51
|
Jiang H, Qiu J, Deng X, Li D, Tao T. Potential active compounds and common mechanisms of Evodia rutaecarpa for Alzheimer's disease comorbid pain by network pharmacology analysis. Heliyon 2023; 9:e18455. [PMID: 37529338 PMCID: PMC10388172 DOI: 10.1016/j.heliyon.2023.e18455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Evodia rutaecarpa (Evodia) is a Chinese herbal medicine with analgesic and anti-neurodegenerative properties. However, whether Evodia compounds can be applied for the comorbid pain of Alzheimer's disease (AD) and the underlying mechanisms remain unclear. Herein, 137 common targets of Evodia between AD and pain were predicted from drug and disease target databases. Subsequently, protein-protein interaction (PPI) network, protein function module construction, and bioinformatics analyses were used to analyze the potential relationship among targets, pathways, and diseases. Evodia could simultaneously treat AD comorbid pain through multi-target, multi-component, and multi-pathway mechanisms, and inflammation was an important common phenotype of AD and pain. The relationship between important transcription factors such as RELA, NF-κB1, SP1, STAT3, and JUN on IL-17, TNF, and MAPK signaling pathways might be potential mechanisms of Evodia. Additionally, 10 candidate compounds were predicted, and evodiamine might be the effective active ingredient of Evodia in treating AD or pain. In summary, this study provided a reference for subsequent research and a novel understanding and direction for the clinical use of evodiamine to treat AD patients with comorbid pain.
Collapse
Affiliation(s)
- Huiyi Jiang
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Jiamin Qiu
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Xin Deng
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Danping Li
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Tao Tao
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Department of Anesthesiology, Zhujiang hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
52
|
Pușcașu C, Ungurianu A, Șeremet OC, Andrei C, Mihai DP, Negreș S. The Influence of Sildenafil-Metformin Combination on Hyperalgesia and Biochemical Markers in Diabetic Neuropathy in Mice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1375. [PMID: 37629665 PMCID: PMC10456948 DOI: 10.3390/medicina59081375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Background and objectives: Worldwide, approximately 500 million people suffer from diabetes and at least 50% of these people develop neuropathy. Currently, therapeutic strategies for reducing diabetic neuropathy (DN)-associated pain are limited and have several side effects. The purpose of the study was to evaluate the antihyperalgesic action of different sildenafil (phosphodiesterase-5 inhibitor) and metformin (antihyperglycemic agent) combinations in alloxan-induced DN. Methods: The study included 100 diabetic mice and 20 non-diabetic mice that were subjected to hot and cold stimulus tests. Furthermore, we determined the influence of this combination on TNF-α, IL-6 and nitrites levels in brain and liver tissues. Results: In both the hot-plate and tail withdrawal test, all sildenafil-metformin combinations administered in our study showed a significant increase in pain reaction latencies when compared to the diabetic control group. Furthermore, all combinations decreased blood glucose levels due to the hypoglycemic effect of metformin. Additionally, changes in nitrite levels and pro-inflammatory cytokines (TNF-α and IL-6) were observed after 14 days of treatment with different sildenafil-metformin combinations. Conclusions: The combination of these two substances increased the pain reaction latency of diabetic animals in a dose-dependent manner. Moreover, all sildenafil-metformin combinations significantly reduced the concentration of nitrites in the brain and liver, which are final products formed under the action of iNOS.
Collapse
Affiliation(s)
| | | | - Oana Cristina Șeremet
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | | | | | | |
Collapse
|
53
|
Lesnak JB, Hayashi K, Plumb AN, Janowski AJ, Chimenti MS, Sluka KA. The impact of sex and physical activity on the local immune response to muscle pain. Brain Behav Immun 2023; 111:4-20. [PMID: 36972744 DOI: 10.1016/j.bbi.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Induction of muscle pain triggers a local immune response to produce pain and this mechanism may be sex and activity level dependent. The purpose of this study was to measure the immune system response in the muscle following induction of pain in sedentary and physically active mice. Muscle pain was produced via an activity-induced pain model using acidic saline combined with fatiguing muscle contractions. Prior to induction of muscle pain, mice (C57/BL6) were sedentary or physically active (24hr access to running wheel) for 8 weeks. The ipsilateral gastrocnemius was harvested 24hr after induction of muscle pain for RNA sequencing or flow cytometry. RNA sequencing revealed activation of several immune pathways in both sexes after induction of muscle pain, and these pathways were attenuated in physically active females. Uniquely in females, the antigen processing and presentation pathway with MHC II signaling was activated after induction of muscle pain; activation of this pathway was blocked by physical activity. Blockade of MHC II attenuated development of muscle hyperalgesia exclusively in females. Induction of muscle pain increased the number of macrophages and T-cells in the muscle in both sexes, measured by flow cytometry. In both sexes, the phenotype of macrophages shifted toward a pro-inflammatory state after induction of muscle pain in sedentary mice (M1 + M1/2) but toward an anti-inflammatory state in physically active mice (M2 + M0). Thus, induction of muscle pain activates the immune system with sex-specific differences in the transcriptome while physical activity attenuates immune response in females and alters macrophage phenotype in both sexes.
Collapse
Affiliation(s)
- Joseph B Lesnak
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Kazuhiro Hayashi
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Ashley N Plumb
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Adam J Janowski
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Kathleen A Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
54
|
Xiao L, Matharoo J, Chi J, Ma J, Chen M, Manley B, Xu P, Shi W, Felder RA, Sung SSJ, Jin L, Li X. Transient depletion of macrophages alters local inflammatory response at the site of disc herniation in a transgenic mouse model. Osteoarthritis Cartilage 2023; 31:894-907. [PMID: 36754251 PMCID: PMC10272080 DOI: 10.1016/j.joca.2023.01.574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVE Macrophages are abundantly detected at sites of disc herniation, however, their function in the disease progression is unclear. We aim to investigate the functions of macrophages in acute disc herniation using a macrophage Fas-induced apoptosis (MaFIA) transgenic mouse strain. METHOD To transiently deplete macrophages, a dimerizer, AP20187, or vehicle solution was administered via intraperitoneal injection to MaFIA mice immediately, day 1 and 2 after annular puncture induced disc herniation. Local infiltrated tissues at disc hernia and DRGs at corresponding levels were harvested to analyze immune cells and neuroinflammation on postoperative day (POD) 6 by flow cytometry and/or immunostaining. Mouse spines were harvested to analyze structures of degenerated discs and adjacent vertebrae and to assess osteoclast activity by histology and tartrate-resistant acid phosphatase (TRAP) staining on POD 6, 13, and 20, respectively. RESULTS On POD 6, abundant macrophages were confirmed at disc hernia sites. Compared to vehicle control, AP20187 significantly reduced GFP+ cells in blood, spleen, and local inflammatory tissue. At disc hernia sites, AP20187 markedly reduced macrophages (CD11b+, F4/80+, GFP+CD11b+, CD11b+F4/80+) while increasing neutrophils and B cells. Transient macrophage depletion decreased ectopic bone formation and osteoclast activity in herniated discs and adjacent cortical bones for up to 20 days post herniation. Disc herniation elevated expressions of TNF-α, IL-6, substance P, calcitonin gene-related peptide, accompanied by increasing GFP+, CD11b+ and F4/80+ macrophages. Macrophage depletion did not attenuate these markers of neuroinflammation. CONCLUSIONS Transient depletion of macrophages altered local inflammatory response at the site of disc herniation.
Collapse
Affiliation(s)
- L Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - J Matharoo
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - J Chi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - J Ma
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - M Chen
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - B Manley
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - P Xu
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - W Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - R A Felder
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - S-S J Sung
- Department of Medicine and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - L Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - X Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
55
|
Park J, Lee C, Kim YT. Effects of Natural Product-Derived Compounds on Inflammatory Pain via Regulation of Microglial Activation. Pharmaceuticals (Basel) 2023; 16:941. [PMID: 37513853 PMCID: PMC10386117 DOI: 10.3390/ph16070941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory pain is a type of pain caused by tissue damage associated with inflammation and is characterized by hypersensitivity to pain and neuroinflammation in the spinal cord. Neuroinflammation is significantly increased by various neurotransmitters and cytokines that are expressed in activated primary afferent neurons, and it plays a pivotal role in the development of inflammatory pain. The activation of microglia and elevated levels of pro-inflammatory cytokines are the hallmark features of neuroinflammation. During the development of neuroinflammation, various intracellular signaling pathways are activated or inhibited in microglia, leading to the regulation of inflammatory proteins and cytokines. Numerous attempts have been conducted to alleviate inflammatory pain by inhibiting microglial activation. Natural products and their compounds have gained attention as potential candidates for suppressing inflammatory pain due to verified safety through centuries of use. Many studies have also shown that natural product-derived compounds have the potential to suppress microglial activation and alleviate inflammatory pain. Herein, we review the literature on inflammatory mediators and intracellular signaling involved in microglial activation in inflammatory pain, as well as natural product-derived compounds that have been found to suppress microglial activation. This review suggests that natural product-derived compounds have the potential to alleviate inflammatory pain through the suppression of microglial activation.
Collapse
Affiliation(s)
- Joon Park
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
56
|
Cherng JH, Chang SJ, Tsai HD, Chun CF, Fan GY, Reeves KD, Lam KHS, Wu YT. The Potential of Glucose Treatment to Reduce Reactive Oxygen Species Production and Apoptosis of Inflamed Neural Cells In Vitro. Biomedicines 2023; 11:1837. [PMID: 37509477 PMCID: PMC10376532 DOI: 10.3390/biomedicines11071837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/24/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroinflammation is a key feature in the pathogenesis of entrapment neuropathies. Clinical trial evidence suggests that perineural injection of glucose in water at entrapment sites has therapeutic benefits beyond a mere mechanical effect. We previously demonstrated that 12.5-25 mM glucose restored normal metabolism in human SH-SYFY neuronal cells rendered metabolically inactive from TNF-α exposure, a common initiator of neuroinflammation, and reduced secondary elevation of inflammatory cytokines. In the present study, we measured the effects of glucose treatment on cell survival, ROS activity, gene-related inflammation, and cell cycle regulation in the presence of neurogenic inflammation. We exposed SH-SY5Y cells to 10 ng/mL of TNF-α for 24 h to generate an inflammatory environment, followed by 24 h of exposure to 3.125, 6.25, 12.5, and 25 mM glucose. Glucose exposure, particularly at 12.5 mM, preserved apoptotic SH-SY5Y cell survival following a neuroinflammatory insult. ROS production was substantially reduced, suggesting a ROS scavenging effect. Glucose treatment significantly increased levels of CREB, JNK, and p70S6K (p < 0.01), pointing to antioxidative and anti-inflammatory actions through components of the MAPK family and Akt pathways but appeared underpowered (n = 6) to reach significance for NF-κB, p38, ERK1/2, Akt, and STAT5 (p < 0.05). Cell regulation analysis indicated that glucose treatment recovered/restored function in cells arrested in the S or G2/M-phases. In summary, glucose exposure in vitro restores function in apoptotic nerves after TNF-α exposure via several mechanisms, including ROS scavenging and enhancement of MAPK family and Akt pathways. These findings suggest that glucose injection about entrapped peripheral nerves may have several favorable biochemical actions that enhance neuronal cell function.
