51
|
Chen Q, Lan W, Wang J. Mining featured patterns of MiRNA interaction based on sequence and structure similarity. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:415-422. [PMID: 23929865 DOI: 10.1109/tcbb.2013.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
MicroRNA (miRNA) is an endogenous small noncoding RNA that plays an important role in gene expression through the post-transcriptional gene regulation pathways. There are many literature works focusing on predicting miRNA targets and exploring gene regulatory networks of miRNA families. We suggest, however, the study to identify the interaction between miRNAs is insufficient. This paper presents a framework to identify relationships between miRNAs using joint entropy, to investigate the regulatory features of miRNAs. Both the sequence and secondary structure are taken into consideration to make our method more relevant from the biological viewpoint. Further, joint entropy is applied to identify correlated miRNAs, which are more desirable from the perspective of the gene regulatory network. A data set including Drosophila melanogaster and Anopheles gambiae is used in the experiment. The results demonstrate that our approach is able to identify known miRNA interaction and uncover novel patterns of miRNA regulatory network.
Collapse
Affiliation(s)
- Qingfeng Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | | | | |
Collapse
|
52
|
Ellison A, de Leaniz CG, Consuegra S. Inbred and furious: negative association between aggression and genetic diversity in highly inbred fish. Mol Ecol 2013; 22:2292-300. [PMID: 23402293 DOI: 10.1111/mec.12238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 11/26/2022]
Abstract
Aggressive behaviour plays an important role in securing resources, defending against predators and shaping social interactions. Although aggression can have positive effects on growth and reproductive success, it is also energetically costly and may increase injury and compromise survival. Individual genetic diversity has been positively associated with aggression, but the cause for such an association is not clear, and it might be related to the ability to recognize kin. To disentangle the relationships between genetic diversity, kinship and aggression, we quantified aggressive behaviour in a wild, self-fertilizing fish (Kryptolebias marmoratus) with naturally variable degrees of genetic diversity, relatedness and familiarity. We found that in contrast to captive fish, levels of aggression among wild K. marmoratus are positively associated with individual homozygosity, but not with relatedness or familiarity. We suggest that the higher aggression shown by homozygous fish could be related to better kin discrimination and may be facilitated by hermaphrodite competition for scarce males, given the fitness advantages provided by outcrossing in terms of parasite resistance. It seems likely that the relationship between aggression and genetic diversity is largely influenced by both the environment and population history.
Collapse
Affiliation(s)
- Amy Ellison
- IBERS, Aberystwyth University, Penglais Campus, Aberystwyth, UK
| | | | | |
Collapse
|
53
|
Swarup S, Huang W, Mackay TFC, Anholt RRH. Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior. Proc Natl Acad Sci U S A 2013; 110:1017-22. [PMID: 23277560 PMCID: PMC3549129 DOI: 10.1073/pnas.1220168110] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the relationship between genetic variation and phenotypic variation for quantitative traits is necessary for predicting responses to natural and artificial selection and disease risk in human populations, but is challenging because of large sample sizes required to detect and validate loci with small effects. Here, we used the inbred, sequenced, wild-derived lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to perform three complementary genome-wide association (GWA) studies for natural variation in olfactory behavior. The first GWA focused on single nucleotide polymorphisms (SNPs) associated with mean differences in olfactory behavior in the DGRP, the second was an extreme quantitative trait locus GWA on an outbred advanced intercross population derived from extreme DGRP lines, and the third was for SNPs affecting the variance among DGRP lines. No individual SNP in any analysis was associated with variation in olfactory behavior by using a strict threshold accounting for multiple tests, and no SNP overlapped among the analyses. However, combining the top SNPs from all three analyses revealed a statistically enriched network of genes involved in cellular signaling and neural development. We used mutational and gene expression analyses to validate both candidate genes and network connectivity at a high rate. The lack of replication between the GWA analyses, small marginal SNP effects, and convergence on common cellular networks were likely attributable to epistasis. These results suggest that fully understanding the genotype-phenotype relationship requires a paradigm shift from a focus on single SNPs to pathway associations.
