla. J Magn Reson Imaging 2014; 41:773-80. [DOI: 10.1002/jmri.24601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/25/2014] [Indexed: 11/11/2022] Open
Affiliation(s)
- Wouter Koning
- Department of Radiology; UMC Utrecht; The Netherlands
| | | | | | | | | | | | | |
Collapse
|
54
|
Lindsay AC, Biasiolli L, Knight S, Cunnington C, Robson MD, Neubauer S, Kennedy J, Handa A, Choudhury RP. Non-invasive imaging of carotid arterial restenosis using 3T cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014; 16:5. [PMID: 24400841 PMCID: PMC3895839 DOI: 10.1186/1532-429x-16-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/27/2013] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Restenosis of the carotid artery is common following carotid endarterectomy, but analysis of lesion composition has mostly been based on histological study of explanted restenotic lesions. This study investigated the ability of 3T cardiovascular magnetic resonance (CMR) to determine the components of recurrent carotid artery disease and examined whether these differed from primary atherosclerotic plaque. METHODS 50 patients underwent 3T CMR of both carotid arteries using a standard multicontrast protocol: time-of-flight (TOF), T1-weighted (T1W), T2-weighted (T2W), and PD-weighted (PDW) Turbo-Spin-Echo (TSE) sequences. 25 patients had previously undergone carotid endarterectomy (mean time since surgery 1580 days, range 45-6560 days), and 25 with primary asymptomatic atherosclerotic plaques served as controls. Two experienced reviewers analysed the multicontrast CMR images according to the presence or absence of major plaque features and assigned an overall classification type. RESULTS In patients with recurrent carotid disease following endarterectomy, the mean degree of restenosis was 51% (range 30-90%). Three distinct types of restenosis were identified: 5 patients (20%) showed CMR characteristics of fibro-atheromatous tissue, 11 patients (44%) had plaque features consistent with possible myointimal (fibromuscular) hyperplasia, and 6 patients (24%) had recurrent plaque suggestive of further lipid accumulation. Three patients (12%) showed evidence of post-surgical dissection of the carotid intima. Compared to primary atherosclerotic plaques, restenotic plaques were more likely to contain fibro-atheromatous tissue (p = 0.05) and smooth muscle (p < 0.01), and less likely to contain lipid (p < 0.01). Composition did not differ significantly between patients with early and late restenosis. CONCLUSIONS As defined by CMR, restenotic lesions of the carotid artery fall into three distinct types and differ in composition from primary atherosclerotic plaques. If validated by subsequent histological studies, these findings could suggest a role for CMR in detecting high-risk (i.e. lipid-rich) restenotic lesions.
Collapse
Affiliation(s)
- Alistair C Lindsay
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Luca Biasiolli
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford Acute Vascular Imaging Centre (AVIC), Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Steven Knight
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Colin Cunnington
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Matthew D Robson
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford Acute Vascular Imaging Centre (AVIC), Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - James Kennedy
- Investigative Medicine Division, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Robin P Choudhury
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford Acute Vascular Imaging Centre (AVIC), Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|