Collapse
Affiliation(s)
- Juin-Hong Cherng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Shu-Jen Chang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsin-Da Tsai
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chung-Fang Chun
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Gang-Yi Fan
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 11490, Taiwan
| | | | - King Hei Stanley Lam
- The Hong Kong Institute of Musculoskeletal Medicine, Hong Kong
- Department of Family Medicine, The Chinese University of Hong Kong, Hong Kong
- Department of Family Medicine, The University of Hong Kong, Hong Kong
- Center for Regional Anesthesia and Pain Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yung-Tsan Wu
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
- Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Research and Development, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
57
|
Todeschi J, Dannhoff G, Coca AH, Timbolschi DI, Proust F, Lefebvre F, Lelievre V, Poisbeau P, Vallat L, Salvat E, Bohren Y. Effect of an intraoperative periradicular application of platelet-rich fibrin (PRF) on residual post-surgical neuropathic pain after disc herniation surgery: study protocol for NeuroPRF, a randomized controlled trial. Trials 2023; 24:418. [PMID: 37337269 DOI: 10.1186/s13063-023-07420-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/27/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The prevalence of post-surgical lumbar neuropathic radiculopathy is approximately 30%. Poor response to the recommended treatments for neuropathic pain, namely antidepressants and/or gabapentinoids, requires the development of new techniques to prevent chronic pain. One such well-tolerated technique is the administration of autologous plasma enriched in platelets and fibrin (PRF). This approach is largely used in regenerative medicine owing to the anti-inflammatory and analgesic properties of PRF. It could also be an interesting adjuvant to surgery, as it reduces neurogenic inflammation and promotes nerve recovery, thereby reducing the incidence of residual postoperative chronic pain. The aim of the present study is to evaluate the benefit of periradicular intraoperative application of PRF on the residual postsurgical neuropathic pain after disc herniation surgery. METHODS A randomized, prospective, interventional, controlled, single-blind study with evaluation by a blind outcome assessor will be performed in Strasbourg University Hospital. We will compare a control group undergoing conventional surgery to an experimental group undergoing surgery and periradicular administration of PRF (30 patients in each arm). The primary outcome is the intensity of postoperative neuropathic radicular pain, measured by a visual analog scale (VAS) at 6 months post-surgery. The secondary outcomes are the characteristics of neuropathic pain (NPSI), the quality of life (SF-12 and PGIC), the presence of anxiety/depression symptoms (HAD), and the consumption of analgesics. We will also carry out transcriptomic analysis of a panel of pro- and anti-inflammatory cytokines in blood samples, before surgery and at 6 months follow-up. These gene expression results will be correlated with clinical data, in particular, with the apparition of postoperative neuropathic pain. DISCUSSION This study is the first randomized controlled trial to assess the efficacy of PRF in the prevention of neuropathic pain following surgery for herniated disc. This study addresses not only a clinical question but will also provide information on the physiopathological mechanisms of neuropathic pain. TRIAL REGISTRATION This study is registered at ClinicalTrials.gov: NCT05196503 , February 24, 2022.
Collapse
Affiliation(s)
- Julien Todeschi
- Service de Neurochirurgie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Guillaume Dannhoff
- Service de Neurochirurgie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Andres Hugo Coca
- Service de Neurochirurgie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Daniel Ionut Timbolschi
- Centre d'Evaluation Et Traitement de La Douleur (CETD), Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67200, Strasbourg, France
| | - François Proust
- Service de Neurochirurgie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - François Lefebvre
- Service de Santé Publique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Vincent Lelievre
- Centre National de La Recherche Scientifique, Institut Des Neurosciences Cellulaires Et Intégratives, Strasbourg, France
| | - Pierrick Poisbeau
- Centre National de La Recherche Scientifique, Institut Des Neurosciences Cellulaires Et Intégratives, Strasbourg, France
| | - Laurent Vallat
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Département de Génétique Moléculaire Des Cancers, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Eric Salvat
- Centre d'Evaluation Et Traitement de La Douleur (CETD), Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67200, Strasbourg, France
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Centre National de La Recherche Scientifique, Institut Des Neurosciences Cellulaires Et Intégratives, Strasbourg, France
| | - Yohann Bohren
- Centre d'Evaluation Et Traitement de La Douleur (CETD), Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67200, Strasbourg, France.
| |
Collapse
|
58
|
Zhang DH, Fan YH, Zhang YQ, Cao H. Neuroendocrine and neuroimmune mechanisms underlying comorbidity of pain and obesity. Life Sci 2023; 322:121669. [PMID: 37023950 DOI: 10.1016/j.lfs.2023.121669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Pain and obesity, as well as their associated impairments, are major health concerns. Understanding the relationship between the two is the focus of a growing body of research. However, early researches attribute increased mechanical stress from excessive weight as the main factor of obesity-related pain, which not only over-simplify the association, but also fail to explain some controversial outcomes arising from clinical investigations. This review focuses on neuroendocrine and neuroimmune modulators importantly involved in both pain and obesity, analyzing nociceptive and anti-nociceptive mechanisms based on neuroendocrine pathways including galanin, ghrelin, leptin and their interactions with other neuropeptides and hormone systems which have been reported to play roles in pain and obesity. Mechanisms of immune activities and metabolic alterations are also discussed, due to their intense interactions with neuroendocrine system and crucial roles in the development and maintenance of inflammatory and neuropathic pain. These findings have implications for health given rising rates of obesity and pain-related diagnoses, by providing novel weight-control and analgesic therapies targeted on specific pathways.
Collapse
Affiliation(s)
- Dao-Han Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ying-Hui Fan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
59
|
Breitinger U, Breitinger HG. Excitatory and inhibitory neuronal signaling in inflammatory and diabetic neuropathic pain. Mol Med 2023; 29:53. [PMID: 37069517 PMCID: PMC10111846 DOI: 10.1186/s10020-023-00647-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Pain, although unpleasant, is an essential warning mechanism against injury and damage of the organism. An intricate network of specialised sensors and transmission systems contributes to reception, transmission and central sensitization of pain. Here, we briefly introduce some of the main aspects of pain signal transmission, including nociceptors and nociceptive signals, mechanisms of inflammatory and neuropathic pain, and the situation of diabetes-associated neuropathic pain. The role of glia-astrocytes, microglia, satellite glia cells-and their specific channels, transporters and signaling pathways is described. A focus is on the contribution of inhibitory synaptic signaling to nociception and a possible role of glycine receptors in glucose-mediated analgesia and treatment-induced diabetic neuropathy. Inhibitory receptors such as GABAA- and glycine receptors are important contributors to nociceptive signaling; their contribution to altered pain sensation in diabetes may be of clinical relevance, and they could be promising therapeutic targets towards the development of novel analgesics.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, 11835, Egypt
| | | |
Collapse
|
60
|
Liu Z, Liu Y, Dai J, Lao J. The temporal and spatial signature of microglial transcriptome in neuropathic pain. Neuroreport 2023; 34:338-347. [PMID: 36966811 PMCID: PMC10065820 DOI: 10.1097/wnr.0000000000001899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Microglial activation following peripheral nerve injury is crucial for neuropathic pain (NP) development; however, studies on time-specific and spatial characteristics of microglial transcriptome are scarce. Firstly, we comparatively analysed microglial transcriptome of different brain regions and multiple timepoints after nerve injury by analysing the gene expression profile of GSE180627 and GSE117320. Then, we performed a mechanical pain hypersensitivity test on 12 rat neuropathic pain models using von Frey fibres at various timepoints after nerve injury. To further explore the key gene clusters closely related to the neuropathic pain phenotype, we conducted a weighted gene co-expression network analysis (WGCNA) on the GSE60670 gene expression profile. Lastly, we performed a single-cell sequencing analysis on GSE162807 for identifying microglia subpopulations. We found that the trend of microglia's transcriptome changes after nerve injury was that mRNA expression changes mainly occur early after injury, which is also consistent with phenotypic changes (NP progression). We also revealed that in addition to spatial specificity, microglia are also temporally specific in NP progression following nerve injury. The WGCNA findings revealed that the functional analysis of the key module genes emphasized the endoplasmic reticulum's (ER's) crucial role in NP. In our single-cell sequencing analysis, microglia were clustered into 18 cell subsets, of which we identified specific subsets of two timepoints (D3/D7) post-injury. Our study further revealed the temporal and spatial gene expression specificity of microglia in neuropathic pain. These results contribute to our comprehensive understanding of the pathogenic mechanism of microglia in neuropathic pain.
Collapse
Affiliation(s)
- Zeyuan Liu
- Department of Hand Surgery, Huashan Hospital, Fudan University
- Key Laboratory of Hand Reconstruction, Ministry of Health
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yuzhou Liu
- Department of Hand Surgery, Huashan Hospital, Fudan University
- Key Laboratory of Hand Reconstruction, Ministry of Health
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University
- Key Laboratory of Hand Reconstruction, Ministry of Health
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jie Lao
- Department of Hand Surgery, Huashan Hospital, Fudan University
- Key Laboratory of Hand Reconstruction, Ministry of Health
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| |
Collapse
|
61
|
Kuffler DP. Evolving techniques for reducing phantom limb pain. Exp Biol Med (Maywood) 2023; 248:561-572. [PMID: 37158119 PMCID: PMC10350801 DOI: 10.1177/15353702231168150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
At least two million people in the United States of America live with lost limbs, and the number is expected to double by 2050, although the incidence of amputations is significantly greater in other parts of the world. Within days to weeks of the amputation, up to 90% of these individuals develop neuropathic pain, presenting as phantom limb pain (PLP). The pain level increases significantly within one year and remains chronic and severe for about 10%. Amputation-induced changes are considered to underlie the causation of PLP. Techniques applied to the central nervous system (CNS) and peripheral nervous system (PNS) are designed to reverse amputation-induced changes, thereby reducing/eliminating PLP. The primary treatment for PLP is the administration of pharmacological agents, some of which are considered but provide no more than short-term pain relief. Alternative techniques are also discussed, which provide only short-term pain relief. Changes induced by various cells and the factors they release are required to change neurons and their environment to reduce/eliminate PLP. It is concluded that novel techniques that utilize autologous platelet-rich plasma (PRP) may provide long-term PLP reduction/elimination.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan 00901, Puerto Rico
| |
Collapse
|
62
|
Kooijman NI, Willegers T, Reuser A, Mulleners WM, Kramers C, Vissers KCP, van der Wal SEI. Are psychedelics the answer to chronic pain: A review of current literature. Pain Pract 2023; 23:447-458. [PMID: 36597700 DOI: 10.1111/papr.13203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/15/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
AIMS We aim to provide an evidence-based overview of the use of psychedelics in chronic pain, specifically LSD and psilocybin. CONTENT Chronic pain is a common and complex problem, with an unknown etiology. Psychedelics like lysergic acid diethylamide (LSD) and psilocybin, may play a role in the management of chronic pain. Through activation of the serotonin-2A (5-HT2A) receptor, several neurophysiological responses result in the disruption of functional connections in brain regions associated with chronic pain. Healthy reconnections can be made through neuroplastic effects, resulting in sustained pain relief. However, this process is not fully understood, and evidence of efficacy is limited and of low quality. In cancer and palliative related pain, the analgesic potential of psychedelics was established decades ago, and the current literature shows promising results on efficacy and safety in patients with cancer-related psychological distress. In other areas, patients suffering from severe headache disorders like migraine and cluster headache who have self-medicated with psychedelics report both acute and prophylactic efficacy of LSD and psilocybin. Randomized control trials are now being conducted to study the effects in cluster headache Furthermore, psychedelics have a generally favorable safety profile especially when compared to other analgesics like opioids. In addition, psychedelics do not have the addictive potential of opioids. IMPLICATIONS Given the current epidemic use of opioids, and that patients are in desperate need of an alternative treatment, it is important that further research is conducted on the efficacy of psychedelics in chronic pain conditions.
Collapse
Affiliation(s)
- Nina I Kooijman
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tim Willegers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anke Reuser
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Wim M Mulleners
- Department of Neurology, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Cornelis Kramers
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kris C P Vissers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Selina E I van der Wal
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
63
|
Boivin JC, Zhu J, Ohyama T. Nociception in fruit fly larvae. FRONTIERS IN PAIN RESEARCH 2023; 4:1076017. [PMID: 37006412 PMCID: PMC10063880 DOI: 10.3389/fpain.2023.1076017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Nociception, the process of encoding and processing noxious or painful stimuli, allows animals to detect and avoid or escape from potentially life-threatening stimuli. Here, we provide a brief overview of recent technical developments and studies that have advanced our understanding of the Drosophila larval nociceptive circuit and demonstrated its potential as a model system to elucidate the mechanistic basis of nociception. The nervous system of a Drosophila larva contains roughly 15,000 neurons, which allows for reconstructing the connectivity among them directly by transmission electron microscopy. In addition, the availability of genetic tools for manipulating the activity of individual neurons and recent advances in computational and high-throughput behavior analysis methods have facilitated the identification of a neural circuit underlying a characteristic nocifensive behavior. We also discuss how neuromodulators may play a key role in modulating the nociceptive circuit and behavioral output. A detailed understanding of the structure and function of Drosophila larval nociceptive neural circuit could provide insights into the organization and operation of pain circuits in mammals and generate new knowledge to advance the development of treatment options for pain in humans.