Collapse
Affiliation(s)
- Shilpa Swarup
- Departments of Genetics and
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7614
| | - Wen Huang
- Departments of Genetics and
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7614
| | - Trudy F. C. Mackay
- Departments of Genetics and
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7614
| | - Robert R. H. Anholt
- Departments of Genetics and
- Biology and
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7614
| |
Collapse
|
54
|
Matzat LH, Dale RK, Moshkovich N, Lei EP. Tissue-specific regulation of chromatin insulator function. PLoS Genet 2012; 8:e1003069. [PMID: 23209434 PMCID: PMC3510032 DOI: 10.1371/journal.pgen.1003069] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. Mounting evidence in human, mouse, and Drosophila demonstrates a role for the DNA–protein complexes known as chromatin insulators in orchestrating three-dimensional genome organization. Several genes that are only expressed in specific cell types display distinct chromatin configurations correlated with expression status. Recent evidence shows that chromatin insulators play a role in defining tissue-specific chromatin conformation; however, tissue-specific factors that may modulate insulator activity remain unknown. Here we identify a putative RNA–binding protein, Shep, which is expressed most highly in the CNS and interacts directly with insulator complexes. We developed a novel quantitative, tissue-specific insulator assay and found that Shep negatively regulates insulator activity in the CNS. We also find that mutation of shep alters insulator complex nuclear localization in the brain but not other tissues. Finally, we mapped Shep and gypsy insulator protein localization throughout the genome and found that Shep colocalizes with one individual insulator protein but less often than expected with an intact insulator complex. These data suggest that Shep negatively influences insulator activity in a tissue-specific manner.
Collapse
Affiliation(s)
- Leah H. Matzat
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ryan K. Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nellie Moshkovich
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Graduate Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland, United States of America
| | - Elissa P. Lei
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
55
|
Chen J, Wang Y, Zhang Y, Shen P. Mutations in Bacchus reveal a tyramine-dependent nuclear regulator for acute ethanol sensitivity in Drosophila. Neuropharmacology 2012; 67:25-31. [PMID: 23142736 DOI: 10.1016/j.neuropharm.2012.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 11/17/2022]
Abstract
Fruit flies and humans display remarkably similar behavioral responses to ethanol intoxication. Here we report that loss-of-function mutations in the CG9894 gene (now named Bacchus or Bacc) attenuate ethanol sensitivity in flies. Bacc encodes a broadly expressed nuclear protein with a motif similar to ribosomal RNA-binding domains. The ethanol-related activity of Bacc was mapped to Tdc2-GAL4 neurons. Genetic and pharmacological analyses suggest that ethanol resistance of Bacc mutants is caused by increased tyramine β-hydroxylase (tβh) activity that results in excessive conversion of tyramine (TA) to octopmaine (OA). Thus, tβh and its negative regulator Bacc define a novel biogenic amine-mediated signaling pathway that regulates fly ethanol sensitivity. Importantly, elevated tbh activity has been shown to promote fighting behavior, raising the possibility that the Bacc/tbh pathway may regulate complex traits in addition to acute ethanol response.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Cellular Biology and Biomedical and Health Sciences Institute, University of Georgia, 500 D. W. Brooks Drive, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
56
|
Abstract
AbstractThe science of genetics is undergoing a paradigm shift. Recent discoveries, including the activity of retrotransposons, the extent of copy number variations, somatic and chromosomal mosaicism, and the nature of the epigenome as a regulator of DNA expressivity, are challenging a series of dogmas concerning the nature of the genome and the relationship between genotype and phenotype. According to three widely held dogmas, DNA is the unchanging template of heredity, is identical in all the cells and tissues of the body, and is the sole agent of inheritance. Rather than being an unchanging template, DNA appears subject to a good deal of environmentally induced change. Instead of identical DNA in all the cells of the body, somatic mosaicism appears to be the normal human condition. And DNA can no longer be considered the sole agent of inheritance. We now know that the epigenome, which regulates gene expressivity, can be inherited via the germline. These developments are particularly significant for behavior genetics for at least three reasons: First, epigenetic regulation, DNA variability, and somatic mosaicism appear to be particularly prevalent in the human brain and probably are involved in much of human behavior; second, they have important implications for the validity of heritability and gene association studies, the methodologies that largely define the discipline of behavior genetics; and third, they appear to play a critical role in development during the perinatal period and, in particular, in enabling phenotypic plasticity in offspring. I examine one of the central claims to emerge from the use of heritability studies in the behavioral sciences, the principle of minimal shared maternal effects, in light of the growing awareness that the maternal perinatal environment is a critical venue for the exercise of adaptive phenotypic plasticity. This consideration has important implications for both developmental and evolutionary biology.
Collapse
|
57
|
Abstract
Aggression mediates competition for food, mating partners, and habitats and, among social animals, establishes stable dominance hierarchies. In humans, abnormal aggression is a hallmark of neuropsychiatric disorders and can be elicited by environmental factors acting on an underlying genetic susceptibility. Identifying the genetic architecture that predisposes to aggressive behavior in people is challenging because of difficulties in quantifying the phenotype, genetic heterogeneity, and uncontrolled environmental conditions. Studies on mice have identified single-gene mutations that result in hyperaggression, contingent on genetic background. These studies can be complemented by systems genetics approaches in Drosophila melanogaster, in which mutational analyses together with genome-wide transcript analyses, artificial selection studies, and genome-wide analysis of epistasis have revealed that a large segment of the genome contributes to the manifestation of aggressive behavior with widespread epistatic interactions. Comparative genomic analyses based on the principle of evolutionary conservation are needed to enable a complete dissection of the neurogenetic underpinnings of this universal fitness trait.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695-7617, USA.
| | | |
Collapse
|
58
|
Stevenson PA, Rillich J. The decision to fight or flee - insights into underlying mechanism in crickets. Front Neurosci 2012; 6:118. [PMID: 22936896 PMCID: PMC3424502 DOI: 10.3389/fnins.2012.00118] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/20/2012] [Indexed: 11/19/2022] Open
Abstract
Ritualized fighting between conspecifics is an inherently dangerous behavioral strategy, optimized to secure limited resources at minimal cost and risk. To be adaptive, potential rewards, and costs of aggression must be assessed to decide when it would be more opportune to fight or flee. We summarize insights into the proximate mechanisms underlying this decision-making process in field crickets. As in other animals, cricket aggression is enhanced dramatically by motor activity, winning, and the possession of resources. Pharmacological manipulations provide evidence that these cases of experience dependent enhancement of aggression are each mediated by octopamine, the invertebrate counterpart to adrenaline/noradrenaline. The data suggest that both physical exertion and rewarding aspects of experiences can activate the octopaminergic system, which increases the propensity to fight. Octopamine thus represents the motivational component of aggression in insects. For the decision to flee, animals are thought to assess information from agonistic signals exchanged during fighting. Cricket fights conform to the cumulative assessment model, in that they persist in fighting until the sum of their opponent’s actions accumulates to some threshold at which they withdraw. We discuss evidence that serotonin, nitric oxide, and some neuropeptides may promote an insect’s tendency to flee. We propose that the decision to fight or flee in crickets is controlled simply by relative behavioral thresholds. Rewarding experiences increase the propensity to fight to a level determined by the modulatory action of octopamine. The animal will then flee only when the accumulated sum of the opponent’s actions surpasses this level; serotonin and nitric oxide may be involved in this process. This concept is in line with the roles proposed for noradrenaline, serotonin, and nitric oxide in mammals and suggests that basic mechanisms of aggressive modulation may be conserved in phylogeny.