Collapse
Affiliation(s)
- Jean-Christophe Boivin
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Jiayi Zhu
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tomoko Ohyama
- Department of Biology, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
64
|
Gasperi RD, Gama Sosa MA, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Statz JK, Patterson J, Hof PR, Katsel P, Cook DG, Ahlers ST, Elder GA. Progressive Transcriptional Changes in the Amygdala Implicate Neuroinflammation in the Effects of Repetitive Low-Level Blast Exposure in Male Rats. J Neurotrauma 2023; 40:561-577. [PMID: 36262047 PMCID: PMC10040418 DOI: 10.1089/neu.2022.0282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic mental health problems are common among military veterans who sustained blast-related traumatic brain injuries. The reasons for this association remain unexplained. Male rats exposed to repetitive low-level blast overpressure (BOP) exposures exhibit chronic cognitive and post-traumatic stress disorder (PTSD)-related traits that develop in a delayed fashion. We examined blast-induced alterations on the transcriptome in four brain areas (anterior cortex, hippocampus, amygdala, and cerebellum) across the time frame over which the PTSD-related behavioral phenotype develops. When analyzed at 6 weeks or 12 months after blast exposure, relatively few differentially expressed genes (DEGs) were found. However, longitudinal analysis of amygdala, hippocampus, and anterior cortex between 6 weeks and 12 months revealed blast-specific DEG patterns. Six DEGs (hyaluronan and proteoglycan link protein 1 [Hapln1], glutamate metabotropic receptor 2 [Grm2], purinergic receptor P2y12 [P2ry12], C-C chemokine receptor type 5 [Ccr5], phenazine biosynthesis-like protein domain containing 1 [Pbld1], and cadherin related 23 [Cdh23]) were found altered in all three brain regions in blast-exposed animals. Pathway enrichment analysis using all DEGs or those uniquely changed revealed different transcription patterns in blast versus sham. In particular, the amygdala in blast-exposed animals had a unique set of enriched pathways related to stress responses, oxidative phosphorylation, and mitochondrial dysfunction. Upstream analysis implicated tumor necrosis factor (TNF)α signaling in blast-related effects in amygdala and anterior cortex. Eukaryotic initiating factor eIF4E (EIF4e), an upstream regulator of P2ry12 and Ccr5, was predicted to be activated in the amygdala. Quantitative polymerase chain reaction (qPCR) validated longitudinal changes in two TNFα regulated genes (cathepsin B [Ctsb], Hapln1), P2ry12, and Grm2. These studies have implications for understanding how blast injury damages the brain and implicates inflammation as a potential therapeutic target.
Collapse
Affiliation(s)
- Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Georgina S. Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Parsons Corporation, Centreville, Virginia, USA
| | - Patrick R. Hof
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pavel Katsel
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
65
|
Eglin CM, Wright J, Shepherd AI, Massey H, Hollis S, Towse J, Young JS, Maley MJ, Bailey SJ, Wilkinson C, Montgomery H, Tipton MJ. Plasma biomarkers of endothelial function, inflammation and oxidative stress in individuals with non-freezing cold injury. Exp Physiol 2023; 108:448-464. [PMID: 36808666 PMCID: PMC10988512 DOI: 10.1113/ep090722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are biomarkers of endothelial function, oxidative stress and inflammation altered by non-freezing cold injury (NFCI)? What is the main finding and its importance? Baseline plasma [interleukin-10] and [syndecan-1] were elevated in individuals with NFCI and cold-exposed control participants. Increased [endothelin-1] following thermal challenges might explain, in part, the increased pain/discomfort experienced with NFCI. Mild to moderate chronic NFCI does not appear to be associated with either oxidative stress or a pro-inflammatory state. Baseline [interleukin-10] and [syndecan-1] and post-heating [endothelin-1] are the most promising candidates for diagnosis of NFCI. ABSTRACT Plasma biomarkers of inflammation, oxidative stress, endothelial function and damage were examined in 16 individuals with chronic NFCI (NFCI) and matched control participants with (COLD, n = 17) or without (CON, n = 14) previous cold exposure. Venous blood samples were collected at baseline to assess plasma biomarkers of endothelial function (nitrate, nitrite and endothelin-1), inflammation [interleukin-6 (IL-6), interleukin-10 (IL-10), tumour necrosis factor alpha and E-selectin], oxidative stress [protein carbonyl, 4-hydroxy-2-nonenal (4-HNE), superoxide dismutase and nitrotyrosine) and endothelial damage [von Willebrand factor, syndecan-1 and tissue type plasminogen activator (TTPA)]. Immediately after whole-body heating and separately, foot cooling, blood samples were taken for measurement of plasma [nitrate], [nitrite], [endothelin-1], [IL-6], [4-HNE] and [TTPA]. At baseline, [IL-10] and [syndecan-1] were increased in NFCI (P < 0.001 and P = 0.015, respectively) and COLD (P = 0.033 and P = 0.030, respectively) compared with CON participants. The [4-HNE] was elevated in CON compared with both NFCI (P = 0.002) and COLD (P < 0.001). [Endothelin-1] was elevated in NFCI compared with COLD (P < 0.001) post-heating. The [4-HNE] was lower in NFCI compared with CON post-heating (P = 0.032) and lower than both COLD (P = 0.02) and CON (P = 0.015) post-cooling. No between-group differences were seen for the other biomarkers. Mild to moderate chronic NFCI does not appear to be associated with a pro-inflammatory state or oxidative stress. Baseline [IL-10] and [syndecan-1] and post-heating [endothelin-1] are the most promising candidates for diagnosing NFCI, but it is likely that a combination of tests will be required.
Collapse
Affiliation(s)
- Clare M. Eglin
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Jennifer Wright
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Anthony I. Shepherd
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Heather Massey
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Sarah Hollis
- Regional Occupational Health Team (ROHT) CatterickCatterick GarrisonUK
| | - Jonathan Towse
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - John S. Young
- National Horizons CentreTeesside UniversityMiddlesbroughUK
| | - Matthew J. Maley
- Environmental Ergonomics Research CentreLoughborough School of Design and Creative ArtsLoughborough UniversityLoughboroughUK
| | - Stephen J. Bailey
- National Centre for Sport and Exercise MedicineSchool of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Chris Wilkinson
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | | | - Michael J. Tipton
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
66
|
Wang Y, Li C, Xing J, Zhu Y, Sun M, Yin S, Liu J, Zou L, Liang S, Liu S. Neohesperidin Alleviates the Neuropathic Pain Behavior of Rats by Downregulating the P2X4 Receptor. Neurochem Res 2023; 48:781-790. [PMID: 36331667 DOI: 10.1007/s11064-022-03805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Neuropathic pain (NP) is a type of chronic pain affecting 6-8% of human health as no effective drug exists. The purinergic 2X4 receptor (P2X4R) is involved in NP. Neohesperidin (NH) is a dihydroflavonoside compound, which has anti-inflammatory and antioxidative properties. This study aimed to investigate whether NH has an effect on P2X4R-mediated NP induced by chronic constriction injury (CCI) of the sciatic nerve in rats. In this study, the CCI rat model was established to observe the changes of pain behaviors, P2X4R, and satellite glial cells (SGCs) activation in dorsal root ganglion (DRG) after NH treatment by using RT-PCR, immunofluorescence double labeling and Western blotting. Our results showed CCI rats had mechanical and thermal hyperalgesia with an increased level of P2X4R. Furthermore, SGCs were activated as indicated by increased expression of glial fibrillary acidic protein and increased tumor necrosis factor-alpha receptor 1and interleukin-1β. In addition, phosphorylated extracellular regulated protein kinases and interferon regulatory factor 5 in CCI rats increased. After NH treatment in CCI rats, the levels of above protein decreased, and the pain reduced. Overall, NH can markedly alleviate NP by reducing P2X4R expression and SGCs activation in DRG.
Collapse
Affiliation(s)
- Yueying Wang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Chenxi Li
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Jingming Xing
- Department of Basical Medicine, Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Yan Zhu
- Department of Endocrine, The First Hospital of Nanchang, Nanchang, People's Republic of China
| | - Minghao Sun
- Department of Clinical Medicine, The Second Clinical Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Sui Yin
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Jianming Liu
- Department of Pharmacology, Pharmacy School of Nanchang University, Nanchang, People's Republic of China
| | - Lifang Zou
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, People's Republic of China.
| |
Collapse
|
67
|
Zhang X, Zhu L, Wang X, Xia L, Zhang Y. Advances in the role and mechanism of miRNA in inflammatory pain. Biomed Pharmacother 2023; 161:114463. [PMID: 36868014 DOI: 10.1016/j.biopha.2023.114463] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Pain is a distressing experience associated with tissue damage or potential tissue damage, and its occurrence is related to sensory, emotional, cognitive and social factors. Inflammatory pain is one of the chronic pains where pain hypersensitivity are functional features of inflammation used to protect tissues from further damage. Pain has a serious impact on people's lives and has become a social problem that cannot be ignored. MiRNAs are small non-coding RNA molecules that exert directing effects on RNA silencing by complementary binding to the 3'UTR of target mRNA. MiRNAs can target a number of protein-coding genes and participate in almost all developmental and pathological processes in animals. Growing studies have suggested that miRNAs have significant implications for inflammatory pain via participating in multiple processes during the occurrence and development, such as affecting the activation of glial cells, regulating pro-inflammatory cytokines and inhibiting central and peripheral sensitization. In this review, the advances in the role of miRNAs in inflammatory pain were discussed. miRNAs as a class of micro-mediators are potential biomarkers and therapeutic targets for inflammatory pain, which provides a better diagnostic and treatment approach for inflammatory pain.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuezhen Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yanan Zhang
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
68
|
Exploring Novel Therapeutic Targets in the Common Pathogenic Factors in Migraine and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24044114. [PMID: 36835524 PMCID: PMC9959352 DOI: 10.3390/ijms24044114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Migraine and neuropathic pain (NP) are both painful, disabling, chronic conditions which exhibit some symptom similarities and are thus considered to share a common etiology. The calcitonin gene-related peptide (CGRP) has gained credit as a target for migraine management; nevertheless, the efficacy and the applicability of CGRP modifiers warrant the search for more effective therapeutic targets for pain management. This scoping review focuses on human studies of common pathogenic factors in migraine and NP, with reference to available preclinical evidence to explore potential novel therapeutic targets. CGRP inhibitors and monoclonal antibodies alleviate inflammation in the meninges; targeting transient receptor potential (TRP) ion channels may help prevent the release of nociceptive substances, and modifying the endocannabinoid system may open a path toward discovery of novel analgesics. There may exist a potential target in the tryptophan-kynurenine (KYN) metabolic system, which is closely linked to glutamate-induced hyperexcitability; alleviating neuroinflammation may complement a pain-relieving armamentarium, and modifying microglial excitation, which is observed in both conditions, may be a possible approach. Those are several potential analgesic targets which deserve to be explored in search of novel analgesics; however, much evidence remains missing. This review highlights the need for more studies on CGRP modifiers for subtypes, the discovery of TRP and endocannabinoid modulators, knowledge of the status of KYN metabolites, the consensus on cytokines and sampling, and biomarkers for microglial function, in search of innovative pain management methods for migraine and NP.
Collapse
|
69
|
Effect and underlying mechanisms of spirocyclopiperazinium salt compound DXL-A-24 in rats following spinal nerve ligation. Brain Res 2023; 1800:148187. [PMID: 36463957 DOI: 10.1016/j.brainres.2022.148187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Neuropathic pain represents a significant public health problem and its effective management remains a challenge. The present study is designed to evaluate the analgesic effect of the spirocyclopiperazinium salt compound DXL-A-24 in spinal nerve ligation (SNL) model, and further to explore the possible molecular mechanisms. METHODS SNL model was established on rats, and mechanical allodynia and thermal hyperalgesia were estimated with the von Frey and hot plate tests; the expression of CaMKIIα, CREB, JAK2, STAT3 and c-fos was determined by western blotting; the protein level of TNF-α was analysed by ELISA; the mRNA expression of TNF-α and c-fos was detected using qRT-PCR analysis and the receptor blocking test was used for target searching. RESULTS Administration of DXL-A-24 (1, 0.5, 0.25 mg/kg, i.g.) obviously relieved SNL-induced mechanical allodynia and thermal hyperalgesia in rats (P < 0.01), with the percentage of pain threshold elevation (PTE%) was 103 %, 68 % and 47 %, respectively, in mechanical allodynia; the percentage of maximal possible effect (MPE%) was 56 %, 34 % and 21 %, respectively, in thermal hyperalgesia on day 7 after SNL. Pretreatment with peripheral α7 nicotinic or M4 muscarinic receptor antagonist, the effect of DXL-A-24 was completely blocked (P > 0.05). DXL-A-24 significantly reduced the upregulated pCaMKIIα, pCREB, pJAK2, pSTAT3 and TNF-α protein (P < 0.01), which could be blocked by α7 nicotinic receptor or M4 muscarinic receptor antagonist. In addition, administration of DXL-A-24 attenuated the mRNA and protein expression of c-fos and TNF-α mRNA in DRG of SNL rat. We did not observe significant acute toxicity and chronic hepatorenal impairment at effective dose and high dose. CONCLUSIONS We report firstly that administration of DXL-A-24 displays obvious antineuropathic pain effects in SNL rats. The underlying mechanism may involve the reduction of the CaMKIIα/CREB and JAK2/STAT3 signalling pathways, and the suppression of TNF-α and c-fos expression, which may be mediated by activating peripheral α7 nicotinic and M4 muscarinic receptors. This study may provide a new perspective for developing new antineuralgic drug.
Collapse
|
70
|
Tsujikawa S, DeMeulenaere KE, Centeno MV, Ghazisaeidi S, Martin ME, Tapies MR, Maneshi MM, Yamashita M, Stauderman KA, Apkarian AV, Salter MW, Prakriya M. Regulation of neuropathic pain by microglial Orai1 channels. SCIENCE ADVANCES 2023; 9:eade7002. [PMID: 36706180 PMCID: PMC9883051 DOI: 10.1126/sciadv.ade7002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/23/2022] [Indexed: 06/01/2023]
Abstract
Microglia are important mediators of neuroinflammation, which underlies neuropathic pain. However, the molecular checkpoints controlling microglial reactivity are not well-understood. Here, we investigated the role of Orai1 channels for microglia-mediated neuroinflammation following nerve injury and find that deletion of Orai1 in microglia attenuates Ca2+ signaling and the production of inflammatory cytokines by proalgesic agonists. Conditional deletion of Orai1 attenuated microglial proliferation in the dorsal horn, spinal cytokine levels, and potentiation of excitatory neurotransmission following peripheral nerve injury. These cellular effects were accompanied by mitigation of pain hyperalgesia in microglial Orai1 knockout mice. A small-molecule Orai1 inhibitor, CM4620, similarly mitigated allodynia in male mice. Unexpectedly, these protective effects were not seen in female mice, revealing sexual dimorphism in Orai1 regulation of microglial reactivity and hyperalgesia. Together, these findings indicate that Orai1 channels are key regulators of the sexually dimorphic role of microglia for the neuroinflammation that underlies neuropathic pain.
Collapse
Affiliation(s)
- Shogo Tsujikawa
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kaitlyn E. DeMeulenaere
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Maria V. Centeno
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Megan E. Martin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Martinna R. Tapies
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mohammad M. Maneshi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Apkar V. Apkarian
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
71
|
Ghazisaeidi S, Muley MM, Salter MW. Neuropathic Pain: Mechanisms, Sex Differences, and Potential Therapies for a Global Problem. Annu Rev Pharmacol Toxicol 2023; 63:565-583. [PMID: 36662582 DOI: 10.1146/annurev-pharmtox-051421-112259] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The study of chronic pain continues to generate ever-increasing numbers of publications, but safe and efficacious treatments for chronic pain remain elusive. Recognition of sex-specific mechanisms underlying chronic pain has resulted in a surge of studies that include both sexes. A predominant focus has been on identifying sex differences, yet many newly identified cellular mechanisms and alterations in gene expression are conserved between the sexes. Here we review sex differences and similarities in cellular and molecular signals that drive the generation and resolution of neuropathic pain. The mix of differences and similarities reflects degeneracy in peripheral and central signaling processes by which neurons, immune cells, and glia codependently drive pain hypersensitivity. Recent findings identifying critical signaling nodes foreshadow the development of rationally designed, broadly applicable analgesic strategies. However, the paucity of effective, safe pain treatments compels targeted therapies as well to increase therapeutic options that help reduce the global burden of suffering.
Collapse
Affiliation(s)
- Shahrzad Ghazisaeidi
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Milind M Muley
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| |
Collapse
|
72
|
Abstract
Diabetic peripheral neuropathy (DPN) is the most common neuropathy in the world, mainly manifested as bilateral symmetry numbness, pain or paresthesia, with a high rate of disability and mortality. Schwann cells (SCs), derived from neural ridge cells, are the largest number of glial cells in the peripheral nervous system, and play an important role in DPN. Studies have found that SCs are closely related to the pathogenesis of DPN, such as oxidative stress, endoplasmic reticulum stress, inflammation, impaired neurotrophic support and dyslipidemia. This article reviews the mechanism of SCs in DPN.
Collapse
Affiliation(s)
- Jingjing Li
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- * Correspondence: Jingjing Li, Heilongjiang University of Traditional Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang Province 150000, China (e-mail: )
| | - Ruiqian Guan
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Limin Pan
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
73
|
de Geus TJ, Franken G, Joosten EA. Conventional, high frequency and differential targeted multiplexed spinal cord stimulation in experimental painful diabetic peripheral neuropathy: Pain behavior and role of the central inflammatory balance. Mol Pain 2023; 19:17448069231193368. [PMID: 37488684 PMCID: PMC10504849 DOI: 10.1177/17448069231193368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
Spinal cord stimulation (SCS) is a last resort treatment for pain relief in painful diabetic peripheral neuropathy (PDPN) patients. However, the effectivity of SCS in PDPN is limited. New SCS paradigms such as high frequency (HF) and differential target multiplexed (DTM) might improve responder rates and efficacy of SCS-induced analgesia in PDPN patients, and are suggested to modulate the inflammatory balance and glial response in the spinal dorsal horn. The aim of this study was to research the effects of Con-, HF- and DTM-SCS on pain behavior and the spinal inflammatory balance in an animal model of PDPN. Streptozotocin-induced PDPN animals were stimulated for 48 hours with either Con-SCS (50Hz), HF-SCS (1200Hz) or DTM-SCS (combination of Con- and HF-SCS). Mechanical hypersensitivity was assessed using Von Frey (VF) test and the motivational aspects of pain were assessed using the mechanical conflict avoidance system (MCAS). The inflammatory balance and glial response were analyzed in the dorsal spinal cord based on RNA expression of pro- and anti-inflammatory cytokines (Tnf-α, Il-1ß, Il-4, Il-10), a microglia marker (Itgam), an astrocyte marker (Gfap), a T-cell marker (Cd3d), microglia proliferation markers (Irf8, Adgre1) and P2X4, p13-MAPK, BDNF signaling markers (P2x4, Mapk14, Bdnf). The results show that Con-, HF-, and DTM-SCS significantly decreased hypersensitivity after 48 hours of stimulation compared to Sham-SCS in PDPN animals, but at the same time did not affect escape latency in the MCAS. At the molecular level, Con-SCS resulted in a significant increase in spinal pro-inflammatory cytokine Tnf-α after 48 hours compared to DTM-SCS and Sham-SCS. In summary, Con-SCS showed a shift of the inflammatory balance towards a pro-inflammatory state whilst HF- and DTM-SCS shifted the balance towards an anti-inflammatory state. These findings suggest that the underlying mechanism of Con-SCS induced pain relief in PDPN differs from that induced by HF- and DTM-SCS.
Collapse
Affiliation(s)
- Thomas J. de Geus
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Glenn Franken
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Elbert A Joosten
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
74
|
Maguire AD, Friedman TN, Villarreal Andrade DN, Haq F, Dunn J, Pfeifle K, Tenorio G, Buro K, Plemel JR, Kerr BJ. Sex differences in the inflammatory response of the mouse DRG and its connection to pain in experimental autoimmune encephalomyelitis. Sci Rep 2022; 12:20995. [PMID: 36470947 PMCID: PMC9722825 DOI: 10.1038/s41598-022-25295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease with notable sex differences. Women are not only more likely to develop MS but are also more likely than men to experience neuropathic pain in the disease. It has been postulated that neuropathic pain in MS can originate in the peripheral nervous system at the level of the dorsal root ganglia (DRG), which houses primary pain sensing neurons (nociceptors). These nociceptors become hyperexcitable in response to inflammation, leading to peripheral sensitization and eventually central sensitization, which maintains pain long-term. The mouse model experimental autoimmune encephalomyelitis (EAE) is a good model for human MS as it replicates classic MS symptoms including pain. Using EAE mice as well as naïve primary mouse DRG neurons cultured in vitro, we sought to characterize sex differences, specifically in peripheral sensory neurons. We found sex differences in the inflammatory profile of the EAE DRG, and in the TNFα downstream signaling pathways activated intracellularly in cultured nociceptors. We also found increased cell death with TNFα treatment. Given that TNFα signaling has been shown to initiate intrinsic apoptosis through mitochondrial disruption, this led us to investigate sex differences in the mitochondria's response to TNFα. Our results demonstrate that male sensory neurons are more sensitive to mitochondrial stress, making them prone to neuronal injury. In contrast, female sensory neurons appear to be more resistant to mitochondrial stress and exhibit an inflammatory and regenerative phenotype that may underlie greater nociceptor hyperexcitability and pain. Understanding these sex differences at the level of the primary sensory neuron is an important first step in our eventual goal of developing sex-specific treatments to halt pain development in the periphery before central sensitization is established.
Collapse
Affiliation(s)
- Aislinn D. Maguire
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Timothy N. Friedman
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Dania N. Villarreal Andrade
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Fajr Haq
- grid.17089.370000 0001 2190 316XDepartment of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 2-150, Edmonton, AB T6G 2G3 Canada
| | - Jacob Dunn
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Keiana Pfeifle
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Gustavo Tenorio
- grid.17089.370000 0001 2190 316XDepartment of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 2-150, Edmonton, AB T6G 2G3 Canada
| | - Karen Buro
- grid.418296.00000 0004 0398 5853Department of Mathematics and Statistics, MacEwan University, Edmonton, AB T5J 2P2 Canada
| | - Jason R. Plemel
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Bradley J. Kerr
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada ,grid.17089.370000 0001 2190 316XDepartment of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7 Canada ,grid.17089.370000 0001 2190 316XDepartment of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 2-150, Edmonton, AB T6G 2G3 Canada
| |
Collapse
|
75
|
Mima Z, Wang K, Liang M, Wang Y, Liu C, Wei X, Luo F, Nie P, Chen X, Xu Y, Ma Q. Blockade of JAK2 retards cartilage degeneration and IL-6-induced pain amplification in osteoarthritis. Int Immunopharmacol 2022; 113:109340. [DOI: 10.1016/j.intimp.2022.109340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
76
|
Wedel S, Mathoor P, Rauh O, Heymann T, Ciotu CI, Fuhrmann DC, Fischer MJM, Weigert A, de Bruin N, Hausch F, Geisslinger G, Sisignano M. SAFit2 reduces neuroinflammation and ameliorates nerve injury-induced neuropathic pain. J Neuroinflammation 2022; 19:254. [PMID: 36217203 PMCID: PMC9552419 DOI: 10.1186/s12974-022-02615-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 01/17/2024] Open
Abstract
Background Neuropathic pain is experienced worldwide by patients suffering from nerve injuries, infectious or metabolic diseases or chemotherapy. However, the treatment options are still limited because of low efficacy and sometimes severe side effects. Recently, the deficiency of FKBP51 was shown to relieve chronic pain, revealing FKBP51 as a potential therapeutic target. However, a specific and potent FKBP51 inhibitor was not available until recently which hampered targeting of FKBP51. Methods In this study, we used the well-established and robust spared nerve injury model to analyze the effect of SAFit2 on nerve injury-induced neuropathic pain and to elucidate its pharmacodynamics profile. Therefore, the mice were treated with 10 mg/kg SAFit2 after surgery, the mice behavior was assessed over 21 days and biochemical analysis were performed after 14 and 21 days. Furthermore, the impact of SAFit2 on sensory neurons and macrophages was investigated in vitro. Results Here, we show that the FKBP51 inhibitor SAFit2 ameliorates nerve injury-induced neuropathic pain in vivo by reducing neuroinflammation. SAFit2 reduces the infiltration of immune cells into neuronal tissue and counteracts the increased NF-κB pathway activation which leads to reduced cytokine and chemokine levels in the DRGs and spinal cord. In addition, SAFit2 desensitizes the pain-relevant TRPV1 channel and subsequently reduces the release of pro-inflammatory neuropeptides from sensory neurons. Conclusions SAFit2 ameliorates neuroinflammation and counteracts enhanced neuronal activity after nerve injury leading to an amelioration of nerve injury-induced neuropathic pain. Based on these findings, SAFit2 constitutes as a novel and promising drug candidate for the treatment of nerve injury-induced neuropathic pain. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02615-7.