Collapse
|
59
|
Identification of neuronal loci involved with displays of affective aggression in NC900 mice. Brain Struct Funct 2012; 218:1033-49. [PMID: 22847115 DOI: 10.1007/s00429-012-0445-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/16/2012] [Indexed: 01/12/2023]
Abstract
Aggression is a complex behavior that is essential for survival. Of the various forms of aggression, impulsive violent displays without prior planning or deliberation are referred to as affective aggression. Affective aggression is thought to be caused by aberrant perceptions of, and consequent responses to, threat. Understanding the neuronal networks that regulate affective aggression is pivotal to development of novel approaches to treat chronic affective aggression. Here, we provide a detailed anatomical map of neuronal activity in the forebrain of two inbred lines of mice that were selected for low (NC100) and high (NC900) affective aggression. Attack behavior was induced in male NC900 mice by exposure to an unfamiliar male in a novel environment. Forebrain maps of c-Fos+ nuclei, which are surrogates for neuronal activity during behavior, were then generated and analyzed. NC100 males rarely exhibited affective aggression in response to the same stimulus, thus their forebrain c-Fos maps were utilized to identify unique patterns of neuronal activity in NC900s. Quantitative results indicated robust differences in the distribution patterns and densities of c-Fos+ nuclei in distinct thalamic, subthalamic, and amygdaloid nuclei, together with unique patterns of neuronal activity in the nucleus accumbens and the frontal cortices. Our findings implicate these areas as foci regulating differential behavioral responses to an unfamiliar male in NC900 mice when expressing affective aggression. Based on the highly conserved patterns of connections and organization of neuronal limbic structures from mice to humans, we speculate that neuronal activities in analogous networks may be disrupted in humans prone to maladaptive affective aggression.
Collapse
|
60
|
Tunstall NE, Herr A, de Bruyne M, Warr CG. A screen for genes expressed in the olfactory organs of Drosophila melanogaster identifies genes involved in olfactory behaviour. PLoS One 2012; 7:e35641. [PMID: 22530061 PMCID: PMC3329464 DOI: 10.1371/journal.pone.0035641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/19/2012] [Indexed: 12/20/2022] Open
Abstract
Background For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. Methodology/Principal Findings We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. Conclusions/Significance We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Coral G. Warr
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
61
|
OMETTO LINO, ROSS KENNETHG, SHOEMAKER D, KELLER LAURENT. Disruption of gene expression in hybrids of the fire antsSolenopsis invictaandSolenopsis richteri. Mol Ecol 2012; 21:2488-501. [DOI: 10.1111/j.1365-294x.2012.05544.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
62
|
Lu B, LaMora A, Sun Y, Welsh MJ, Ben-Shahar Y. ppk23-Dependent chemosensory functions contribute to courtship behavior in Drosophila melanogaster. PLoS Genet 2012; 8:e1002587. [PMID: 22438833 PMCID: PMC3305452 DOI: 10.1371/journal.pgen.1002587] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/25/2012] [Indexed: 11/18/2022] Open
Abstract
Insects utilize diverse families of ion channels to respond to environmental cues and control mating, feeding, and the response to threats. Although degenerin/epithelial sodium channels (DEG/ENaC) represent one of the largest families of ion channels in Drosophila melanogaster, the physiological functions of these proteins are still poorly understood. We found that the DEG/ENaC channel ppk23 is expressed in a subpopulation of sexually dimorphic gustatory-like chemosensory bristles that are distinct from those expressing feeding-related gustatory receptors. Disrupting ppk23 or inhibiting activity of ppk23-expressing neurons did not alter gustatory responses. Instead, blocking ppk23-positive neurons or mutating the ppk23 gene delayed the initiation and reduced the intensity of male courtship. Furthermore, mutations in ppk23 altered the behavioral response of males to the female-specific aphrodisiac pheromone 7(Z), 11(Z)-Heptacosadiene. Together, these data indicate that ppk23 and the cells expressing it play an important role in the peripheral sensory system that determines sexual behavior in Drosophila.
Collapse
Affiliation(s)
- Beika Lu
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Angela LaMora
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Yishan Sun
- Neuroscience Graduate Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael J. Welsh
- Howard Hughes Medical Institute, Departments of Internal Medicine, Molecular Physiology, and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
63
|
Gomulski LM, Dimopoulos G, Xi Z, Scolari F, Gabrieli P, Siciliano P, Clarke AR, Malacrida AR, Gasperi G. Transcriptome profiling of sexual maturation and mating in the Mediterranean fruit fly, Ceratitis capitata. PLoS One 2012; 7:e30857. [PMID: 22303464 PMCID: PMC3267753 DOI: 10.1371/journal.pone.0030857] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/22/2011] [Indexed: 12/26/2022] Open
Abstract
Sexual maturation and mating in insects are generally accompanied by major physiological and behavioural changes. Many of these changes are related to the need to locate a mate and subsequently, in the case of females, to switch from mate searching to oviposition behaviour. The prodigious reproductive capacity of the Mediterranean fruit fly, Ceratitis capitata, is one of the factors that has led to its success as an invasive pest species. To identify the molecular changes related to maturation and mating status in male and female medfly, a microarray-based gene expression approach was used to compare the head transcriptomes of sexually immature, mature virgin, and mated individuals. Attention was focused on the changes in abundance of transcripts related to reproduction, behaviour, sensory perception of chemical stimulus, and immune system processes. Broad transcriptional changes were recorded during female maturation, while post-mating transcriptional changes in females were, by contrast, modest. In male medfly, transcriptional changes were consistent both during maturation and as a consequence of mating. Of particular note was the lack of the mating-induced immune responses that have been recorded for Drosophila melanogaster, that may be due to the different reproductive strategies of these species. This study, in addition to increasing our understanding of the molecular machinery behind maturation and mating in the medfly, has identified important gene targets that might be useful in the future management of this pest.
Collapse
Affiliation(s)
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Zhiyong Xi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Paolo Gabrieli
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | - Paolo Siciliano
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | - Anthony R. Clarke
- Discipline of Biogeosciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Giuliano Gasperi
- Department of Animal Biology, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
64
|
Magdalena L, Coipan E, Vladimirescu A, Savu L, Costache M, Gavrila L. Downregulation of hsp22 gene expression in Drosophila melanogaster from sites located near chemical plants. GENETICS AND MOLECULAR RESEARCH 2012; 11:739-45. [DOI: 10.4238/2012.march.22.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
65
|
Abstract
Aggressive behavior is widely present throughout the animal kingdom and is crucial to ensure survival and reproduction. Aggressive actions serve to acquire territory, food, or mates and in defense against predators or rivals; while in some species these behaviors are involved in establishing a social hierarchy. Aggression is a complex behavior, influenced by a broad range of genetic and environmental factors. Recent studies in Drosophila provide insight into the genetic basis and control of aggression. The state of the art on aggression in Drosophila and the many opportunities provided by this model organism to unravel the genetic and neurobiological basis of aggression are reviewed.
Collapse
Affiliation(s)
- Liesbeth Zwarts
- Laboratory of Behavioral and Developmental Genetics, K.U. Leuven Center for Human Genetics, VIB Center for the Biology of Disease, Leuven, Belgium
| | | | | |
Collapse
|
66
|
Gates MA, Kannan R, Giniger E. A genome-wide analysis reveals that the Drosophila transcription factor Lola promotes axon growth in part by suppressing expression of the actin nucleation factor Spire. Neural Dev 2011; 6:37. [PMID: 22129300 PMCID: PMC3262752 DOI: 10.1186/1749-8104-6-37] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/30/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The phylogenetically conserved transcription factor Lola is essential for many aspects of axon growth and guidance, synapse formation and neural circuit development in Drosophila. To date it has been difficult, however, to obtain an overall view of Lola functions and mechanisms. RESULTS We use expression microarrays to identify the lola-dependent transcriptome in the Drosophila embryo. We find that lola regulates the expression of a large selection of genes that are known to affect each of several lola-dependent developmental processes. Among other loci, we find lola to be a negative regulator of spire, an actin nucleation factor that has been studied for its essential role in oogenesis. We show that spire is expressed in the nervous system and is required for a known lola-dependent axon guidance decision, growth of ISNb motor axons. We further show that reducing spire gene dosage suppresses this aspect of the lola phenotype, verifying that derepression of spire is an important contributor to the axon stalling phenotype of embryonic motor axons in lola mutants. CONCLUSIONS These data shed new light on the molecular mechanisms of many lola-dependent processes, and also identify several developmental processes not previously linked to lola that are apt to be regulated by this transcription factor. These data further demonstrate that excessive expression of the actin nucleation factor Spire is as deleterious for axon growth in vivo as is the loss of Spire, thus highlighting the need for a balance in the elementary steps of actin dynamics to achieve effective neuronal morphogenesis.