Collapse
Affiliation(s)
- Saskia Wedel
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
| | - Praveen Mathoor
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Oliver Rauh
- Membrane Biophysics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Tim Heymann
- Department of Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Natasja de Bruin
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Felix Hausch
- Department of Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany. .,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
77
|
Cho YH, Seo TB. The timing point of exercise intervention regulates neuropathic pain-related molecules in the ipsilateral dorsal root ganglion neurons after sciatic nerve injury. J Exerc Rehabil 2022; 18:286-293. [PMID: 36420470 PMCID: PMC9650311 DOI: 10.12965/jer.2244382.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/11/2022] [Indexed: 02/06/2024] Open
Abstract
The purpose of this study was to determine whether the timing of tread-mill exercise application can control expression levels of neuropathic pain- and regeneration-related proteins in the ipsilateral lumbar 4 (L4) to 6 (L6) dorsal root ganglion cells (DRG) after sciatic nerve injury (SNI). The experimental rats were randomly divided into five groups: the normal control, SNI+sedentary (IS), exercise+SNI (EI), SNI+exercise (IE), exercise+SNI+exercise (EIE) groups. The rats in exercise groups per-formed treadmill exercise at a speed of 8 m/min for 30 min once a day during 14 days before and/or after SNI. For investigating the expression of specific neuropathic pain and regeneration-related proteins in DRG, we prepared L4 to L6 DRG in the ipsilateral side. In the quantitative analysis, growth associated protein 43 (GAP-43) and brain-derived neurotrophic factor levels were further increased in the ipsilateral DRG at all treadmill exercise groups than those in IS group. In the histological findings, GAP-43 was qualitatively increased IE and EIE groups than IS group at DRG. Wnt3a and β-catenin were dramatically downregulated in EIE and IE groups than IS groups. In addition, nuclear factor kappa-light-chain-enhancer of activated B cells and tumor necrosis factor-α were significantly decreased in IE and EIE groups than IS group in the ipsilateral DRG. Our findings suggested novel information that regular low-intensity exercise before and/or after SNI might be a therapeutic and preventive approaches for relieving neuropathic pain and improving axonal elongation after peripheral nerve injury.
Collapse
Affiliation(s)
- Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju,
Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju,
Korea
| |
Collapse
|
78
|
de Lima FO, Lauria PSS, do Espírito-Santo RF, Evangelista AF, Nogueira TMO, Araldi D, Soares MBP, Villarreal CF. Unveiling Targets for Treating Postoperative Pain: The Role of the TNF-α/p38 MAPK/NF-κB/Nav1.8 and Nav1.9 Pathways in the Mouse Model of Incisional Pain. Int J Mol Sci 2022; 23:11630. [PMID: 36232927 PMCID: PMC9570460 DOI: 10.3390/ijms231911630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Although the mouse model of incisional pain is broadly used, the mechanisms underlying plantar incision-induced nociception are not fully understood. This work investigates the role of Nav1.8 and Nav1.9 sodium channels in nociceptive sensitization following plantar incision in mice and the signaling pathway modulating these channels. A surgical incision was made in the plantar hind paw of male Swiss mice. Nociceptive thresholds were assessed by von Frey filaments. Gene expression of Nav1.8, Nav1.9, TNF-α, and COX-2 was evaluated by Real-Time PCR in dorsal root ganglia (DRG). Knockdown mice for Nav1.8 and Nav1.9 were produced by antisense oligodeoxynucleotides intrathecal treatments. Local levels of TNF-α and PGE2 were immunoenzymatically determined. Incised mice exhibited hypernociception and upregulated expression of Nav1.8 and Nav1.9 in DRG. Antisense oligodeoxynucleotides reduced hypernociception and downregulated Nav1.8 and Nav1.9. TNF-α and COX-2/PGE2 were upregulated in DRG and plantar skin. Inhibition of TNF-α and COX-2 reduced hypernociception, but only TNF-α inhibition downregulated Nav1.8 and Nav1.9. Antagonizing NF-κB and p38 mitogen-activated protein kinase (MAPK), but not ERK or JNK, reduced both hypernociception and hyperexpression of Nav1.8 and Nav1.9. This study proposes the contribution of the TNF-α/p38/NF-κB/Nav1.8 and Nav1.9 pathways to the pathophysiology of the mouse model of incisional pain.
Collapse
Affiliation(s)
- Flávia Oliveira de Lima
- Health Department, State University of Feira de Santana, Feira de Santana 44036900, BA, Brazil
| | | | | | - Afrânio Ferreira Evangelista
- SENAI Institute of Innovation in Advanced Health Systems, University Center SENAI/CIMATEC, Salvador 41650010, BA, Brazil
| | | | - Dionéia Araldi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador 40296710, BA, Brazil
- SENAI Institute of Innovation in Advanced Health Systems, University Center SENAI/CIMATEC, Salvador 41650010, BA, Brazil
| | | |
Collapse
|
79
|
Casili G, Lanza M, Filippone A, Cucinotta L, Paterniti I, Repici A, Capra AP, Cuzzocrea S, Esposito E, Campolo M. Dimethyl Fumarate (DMF) Alleviated Post-Operative (PO) Pain through the N-Methyl-d-Aspartate (NMDA) Receptors. Antioxidants (Basel) 2022; 11:antiox11091774. [PMID: 36139848 PMCID: PMC9495385 DOI: 10.3390/antiox11091774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
The management of post-operative (PO) pain has generally been shown to be inadequate; therefore, acquiring a novel understanding of PO pain mechanisms would increase the therapeutic options available. There is accumulating evidence to implicate N-methyl-d-aspartate (NMDA) receptors in the induction and maintenance of central sensitization during pain states by reinforcing glutamate sensory transmission. It is known that DMF protects from oxidative glutamate toxicity. Therefore, NMDA receptor antagonists have been implicated in peri-operative pain management. Recent advances demonstrated that dimethyl fumarate (DMF), a non-opioid and orally bioavailable drug, is able to resolve neuroinflammation through mechanisms that drive nociceptive hypersensitivity. Therefore, in this study, we evaluated the role of DMF on pain and neuroinflammation in a mouse model of PO pain. An incision of the hind paw was performed, and DMF at two different doses (30 and 100 mg/kg) was administered by oral gavage for five consecutive days. Mechanical allodynia, thermal hyperalgesia and locomotor dysfunction were evaluated daily for five days after surgery. Mice were sacrificed at day 7 following PO pain induction, and hind paw and lumbar spinal cord samples were collected for histological and molecular studies. DMF administration significantly reduced hyperalgesia and allodynia, alleviating motor disfunction. Treatment with DMF significantly reduced histological damage, counteracted mast cell activation and reduced the nuclear factor kappa-light-chain-enhancer of the activated B cell (NF-κB) inflammatory pathway, in addition to downregulating tumor necrosis factor-α (TNF-α), Interleukin-1β (Il-1β) and Il-4 expression. Interestingly, DMF treatment lowered the activation of NMDA receptor subtypes (NR2B and NR1) and the NMDA-receptor-interacting PDZ proteins, including PSD93 and PSD95. Furthermore, DMF interfered with calcium ion release, modulating nociception. Thus, DMF administration modulated PO pain, managing NMDA signaling pathways. The results suggest that DMF positively modulated persistent nociception related to PO pain, through predominantly NMDA-receptor-operated calcium channels.
Collapse
|
80
|
González-Cubero E, González-Fernández ML, Rodríguez-Díaz M, Palomo-Irigoyen M, Woodhoo A, Villar-Suárez V. Application of adipose-derived mesenchymal stem cells in an in vivo model of peripheral nerve damage. Front Cell Neurosci 2022; 16:992221. [PMID: 36159399 PMCID: PMC9493127 DOI: 10.3389/fncel.2022.992221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuropathic pain is one of the most difficult to treat chronic pain syndromes. It has significant effects on patients’ quality of life and substantially adds to the burden of direct and indirect medical costs. There is a critical need to improve therapies for peripheral nerve regeneration. The aim of this study is to address this issue by performing a detailed analysis of the therapeutic benefits of two treatment options: adipose tissue derived-mesenchymal stem cells (ASCs) and ASC-conditioned medium (CM). Methods To this end, we used an in vivo rat sciatic nerve damage model to investigate the molecular mechanisms involved in the myelinating capacity of ASCs and CM. Furthermore, effect of TNF and CM on Schwann cells (SCs) was evaluated. For our in vivo model, biomaterial surgical implants containing TNF were used to induce peripheral neuropathy in rats. Damaged nerves were also treated with either ASCs or CM and molecular methods were used to collect evidence of nerve regeneration. Post-operatively, rats were subjected to walking track analysis and their sciatic functional index was evaluated. Morphological data was gathered through transmission electron microscopy (TEM) of sciatic nerves harvested from the experimental rats. We also evaluated the effect of TNF on Schwann cells (SCs) in vitro. Genes and their correspondent proteins associated with nerve regeneration were analyzed by qPCR, western blot, and confocal microscopy. Results Our data suggests that both ASCs and CM are potentially beneficial treatments for promoting myelination and axonal regeneration. After TNF-induced nerve damage we observed an upregulation of c-Jun along with a downregulation of Krox-20 myelin-associated transcription factor. However, when CM was added to TNF-treated nerves the opposite effect occurred and also resulted in increased expression of myelin-related genes and their corresponding proteins. Conclusion Findings from our in vivo model showed that both ASCs and CM aided the regeneration of axonal myelin sheaths and the remodeling of peripheral nerve morphology.
Collapse
Affiliation(s)
- Elsa González-Cubero
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | | | - María Rodríguez-Díaz
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | - Marta Palomo-Irigoyen
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Genes and Disease Group, Department of Dermatology, Medical University of Vienna, Anna Spiegel Center of Translational Research, Vienna, Austria
| | - Ashwin Woodhoo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Vega Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
- Institute of Biomedicine (IBIOMED), University of León-Universidad de León, León, Spain
- *Correspondence: Vega Villar-Suárez,
| |
Collapse
|
81
|
Sorge RE, Si Y, Norian LA, Guha A, Moore GE, Nabors LB, Filippova N, Yang X, Smith R, Chellappan R, King PH. Inhibition of the RNA Regulator HuR by SRI-42127 Attenuates Neuropathic Pain After Nerve Injury Through Suppression of Neuroinflammatory Responses. Neurotherapeutics 2022; 19:1649-1661. [PMID: 35864415 PMCID: PMC9606176 DOI: 10.1007/s13311-022-01278-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 12/14/2022] Open
Abstract
Microglial activation with the production of pro-inflammatory mediators such as IL-6, TNF-α, and IL-1β, is a major driver of neuropathic pain (NP) following peripheral nerve injury. We have previously shown that the RNA binding protein, HuR, is a positive node of regulation for many of these inflammatory mediators in glia and that its chemical inhibition or genetic deletion attenuates their production. In this report, we show that systemic administration of SRI-42127, a novel small molecule HuR inhibitor, attenuates mechanical allodynia, a hallmark of NP, in the early and chronic phases after spared nerve injury in male and female mice. Flow cytometry of lumbar spinal cords in SRI-42127-treated mice shows a reduction in infiltrating macrophages and a concomitant decrease in microglial populations expressing IL-6, TNF-α, IL-1β, and CCL2. Immunohistochemistry, ELISA, and qPCR of lumbar spinal cord tissue indicate suppression of these cytokines and other inflammatory mediators. ELISA of plasma samples in the acute phase also shows attenuation of inflammatory responses. In summary, inhibition of HuR by SRI-42127 leads to the suppression of neuroinflammatory responses and allodynia after nerve injury and represents a promising new direction in the treatment of NP.