Collapse
Affiliation(s)
- Michael A Gates
- Basic Neuroscience Program, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892 USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 USA
| | - Ramakrishnan Kannan
- Basic Neuroscience Program, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Edward Giniger
- Basic Neuroscience Program, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892 USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 USA
| |
Collapse
|
67
|
Venken KJ, Simpson JH, Bellen HJ. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 2011; 72:202-30. [PMID: 22017985 PMCID: PMC3232021 DOI: 10.1016/j.neuron.2011.09.021] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 12/26/2022]
Abstract
Research in the fruit fly Drosophila melanogaster has led to insights in neural development, axon guidance, ion channel function, synaptic transmission, learning and memory, diurnal rhythmicity, and neural disease that have had broad implications for neuroscience. Drosophila is currently the eukaryotic model organism that permits the most sophisticated in vivo manipulations to address the function of neurons and neuronally expressed genes. Here, we summarize many of the techniques that help assess the role of specific neurons by labeling, removing, or altering their activity. We also survey genetic manipulations to identify and characterize neural genes by mutation, overexpression, and protein labeling. Here, we attempt to acquaint the reader with available options and contexts to apply these methods.
Collapse
Affiliation(s)
- Koen J.T. Venken
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, Texas, 77030
| | - Julie H. Simpson
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, Texas, 77030
- Program in Developmental Biology, Department of Neuroscience, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
68
|
Abstract
Epistasis and pleiotropy feature prominently in the genetic architecture of quantitative traits but are difficult to assess in outbred populations. We performed a diallel cross among coisogenic Drosophila P-element mutations associated with hyperaggressive behavior and showed extensive epistatic and pleiotropic effects on aggression, brain morphology, and genome-wide transcript abundance in head tissues. Epistatic interactions were often of greater magnitude than homozygous effects, and the topology of epistatic networks varied among these phenotypes. The transcriptional signatures of homozygous and double heterozygous genotypes derived from the six mutations imply a large mutational target for aggressive behavior and point to evolutionarily conserved genetic mechanisms and neural signaling pathways affecting this universal fitness trait.
Collapse
|
69
|
McGraw EA, Ye YH, Foley B, Chenoweth SF, Higgie M, Hine E, Blows MW. High-dimensional variance partitioning reveals the modular genetic basis of adaptive divergence in gene expression during reproductive character displacement. Evolution 2011; 65:3126-37. [PMID: 22023580 DOI: 10.1111/j.1558-5646.2011.01371.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although adaptive change is usually associated with complex changes in phenotype, few genetic investigations have been conducted on adaptations that involve sets of high-dimensional traits. Microarrays have supplied high-dimensional descriptions of gene expression, and phenotypic change resulting from adaptation often results in large-scale changes in gene expression. We demonstrate how genetic analysis of large-scale changes in gene expression generated during adaptation can be accomplished by determining high-dimensional variance partitioning within classical genetic experimental designs. A microarray experiment conducted on a panel of recombinant inbred lines (RILs) generated from two populations of Drosophila serrata that have diverged in response to natural selection, revealed genetic divergence in 10.6% of 3762 gene products examined. Over 97% of the genetic divergence in transcript abundance was explained by only 12 genetic modules. The two most important modules, explaining 50% of the genetic variance in transcript abundance, were genetically correlated with the morphological traits that are known to be under selection. The expression of three candidate genes from these two important genetic modules was assessed in an independent experiment using qRT-PCR on 430 individuals from the panel of RILs, and confirmed the genetic association between transcript abundance and morphological traits under selection.
Collapse
Affiliation(s)
- Elizabeth A McGraw
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
70
|
Le Conte Y, Alaux C, Martin JF, Harbo JR, Harris JW, Dantec C, Séverac D, Cros-Arteil S, Navajas M. Social immunity in honeybees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour. INSECT MOLECULAR BIOLOGY 2011; 20:399-408. [PMID: 21435061 DOI: 10.1111/j.1365-2583.2011.01074.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Honeybees have evolved a social immunity consisting of the cooperation of individuals to decrease disease in the hive. We identified a set of genes involved in this social immunity by analysing the brain transcriptome of highly varroa-hygienic bees, who efficiently detect and remove brood infected with the Varroa destructor mite. The function of these candidate genes does not seem to support a higher olfactory sensitivity in hygienic bees, as previously hypothesized. However, comparing their genomic profile with those from other behaviours suggests a link with brood care and the highly varroa-hygienic Africanized honeybees. These results represent a first step toward the identification of genes involved in social immunity and thus provide first insights into the evolution of social immunity.
Collapse
Affiliation(s)
- Y Le Conte
- INRA, UMR 406 Abeilles et Environnement, Site Agroparc, Avignon cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Malcom JW. Smaller, scale-free gene networks increase quantitative trait heritability and result in faster population recovery. PLoS One 2011; 6:e14645. [PMID: 21347400 PMCID: PMC3036578 DOI: 10.1371/journal.pone.0014645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 01/07/2011] [Indexed: 11/18/2022] Open
Abstract
One of the goals of biology is to bridge levels of organization. Recent technological advances are enabling us to span from genetic sequence to traits, and then from traits to ecological dynamics. The quantitative genetics parameter heritability describes how quickly a trait can evolve, and in turn describes how quickly a population can recover from an environmental change. Here I propose that we can link the details of the genetic architecture of a quantitative trait--i.e., the number of underlying genes and their relationships in a network--to population recovery rates by way of heritability. I test this hypothesis using a set of agent-based models in which individuals possess one of two network topologies or a linear genotype-phenotype map, 16-256 genes underlying the trait, and a variety of mutation and recombination rates and degrees of environmental change. I find that the network architectures introduce extensive directional epistasis that systematically hides and reveals additive genetic variance and affects heritability: network size, topology, and recombination explain 81% of the variance in average heritability in a stable environment. Network size and topology, the width of the fitness function, pre-change additive variance, and certain interactions account for ∼75% of the variance in population recovery times after a sudden environmental change. These results suggest that not only the amount of additive variance, but importantly the number of loci across which it is distributed, is important in regulating the rate at which a trait can evolve and populations can recover. Taken in conjunction with previous research focused on differences in degree of network connectivity, these results provide a set of theoretical expectations and testable hypotheses for biologists working to span levels of organization from the genotype to the phenotype, and from the phenotype to the environment.
Collapse
Affiliation(s)
- Jacob W Malcom
- Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America.
| |
Collapse
|
72
|
Abstract
Understanding the genetic architecture of polygenic traits requires investigating how complex networks of interacting molecules mediate the effect of genetic variation on organismal phenotypes. We used a combination of P-element mutagenesis and analysis of natural variation in gene expression to predict transcriptional networks that underlie alcohol sensitivity in Drosophila melanogaster. We identified 139 unique P-element mutations (124 in genes) that affect sensitivity or resistance to alcohol exposure. Further analyses of nine of the lines showed that the P-elements affected expression levels of the tagged genes, and P-element excision resulted in phenotypic reversion. The majority of the mutations were in computationally predicted genes or genes with unexpected effects on alcohol phenotypes. Therefore we sought to understand the biological relationships among 21 of these genes by leveraging genetic correlations among genetically variable transcripts in wild-derived inbred lines to predict coregulated transcriptional networks. A total of 32 "hub" genes were common to two or more networks associated with the focal genes. We used RNAi-mediated inhibition of expression of focal genes and of hub genes connected to them in the network to confirm their effects on alcohol-related phenotypes. We then expanded the computational networks using the hub genes as foci and again validated network predictions. Iteration of this approach allows a stepwise expansion of the network with simultaneous functional validation. Although coregulated transcriptional networks do not provide information about causal relationships among their constituent transcripts, they provide a framework for subsequent functional studies on the genetic basis of alcohol sensitivity.