Collapse
Affiliation(s)
- Robert E Sorge
- Department of Psychology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ying Si
- Department of Neurology, The University of Alabama at Birmingham, Civitan 545C, 1719 6th Ave. South, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA
| | - Lyse A Norian
- Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Abhishek Guha
- Department of Neurology, The University of Alabama at Birmingham, Civitan 545C, 1719 6th Ave. South, Birmingham, AL, 35294, USA
| | - Grace E Moore
- Department of Psychology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - L Burt Nabors
- Department of Neurology, The University of Alabama at Birmingham, Civitan 545C, 1719 6th Ave. South, Birmingham, AL, 35294, USA
| | - Natalia Filippova
- Department of Neurology, The University of Alabama at Birmingham, Civitan 545C, 1719 6th Ave. South, Birmingham, AL, 35294, USA
| | - Xiuhua Yang
- Department of Neurology, The University of Alabama at Birmingham, Civitan 545C, 1719 6th Ave. South, Birmingham, AL, 35294, USA
| | - Reed Smith
- Department of Neurology, The University of Alabama at Birmingham, Civitan 545C, 1719 6th Ave. South, Birmingham, AL, 35294, USA
| | - Rajeshwari Chellappan
- Department of Neurology, The University of Alabama at Birmingham, Civitan 545C, 1719 6th Ave. South, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA
| | - Peter H King
- Department of Neurology, The University of Alabama at Birmingham, Civitan 545C, 1719 6th Ave. South, Birmingham, AL, 35294, USA.
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
82
|
Wu Y, Berisha A, Borniger JC. Neuropeptides in Cancer: Friend and Foe? Adv Biol (Weinh) 2022; 6:e2200111. [PMID: 35775608 DOI: 10.1002/adbi.202200111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Indexed: 01/28/2023]
Abstract
Neuropeptides are small regulatory molecules found throughout the body, most notably in the nervous, cardiovascular, and gastrointestinal systems. They serve as neurotransmitters or hormones in the regulation of diverse physiological processes. Cancer cells escape normal growth control mechanisms by altering their expression of growth factors, receptors, or intracellular signals, and neuropeptides have recently been recognized as mitogens in cancer growth and development. Many neuropeptides and their receptors exist in multiple subtypes, coupling with different downstream signaling pathways and playing distinct roles in cancer progression. The consideration of neuropeptide/receptor systems as anticancer targets is already leading to new biological and diagnostic knowledge that has the potential to enhance the understanding and treatment of cancer. In this review, recent discoveries regarding neuropeptides in a wide range of cancers, emphasizing their mechanisms of action, signaling cascades, regulation, and therapeutic potential, are discussed. Current technologies used to manipulate and analyze neuropeptides/receptors are described. Applications of neuropeptide analogs and their receptor inhibitors in translational studies and radio-oncology are rapidly increasing, and the possibility for their integration into therapeutic trials and clinical treatment appears promising.
Collapse
Affiliation(s)
- Yue Wu
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Jeremy C Borniger
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
83
|
Qasim H, Nasr M, Mohammad A, Hor M, Baradeiya AM. Dysbiosis and Migraine Headaches in Adults With Celiac Disease. Cureus 2022; 14:e28346. [PMID: 36168375 PMCID: PMC9506300 DOI: 10.7759/cureus.28346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
One of the most significant illnesses associated with gluten is celiac disease, which encompasses many conditions. It is generally recognized that neurological manifestations can occur either at the time of the disease onset or as the illness continues to develop. One of the main clinical presentations of celiac disease is headache, either in the form of migraine or in an unspecific form. Migraine pathophysiology is intricate and still poorly understood. Several mechanisms involving the gut-brain axis have been proposed to explain this association. These include the interaction of chronic inflammation with inflammatory and vasoactive mediators, the modulation of the intestinal immune environment of the microbiota, and the dysfunction of the autonomic nervous system. However, further research is required to fully comprehend the fundamental mechanisms and pathways at play. This review aims to give a narrative summary of the literature on celiac disease's neurological symptoms, particularly migraines, and to assess any potential associations to dysbiosis, an imbalance in the microbiome.
Collapse
|
84
|
Scrambler Therapy for Chronic Pain after Burns and Its Effect on the Cerebral Pain Network: A Prospective, Double-Blinded, Randomized Controlled Trial. J Clin Med 2022; 11:jcm11154255. [PMID: 35893347 PMCID: PMC9332864 DOI: 10.3390/jcm11154255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic pain is common after burn injuries, and post-burn neuropathic pain is the most important complication that is difficult to treat. Scrambler therapy (ST) is a non-invasive modality that uses patient-specific electrocutaneous nerve stimulation and is an effective treatment for many chronic pain disorders. This study used magnetic resonance imaging (MRI) to evaluate the pain network-related mechanisms that underlie the clinical effect of ST in patients with chronic burn-related pain. This prospective, double-blinded, randomized controlled trial (ClinicalTrials.gov: NCT03865693) enrolled 43 patients who were experiencing chronic neuropathic pain after unilateral burn injuries. The patients had moderate or greater chronic pain (a visual analogue scale (VAS) score of ≥5), despite treatment using gabapentin and other physical modalities, and were randomized 1:1 to receive real or sham ST sessions. The ST was performed using the MC5-A Calmare device for ten 45 min sessions (Monday to Friday for 2 weeks). Baseline and post-treatment parameters were evaluated subjectively using the VAS score for pain and the Hamilton Depression Rating Scale; MRI was performed to identify objective central nervous system changes by measuring the cerebral blood volume (CBV). After 10 ST sessions (two weeks), the treatment group exhibited a significant reduction in pain relative to the sham group. Furthermore, relative to the pre-ST findings, the post-ST MRI evaluations revealed significantly decreased CBV in the orbito-frontal gyrus, middle frontal gyrus, superior frontal gyrus, and gyrus rectus. In addition, the CBV was increased in the precentral gyrus and postcentral gyrus of the hemisphere associated with the burned limb in the ST group, as compared with the CBV of the sham group. Thus, a clinical effect from ST on burn pain was observed after 2 weeks, and a potential mechanism for the treatment effect was identified. These findings suggest that ST may be an alternative strategy for managing chronic pain in burn patients.
Collapse
|
85
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
86
|
Milutinovic B, Singh AK. Editorial: Cognitive Impairment and Peripheral Neuropathy From Chemotherapy: Molecular Mechanisms and Therapeutic Approaches. Front Mol Biosci 2022; 9:962889. [PMID: 35911961 PMCID: PMC9335282 DOI: 10.3389/fmolb.2022.962889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bojana Milutinovic
- Department of Neurosurgery, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
- *Correspondence: Bojana Milutinovic,
| | - Anand Kumar Singh
- Laboratory for Neuroimmunology, Symptom Research Department, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| |
Collapse
|
87
|
Pu S, Wu Y, Tong F, Du WJ, Liu S, Yang H, Zhang C, Zhou B, Chen Z, Zhou X, Han Q, Du D. Mechanosensitive Ion Channel TMEM63A Gangs Up with Local Macrophages to Modulate Chronic Post-amputation Pain. Neurosci Bull 2022; 39:177-193. [PMID: 35821338 PMCID: PMC9905372 DOI: 10.1007/s12264-022-00910-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Post-amputation pain causes great suffering to amputees, but still no effective drugs are available due to its elusive mechanisms. Our previous clinical studies found that surgical removal or radiofrequency treatment of the neuroma at the axotomized nerve stump effectively relieves the phantom pain afflicting patients after amputation. This indicated an essential role of the residual nerve stump in the formation of chronic post-amputation pain (CPAP). However, the molecular mechanism by which the residual nerve stump or neuroma is involved and regulates CPAP is still a mystery. In this study, we found that nociceptors expressed the mechanosensitive ion channel TMEM63A and macrophages infiltrated into the dorsal root ganglion (DRG) neurons worked synergistically to promote CPAP. Histology and qRT-PCR showed that TMEM63A was mainly expressed in mechanical pain-producing non-peptidergic nociceptors in the DRG, and the expression of TMEM63A increased significantly both in the neuroma from amputated patients and the DRG in a mouse model of tibial nerve transfer (TNT). Behavioral tests showed that the mechanical, heat, and cold sensitivity were not affected in the Tmem63a-/- mice in the naïve state, suggesting the basal pain was not affected. In the inflammatory and post-amputation state, the mechanical allodynia but not the heat hyperalgesia or cold allodynia was significantly decreased in Tmem63a-/- mice. Further study showed that there was severe neuronal injury and macrophage infiltration in the DRG, tibial nerve, residual stump, and the neuroma-like structure of the TNT mouse model, Consistent with this, expression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β all increased dramatically in the DRG. Interestingly, the deletion of Tmem63a significantly reduced the macrophage infiltration in the DRG but not in the tibial nerve stump. Furthermore, the ablation of macrophages significantly reduced both the expression of Tmem63a and the mechanical allodynia in the TNT mouse model, indicating an interaction between nociceptors and macrophages, and that these two factors gang up together to regulate the formation of CPAP. This provides a new insight into the mechanisms underlying CPAP and potential drug targets its treatment.
Collapse
Affiliation(s)
- Shaofeng Pu
- Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yiyang Wu
- Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Fang Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wan-Jie Du
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuai Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Huan Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Chen Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Bin Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ziyue Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiaomeng Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Dongping Du
- Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
88
|
Park D, Chang MC. The mechanism of action of pulsed radiofrequency in reducing pain: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 39:200-205. [PMID: 35385898 PMCID: PMC9273139 DOI: 10.12701/jyms.2022.00101] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022]
Abstract
Pain from nervous or musculoskeletal disorders is one of the most common complaints in clinical practice. Corticosteroids have a high pain-reducing effect, and their injection is generally used to control various types of pain. However, they have various adverse effects including flushing, hyperglycemia, allergic reactions, menstrual changes, immunosuppression, and adrenal suppression. Pulsed radiofrequency (PRF) is known to have a pain-reducing effect similar to that of corticosteroid injection, with nearly no major side effects. Therefore, it has been widely used to treat various types of pain, such as neuropathic, joint, discogenic, and muscle pain. In the current review, we outlined the pain-reducing mechanisms of PRF by reviewing previous studies. When PRF was first introduced, it was supposed to reduce pain by long-term depression of pain signaling from the peripheral nerve to the central nervous system. In addition, deactivation of microglia at the level of the spinal dorsal horn, reduction of proinflammatory cytokines, increased endogenous opioid precursor messenger ribonucleic acid, enhancement of noradrenergic and serotonergic descending pain inhibitory pathways, suppression of excitation of C-afferent fibers, and microscopic damage of nociceptive C- and A-delta fibers have been found to contribute to pain reduction after PRF application. However, the pain-reducing mechanism of PRF has not been clearly and definitely elucidated. Further studies are warranted to clarify the pain-reducing mechanism of PRF.
Collapse
Affiliation(s)
- Donghwi Park
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
89
|
Zhang J, Zhang X, Li L, Bai L, Gao Y, Yang Y, Wang L, Qiao Y, Wang X, Xu JT. Activation of Double-Stranded RNA-Activated Protein Kinase in the Dorsal Root Ganglia and Spinal Dorsal Horn Regulates Neuropathic Pain Following Peripheral Nerve Injury in Rats. Neurotherapeutics 2022; 19:1381-1400. [PMID: 35655111 PMCID: PMC9587175 DOI: 10.1007/s13311-022-01255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 10/18/2022] Open
Abstract
Double-stranded RNA (dsRNA)-activated kinase (PKR) is an important component in inflammation and immune dysfunction. However, the role of PKR in neuropathic pain remains unclear. Here, we showed that lumbar 5 spinal nerve ligation (SNL) led to a significant increase in the level of phosphorylated PKR (p-PKR) in both the dorsal root ganglia (DRG) and spinal dorsal horn. Images of double immunofluorescence staining revealed that p-PKR was expressed in myelinated A-fibers, unmyelinated C-fibers, and satellite glial cells in the DRG. In the dorsal horn, p-PKR was located in neuronal cells, astrocytes, and microglia. Data from behavioral tests showed that intrathecal (i.t.) injection of 2-aminopurine (2-AP), a specific inhibitor of PKR activation, and PKR siRNA prevented the reductions in PWT and PWL following SNL. Established neuropathic pain was also attenuated by i.t. injection of 2-AP and PKR siRNA, which started on day 7 after SNL. Prior repeated i.t. injections of PKR siRNA prevented the SNL-induced degradation of IκBα and IκBβ in the cytosol and the nuclear translocation of nuclear factor κB (NF-κB) p65 in both the DRG and dorsal horn. Moreover, the SNL-induced increase in interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production was diminished by this treatment. Collectively, these results suggest that peripheral nerve injury-induced PKR activation via NF-κB signaling-regulated expression of proinflammatory cytokines in the DRG and dorsal horn contributes to the pathogenesis of neuropathic pain. Our findings suggest that pharmacologically targeting PKR might be an effective therapeutic strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Li Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China.
- Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
90
|
Neuroimmune Mechanisms Underlying Neuropathic Pain: The Potential Role of TNF-α-Necroptosis Pathway. Int J Mol Sci 2022; 23:ijms23137191. [PMID: 35806192 PMCID: PMC9266916 DOI: 10.3390/ijms23137191] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
The neuroimmune mechanism underlying neuropathic pain has been extensively studied. Tumor necrosis factor-alpha (TNF-α), a key pro-inflammatory cytokine that drives cytokine storm and stimulates a cascade of other cytokines in pain-related pathways, induces and modulates neuropathic pain by facilitating peripheral (primary afferents) and central (spinal cord) sensitization. Functionally, TNF-α controls the balance between cell survival and death by inducing an inflammatory response and two programmed cell death mechanisms (apoptosis and necroptosis). Necroptosis, a novel form of programmed cell death, is receiving increasing attraction and may trigger neuroinflammation to promote neuropathic pain. Chronic pain is often accompanied by adverse pain-associated emotional reactions and cognitive disorders. Overproduction of TNF-α in supraspinal structures such as the anterior cingulate cortex (ACC) and hippocampus plays an important role in pain-associated emotional disorders and memory deficits and also participates in the modulation of pain transduction. At present, studies reporting on the role of the TNF-α–necroptosis pathway in pain-related disorders are lacking. This review indicates the important research prospects of this pathway in pain modulation based on its role in anxiety, depression and memory deficits associated with other neurodegenerative diseases. In addition, we have summarized studies related to the underlying mechanisms of neuropathic pain mediated by TNF-α and discussed the role of the TNF-α–necroptosis pathway in detail, which may represent an avenue for future therapeutic intervention.
Collapse
|
91
|
Peng Q, Guo X, Luo Y, Wang G, Zhong L, Zhu J, Li Y, Zeng X, Feng Z. Dynamic Immune Landscape and VZV-Specific T Cell Responses in Patients With Herpes Zoster and Postherpetic Neuralgia. Front Immunol 2022; 13:887892. [PMID: 35720399 PMCID: PMC9199063 DOI: 10.3389/fimmu.2022.887892] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Varicella-zoster virus (VZV) can induce herpes zoster (HZ) and postherpetic neuralgia (PHN). Immune cells play an important role in regulating HZ and PHN pathogenesis, but the dynamic immune profiles and molecular mechanisms remain unclear. This study aimed to screen dynamic immune signatures during HZ progression and elucidate the mechanism of VZV-specific T cells in PHN. Methods We used cytometry by time-of-flight (CyTOF) to analyze peripheral blood mononuclear cells (PBMC) samples from 45 patients with HZ and eight age-sex-matched healthy controls, eight PHN samples and seven non-PHN samples. Correlations between the immune subsets and clinical pain-related scores were performed. Further, the characteristics of VZV-specific T cells between PHN and non-PHN patients were evaluated by VZV peptide pools stimulation. The expression level of cytokines, including granzyme B, interleukin (IL)-2, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α was performed via cytometric bead array. Finally, we analyzed the alteration of Ca2+ signals in dorsal root ganglion (DRG)-derived cells after TNF-α stimulation. Results We investigated the dynamic characteristics of the immune landscape of peripheral blood samples of patients with HZ and PHN, and depicted two major dynamic signatures in NK, CD4+ and CD8+ T subsets in patients with HZ, which closely correlated with clinical pain-related scores. The frequency of PD-1+CD4+ T cells, VZV-specific PD-1+CD4+ T cells, and the amount of TNF-α produced by VZV-specific T cells were higher in patients with PHN than without PHN. Furthermore, we showed that TNF-α could induce calcium influx in DRG-derived cells in a dose-dependent manner. Conclusions Our results profiled the dynamic signatures of immune cells in patients with HZ and highlighted the important role of VZV-specific T cells in the pathogenesis of PHN.
Collapse
Affiliation(s)
- Qiao Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejiao Guo
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Luo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guocan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyu Zhong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Zhu
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunze Li
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Feng
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
92
|
Schultheiß C, Willscher E, Paschold L, Gottschick C, Klee B, Henkes SS, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Höll JI, Gekle M, Mikolajczyk R, Binder M. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med 2022; 3:100663. [PMID: 35732153 PMCID: PMC9214726 DOI: 10.1016/j.xcrm.2022.100663] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
Post-acute sequelae of COVID-19 (PASC) is emerging as global problem with unknown molecular drivers. Using a digital epidemiology approach, we recruited 8,077 individuals to the cohort study for digital health research in Germany (DigiHero) to respond to a basic questionnaire followed by a PASC-focused survey and blood sampling. We report the first 318 participants, the majority thereof after mild infections. Of those, 67.8% report PASC, predominantly consisting of fatigue, dyspnea, and concentration deficit, which persists in 60% over the mean 8-month follow-up period and resolves independently of post-infection vaccination. PASC is not associated with autoantibodies, but with elevated IL-1β, IL-6, and TNF plasma levels, which we confirm in a validation cohort with 333 additional participants and a longer time from infection of 10 months. Blood profiling and single-cell data from early infection suggest the induction of these cytokines in COVID-19 lung pro-inflammatory macrophages creating a self-sustaining feedback loop. We report a post-COVID-19 digital epidemiology study with biomarker analysis (n = 651) PASC persists in 60% of participants up to 24 months after mild COVID-19 PASC is associated with high IL-1β, IL-6, and TNF levels but not autoantibodies Overactivated monocytes/macrophages are likely the source of cytokine production
Collapse
Affiliation(s)
- Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Edith Willscher
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06097 Halle (Saale), Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06097 Halle (Saale), Germany
| | - Svenja-Sibylla Henkes
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse 74, 20359 Hamburg, Germany
| | - Jochen Dutzmann
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Thomas Frese
- Institute of General Practice and Family Medicine, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 8, 06112 Halle (Saale), Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Jessica I Höll
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Michael Gekle
- Julius Bernstein-Institute of Physiology, Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, 06110 Halle (Saale), Germany
| | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06097 Halle (Saale), Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| |
Collapse
|
93
|
Ulfandi D, Fajar A, Faruk M. Factors associated with TNF-alpha levels in patients with indirect inguinal hernia: A cross-sectional study. Ann Med Surg (Lond) 2022; 78:103858. [PMID: 35734660 PMCID: PMC9207110 DOI: 10.1016/j.amsu.2022.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Devby Ulfandi
- Division of Digestive, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Amir Fajar
- Division of Digestive, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
94
|
Casadei M, Fiore E, Rubione J, María Domínguez L, Florencia Coronel M, Leiguarda C, García M, Mazzolini G, Villar MJ, Montaner A, Constandil L, Romero-Sandoval A, Brumovsky PR. IMT504 blocks allodynia in rats with spared nerve injury by promoting the migration of mesenchymal stem cells and by favoring an anti-inflammatory milieu at the injured nerve. Pain 2022; 163:1114-1129. [PMID: 34711765 PMCID: PMC8920950 DOI: 10.1097/j.pain.0000000000002476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT IMT504, a noncoding, non-CpG oligodeoxynucleotide, modulates pain-like behavior in rats undergoing peripheral nerve injury, through mechanisms that remain poorly characterized. Here, we chose the spared nerve injury model in rats to analyze the contribution of mesenchymal stem cells (MSCs) in the mechanisms of action of IMT504. We show that a single subcutaneous administration of IMT504 reverses mechanical and cold allodynia for at least 5 weeks posttreatment. This event correlated with long-lasting increases in the percentage of MSCs in peripheral blood and injured sciatic nerves, in a process seemingly influenced by modifications in the CXCL12-CXCR4 axis. Also, injured nerves presented with reduced tumor necrosis factor-α and interleukin-1β and increased transforming growth factor-β1 and interleukin-10 protein levels. In vitro analysis of IMT504-pretreated rat or human MSCs revealed internalized oligodeoxynucleotide and confirmed its promigratory effects. Moreover, IMT504-pretreatment induced transcript expression of Tgf-β1 and Il-10 in MSCs; the increase in Il-10 becoming more robust after exposure to injured nerves. Ex vivo exposure of injured nerves to IMT504-pretreated MSCs confirmed the proinflammatory to anti-inflammatory switch observed in vivo. Interestingly, the sole exposure of injured nerves to IMT504 also resulted in downregulated Tnf-α and Il-1β transcripts. Altogether, we reveal for the first time a direct association between the antiallodynic actions of IMT504, its promigratory and cytokine secretion modulating effects on MSCs, and further anti-inflammatory actions at injured nerves. The recapitulation of key outcomes in human MSCs supports the translational potential of IMT504 as a novel treatment for neuropathic pain with a unique mechanism of action involving the regulation of neuroimmune interactions.
Collapse
Affiliation(s)
- Mailín Casadei
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Esteban Fiore
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Julia Rubione
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Luciana María Domínguez
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - María Florencia Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Mariana García
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Marcelo J. Villar
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Alejandro Montaner
- Instituto de Ciencia y Tecnología “Dr. César Milstein”, CONICET, Fundación Pablo Cassará, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luis Constandil
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Alfonso Romero-Sandoval
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Pablo R. Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| |
Collapse
|
95
|
Jiang W, Tang M, Yang L, Zhao X, Gao J, Jiao Y, Li T, Tie C, Gao T, Han Y, Jiang JD. Analgesic Alkaloids Derived From Traditional Chinese Medicine in Pain Management. Front Pharmacol 2022; 13:851508. [PMID: 35620295 PMCID: PMC9127080 DOI: 10.3389/fphar.2022.851508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pain is one of the most prevalent health problems. The establishment of chronic pain is complex. Current medication for chronic pain mainly dependent on anticonvulsants, tricyclic antidepressants and opioidergic drugs. However, they have limited therapeutic efficacy, and some even with severe side effects. We turned our interest into alkaloids separated from traditional Chinese medicine (TCM), that usually act on multiple drug targets. In this article, we introduced the best-studied analgesic alkaloids derived from TCM, including tetrahydropalmatine, aloperine, oxysophocarpine, matrine, sinomenine, ligustrazine, evodiamine, brucine, tetrandrine, Stopholidine, and lappaconitine, focusing on their mechanisms and potential clinical applications. To better describe the mechanism of these alkaloids, we adopted the concept of drug-cloud (dCloud) theory. dCloud illustrated the full therapeutic spectrum of multitarget analgesics with two dimensions, which are “direct efficacy”, including inhibition of ion channels, activating γ-Aminobutyric Acid/opioid receptors, to suppress pain signal directly; and “background efficacy”, including reducing neuronal inflammation/oxidative stress, inhibition of glial cell activation, restoring the balance between excitatory and inhibitory neurotransmission, to cure the root causes of chronic pain. Empirical evidence showed drug combination is beneficial to 30–50% chronic pain patients. To promote the discovery of effective analgesic combinations, we introduced an ancient Chinese therapeutic regimen that combines herbal drugs with “Jun”, “Chen”, “Zuo”, and “Shi” properties. In dCloud, “Jun” drug acts directly on the major symptom of the disease; “Chen” drug generates major background effects; “Zuo” drug has salutary and supportive functions; and “Shi” drug facilitates drug delivery to the targeted tissue. Subsequently, using this concept, we interpreted the therapeutic effect of established analgesic compositions containing TCM derived analgesic alkaloids, which may contribute to the establishment of an alternative drug discovery model.