Collapse
|
73
|
Filby AL, Paull GC, Hickmore TF, Tyler CR. Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics 2010; 11:498. [PMID: 20846403 PMCID: PMC2996994 DOI: 10.1186/1471-2164-11-498] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/16/2010] [Indexed: 01/12/2023] Open
Abstract
Background Aggression is a near-universal behaviour with substantial influence on and implications for human and animal social systems. The neurophysiological basis of aggression is, however, poorly understood in all species and approaches adopted to study this complex behaviour have often been oversimplified. We applied targeted expression profiling on 40 genes, spanning eight neurological pathways and in four distinct regions of the brain, in combination with behavioural observations and pharmacological manipulations, to screen for regulatory pathways of aggression in the zebrafish (Danio rerio), an animal model in which social rank and aggressiveness tightly correlate. Results Substantial differences occurred in gene expression profiles between dominant and subordinate males associated with phenotypic differences in aggressiveness and, for the chosen gene set, they occurred mainly in the hypothalamus and telencephalon. The patterns of differentially-expressed genes implied multifactorial control of aggression in zebrafish, including the hypothalamo-neurohypophysial-system, serotonin, somatostatin, dopamine, hypothalamo-pituitary-interrenal, hypothalamo-pituitary-gonadal and histamine pathways, and the latter is a novel finding outside mammals. Pharmacological manipulations of various nodes within the hypothalamo-neurohypophysial-system and serotonin pathways supported their functional involvement. We also observed differences in expression profiles in the brains of dominant versus subordinate females that suggested sex-conserved control of aggression. For example, in the HNS pathway, the gene encoding arginine vasotocin (AVT), previously believed specific to male behaviours, was amongst those genes most associated with aggression, and AVT inhibited dominant female aggression, as in males. However, sex-specific differences in the expression profiles also occurred, including differences in aggression-associated tryptophan hydroxylases and estrogen receptors. Conclusions Thus, through an integrated approach, combining gene expression profiling, behavioural analyses, and pharmacological manipulations, we identified candidate genes and pathways that appear to play significant roles in regulating aggression in fish. Many of these are novel for non-mammalian systems. We further present a validated system for advancing our understanding of the mechanistic underpinnings of complex behaviours using a fish model.
Collapse
Affiliation(s)
- Amy L Filby
- School of Biosciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, Devon EX4 4PS, UK.
| | | | | | | |
Collapse
|
74
|
Mackay TFC. Mutations and quantitative genetic variation: lessons from Drosophila. Philos Trans R Soc Lond B Biol Sci 2010; 365:1229-39. [PMID: 20308098 DOI: 10.1098/rstb.2009.0315] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A central issue in evolutionary quantitative genetics is to understand how genetic variation for quantitative traits is maintained in natural populations. Estimates of genetic variation and of genetic correlations and pleiotropy among multiple traits, inbreeding depression, mutation rates for fitness and quantitative traits and of the strength and nature of selection are all required to evaluate theoretical models of the maintenance of genetic variation. Studies in Drosophila melanogaster have shown that a substantial fraction of segregating variation for fitness-related traits in Drosophila is due to rare deleterious alleles maintained by mutation-selection balance, with a smaller but significant fraction attributable to intermediate frequency alleles maintained by alleles with antagonistic pleiotropic effects, and late-age-specific effects. However, the nature of segregating variation for traits under stabilizing selection is less clear and requires more detailed knowledge of the loci, mutation rates, allelic effects and frequencies of molecular polymorphisms affecting variation in suites of pleiotropically connected traits. Recent studies in D. melanogaster have revealed unexpectedly complex genetic architectures of many quantitative traits, with large numbers of pleiotropic genes and alleles with sex-, environment- and genetic background-specific effects. Future genome wide association analyses of many quantitative traits on a common panel of fully sequenced Drosophila strains will provide much needed empirical data on the molecular genetic basis of quantitative traits.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Department of Genetics, W. M. Keck Center for Behavioral Biology, North Carolina State University, , Campus Box 7614, Raleigh, NC 27697, USA.
| |
Collapse
|
75
|
Abstract
Genetic approaches to dissecting complex traits in animal models increasingly use transcript levels as a molecular phenotype and as validation for predictions of gene function. A recent study in BMC Biology using these approaches shows the complexity of the genetic contribution to aggressive behavior in Drosophila.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|