Collapse
Affiliation(s)
- Wei Jiang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Mingze Tang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Limin Yang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Xu Zhao
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medicine Sciences & Peking Union Medical College, Beijing, China
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cai Tie
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology, Beijing, China.,School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, China
| | - Tianle Gao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
96
|
Koike M, Nagao M, Iwase Y, Kaneko K, Ishijima M, Nojiri H. Clinical Efficacy of Melon GliSODin ® for the Treatment of Aging-Related Dysfunction in Motor Organs-A Double Blind, Randomized Placebo-Controlled Study. J Clin Med 2022; 11:2747. [PMID: 35628874 PMCID: PMC9143343 DOI: 10.3390/jcm11102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Locomotive syndrome is a concept proposed in Japan involving decreased mobility due to osteoarthritis, osteoporosis, and sarcopenia. This double-blind, randomized study aimed to investigate the effects of superoxide dismutase (SOD)-rich melon extract (Melon GliSODin®) on locomotive syndrome. METHODS For 6 months, we administered oral Melon GliSODin® (500.4 mg/day) or a placebo to 24 and 22 women, respectively (aged 50-80 years), with knee or lower back discomfort or pain. Using baseline and 6-month data, changes in the Verbal Rating Scale and in subjective symptoms (determined using the Japanese Knee Osteoarthritis Measure, Locomo 25, the Roland-Morris Disability questionnaire, and the Chalder Fatigue Scale) were assessed, along with various oxidative markers, antioxidants, inflammatory markers, renal and liver function biochemical markers, bone metabolism markers, body composition, and motor function. RESULTS Oral Melon GliSODin® administration tended to be associated with a larger improvement in subjective symptom scores, a reduction in oxidative markers (malondialdehyde and diacron reactive oxygen metabolites) and tumor necrosis factor-α, and a significant increase in non-fat mass between baseline and 6 months. However, no statistically significant differences were observed between the groups for outcomes at 6 months. CONCLUSIONS Melon GliSODin® tended to improve the subjective symptoms of participants who had knee or lower back pain or discomfort. Melon GliSODin® administration may help to prevent the progression of locomotive syndrome. Future studies involving larger sample sizes and more stringent randomization protocols are needed to determine differences between the placebo and Melon GliSODin® groups.
Collapse
Affiliation(s)
- Masato Koike
- Department of Orthopaedic Surgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo 136-0075, Japan; (M.K.); (Y.I.)
| | - Masashi Nagao
- Department of Orthopaedic Surgery, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (M.N.); (K.K.); (M.I.)
- Department of Orthopaedic Surgery, Medical Technology Innovation Center, Clinical Research & Trial Center, Graduate School of Health and Sports Science, Juntendo University, Tokyo 113-8421, Japan
| | - Yoshiyuki Iwase
- Department of Orthopaedic Surgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo 136-0075, Japan; (M.K.); (Y.I.)
| | - Kazuo Kaneko
- Department of Orthopaedic Surgery, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (M.N.); (K.K.); (M.I.)
| | - Muneaki Ishijima
- Department of Orthopaedic Surgery, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (M.N.); (K.K.); (M.I.)
| | - Hidetoshi Nojiri
- Department of Orthopaedic Surgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo 136-0075, Japan; (M.K.); (Y.I.)
- Department of Orthopaedic Surgery, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (M.N.); (K.K.); (M.I.)
| |
Collapse
|
97
|
Inflammatory markers and risk factors of RA patients with depression and application of different scales in judging depression. Clin Rheumatol 2022; 41:2309-2317. [PMID: 35522353 DOI: 10.1007/s10067-022-06174-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 11/03/2022]
Abstract
To evaluate the association of inflammatory markers and depression in RA patients and the risk factors in RA with depression, a cross-sectional study was conducted in a cohort of RA patients from southern China.Two hundred-fifteen RA patients were enrolled. The demographic and disease-related characteristics were recorded and inflammatory markers in sera were measured. RA patients were guided to fill out PHQ-9 scale by themselves, the psychological state was evaluated by psychiatry experts and graded according to the HAMD-17 scale. The consistency of the two scales in judging depression was evaluated. RA with depression group had HAMD-17 scores greater than 7. The levels of CRP, ESR, fibrinogen, SAA, IL-2, IL-6, TNF-α, IFN-γ, IL-4, and IL-10 were measured and compared. Logistic regression analysis was performed to find the risk factors of RA with different depression levels. One hundred-five (48.84%) RA patients had HAMD-17 scores greater than 7. High consistency was found between HAMD-17 and PHQ-9 in predicting depression. RA patients with depression were more likely to have tender joints, lower income, no employment, higher disease activity, joint deformities and glucocorticoid treatment. The depressed RA patients had higher serum levels of IL-6, CRP, fibrinogen, and SAA. IL-6, CRP, fibrinogen, and SAA were positive correlated with depression in RA patients. PHQ-9 can replace HAMD-17 in clinical application to judge depression.
Collapse
|
98
|
Luo B, Zhou H, Xiao Q, He Y. An exploratory study on the mechanism of Huangqi Guizhi Wuwu Decoction in the treatment of neuropathic pain. IBRAIN 2022; 8:127-140. [PMID: 37786887 PMCID: PMC10529154 DOI: 10.1002/ibra.12033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/01/2022] [Accepted: 04/10/2022] [Indexed: 10/04/2023]
Abstract
Huangqi Guizhi Wuwu Decoction (HGWD) has a definite effect on neuropathic pain (NP), whereas the specific mechanism has not been elucidated. The components and targets in HGWD were collected and identified through System Pharmacology Database (Traditional Chinese Medicine Database and Analysis Platform). Genecards and Online Mendelian Inheritance in Man databases were used to search for NP-related genes. The Venn diagram was drawn to get the intersection target. Cytoscape 3.8.0 software was used to construct the compound-disease-target-pathway networks. STRING database was applied to analyze protein-protein interaction of potential targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were used to identify the function of genes related to NP. Finally, molecular docking was performed to visualize the binding mode and affinity between proteins and active ingredients. According to the intersection target of the Venn diagram, the network graph is constructed by Cytoscape and the results show the five compounds, β-sitosterol, (+)-catechin, quercetin, Stigmasterol, kaempferol, and 15 genes (CASP3, FOS, GSK3B, HSP90AA1, IKBKB, IL6, MAPK8, RELA, ICAM1, SELE, ELK1, HSPB1, PRKACA, PRKCA, RAF1) were highly correlated with NP. KEGG and GO of 15 genes results that TNF, IL-17 and MAPK signaling pathway were Significantly related to the pathological mechanism of NP. Molecular docking showed that core genes in this network were IL-6 (TNF and IL-17 signaling pathways), ICAM1 (TNF signaling pathway), and CASP3 (three signal pathways). This study found that the five active compounds, three core genes, and three signaling pathways may be the key to the treatment of NP by HGWD.
Collapse
Affiliation(s)
- Bo‐Yan Luo
- School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
| | - Hong‐Su Zhou
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Qiu‐Xia Xiao
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yu‐Qi He
- School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
99
|
Dang SJ, Wei WB, Li RL, Song CX, Xu J. Z-Guggulsterone Relieves Neuropathic Pain by Inhibiting the Expression of Astrocytes and Proinflammatory Cytokines in the Spinal Dorsal Horn. J Pain Res 2022; 15:1315-1324. [PMID: 35546904 PMCID: PMC9084390 DOI: 10.2147/jpr.s360126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022] Open
Abstract
Objective The study objective was to investigate whether Z-guggulsterone can relieve neuropathic pain in sciatic nerve chronic constriction injury (CCI) mice by inhibiting the expression of astrocytes and proinflammatory cytokines in the spinal dorsal horn. Methods Neuropathic pain was induced and assessed in CCI mice. Z-guggulsterone was administered multiple times via intraperitoneal injection. Pain behaviour assessments were made by conducting paw withdrawal mechanical threshold (PWMT) and thermal withdrawal latency (TWL) tests. The expression level of the glial fibrillary acidic protein (GFAP) in the spinal dorsal horn was observed by immunofluorescence. The levels of the proinflammatory cytokines, IL-1β, IL-6 and TNF-α in the spinal cord were measured by ELISA. Data were analysed using one-way ANOVA or two-way ANOVA. Results The PWMT and TWL were higher on the 5th, 7th, 10th and 14th days after CCI, the expression level of GFAP in the spinal dorsal horn was lower, and the levels of IL-1β, IL-6 and TNF-α in the spinal cord were lower in the CCI+Z-GS-L, CCI+Z-GS-M and CCI+Z-GS-H groups than in the CCI+Veh group in a dose-dependent manner (P < 0.05). Conclusion Z-guggulsterone can relieve neurological pain in CCI mice, which may be related to the inhibition of astrocytes and proinflammatory cytokines in the spinal dorsal horn.
Collapse
Affiliation(s)
- Sha-Jie Dang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi’an, 710061, People’s Republic of China
| | - Wen-Bo Wei
- Department of Orthopedics, Shaanxi Provincial People’s Hospital, Xi’an, 710068, People’s Republic of China
| | - Rui-Li Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Can-Xu Song
- Department of Ultrasound, Shaanxi Provincial Cancer Hospital, Xi’an, 710061, People’s Republic of China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Correspondence: Jin Xu, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China, Email
| |
Collapse
|
100
|
Spinal microglia-derived TNF promotes the astrocytic JNK/CXCL1 pathway activation in a mouse model of burn pain. Brain Behav Immun 2022; 102:23-39. [PMID: 35143878 DOI: 10.1016/j.bbi.2022.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
Burn injury-induced pain (BIP) is an extremely complicated condition usually resistant to analgesic drugs, while its pathogenesis remains unknown. Considerable attention has been attracted to elucidate the glial mechanisms in chronic pain. In this study, we initiatively used a mouse model of second-degree BIP to investigate the underlying non-neuronal mechanisms at the spinal cord level. Our behavioral results showed that hind-paw burn injury caused persistent allodynia and hyperalgesia for 2 weeks in mice. Further studies revealed that both microglia and astrocytes activated in a spatially- and temporally-dependent manner in spinal cord after burn injury. In addition, the phosphorylated p38 mitogen-activated protein kinase (MAPK)-mediated tumor necrosis factor (TNF) release in spinal microglia is essentially attributed to the early stage of BIP, while the c-Jun N-terminal kinase (JNK) MAPK-dependent chemokine CXCL1 expression is mainly involved in the maintenance of pain hypersensitivity. Most strikingly, burn injury-induced pain symptoms and the activation of astrocytes were significantly suppressed by TNF inhibitor Thalidomide. On the contrary, intrathecal injection of TNF caused apparent pain hypersensitivity, accompanied by the activation of astrocytes and the upregulation of CXCL1 via the JNK MAPK signaling pathway, indicating that TNF is the key cytokine in the interaction between microglia and astrocytes at the spinal level. Moreover, treatment with the CXCR2 receptor antagonist SB225002 to block the biological activities of CXCL1 significantly attenuated the mechanical allodynia and thermal hyperalgesia in this BIP model. Taken together, this study indicates that intervention of glial pathways provides a new perspective in the management of BIP.
Collapse
|