51
|
Wang C, Zada B, Wei G, Kim SW. Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli. BIORESOURCE TECHNOLOGY 2017; 241:430-438. [PMID: 28599221 DOI: 10.1016/j.biortech.2017.05.168] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 05/20/2023]
Abstract
Isoprenoids comprise the largest family of natural organic compounds with many useful applications in the pharmaceutical, nutraceutical, and industrial fields. Rapid developments in metabolic engineering and synthetic biology have facilitated the engineering of isoprenoid biosynthetic pathways in Escherichia coli to induce high levels of production of many different isoprenoids. In this review, the stem pathways for synthesizing isoprene units as well as the branch pathways deriving diverse isoprenoids from the isoprene units have been summarized. The review also highlights the metabolic engineering efforts made for the biosynthesis of hemiterpenoids, monoterpenoids, sesquiterpenoids, diterpenoids, carotenoids, retinoids, and coenzyme Q10 in E. coli. Perspectives and future directions for the synthesis of novel isoprenoids, decoration of isoprenoids using cytochrome P450 enzymes, and secretion or storage of isoprenoids in E. coli have also been included.
Collapse
Affiliation(s)
- Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Bakht Zada
- Division of Applied Life Science (BK21 Plus), PMBBRC, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
52
|
Niu FX, Lu Q, Bu YF, Liu JZ. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels. Synth Syst Biotechnol 2017; 2:167-175. [PMID: 29318197 PMCID: PMC5655344 DOI: 10.1016/j.synbio.2017.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022] Open
Abstract
Isoprenoids are the most abundant and highly diverse group of natural products. Many isoprenoids have been used for pharmaceuticals, nutraceuticals, flavors, cosmetics, food additives and biofuels. Carotenoids and isoprenoid-based biofuels are two classes of important isoprenoids. These isoprenoids have been produced microbially through metabolic engineering and synthetic biology efforts. Herein, we briefly review the engineered biosynthetic pathways in well-characterized microbial systems for the production of carotenoids and several isoprenoid-based biofuels.
Collapse
Affiliation(s)
- Fu-Xing Niu
- Biotechnology Research Center and Biomedical Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qian Lu
- Biotechnology Research Center and Biomedical Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Fan Bu
- Biotechnology Research Center and Biomedical Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Zhong Liu
- Biotechnology Research Center and Biomedical Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
53
|
Meadows CW, Kang A, Lee TS. Metabolic Engineering for Advanced Biofuels Production and Recent Advances Toward Commercialization. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201600433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/13/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Corey W. Meadows
- Joint BioEnergy Institute5885 Hollis StreetEmeryvilleCA94608USA
- Biological Systems & Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Aram Kang
- Joint BioEnergy Institute5885 Hollis StreetEmeryvilleCA94608USA
- Biological Systems & Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Taek S. Lee
- Joint BioEnergy Institute5885 Hollis StreetEmeryvilleCA94608USA
- Biological Systems & Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
54
|
Host seeking parasitic nematodes use specific odors to assess host resources. Sci Rep 2017; 7:6270. [PMID: 28740104 PMCID: PMC5524962 DOI: 10.1038/s41598-017-06620-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/04/2017] [Indexed: 01/15/2023] Open
Abstract
Entomopathogenic nematodes (EPNs) are insect parasites used as biological control agents. Free-living infective juveniles (IJs) of EPNs employ host-seeking behaviors to locate suitable hosts for infection. We found that EPNs can differentiate between naïve and infected hosts, and that host attractiveness changes over time in a species-specific manner. We used solid-phase microextraction and gas chromatography/mass spectrometry to identify volatile chemical cues that may relay information about a potential host’s infection status and resource availability. Among the chemicals identified from the headspace of infected hosts, 3-Methyl-2-buten-1-ol (prenol) and 3-Hydroxy-2-butanone (AMC) were selected for further behavioral assays due to their temporal correlation with the behavioral changes of IJs towards the infected hosts. Both compounds were repulsive to IJs of Steinernema glaseri and S. riobrave in a dose-dependent manner when applied on an agar substrate. Furthermore, the repulsive effects of prenol were maintained when co-presented with the uninfected host odors, overriding attraction to uninfected hosts. Prenol was attractive to dauers of some free-living nematodes and insect larvae. These data suggest that host-associated chemical cues may have several implications in EPN biology, not only as signals for avoidance and dispersal of conspecifics, but also as attractants for new potential hosts.
Collapse
|
55
|
Wang C, Pfleger BF, Kim SW. Reassessing Escherichia coli as a cell factory for biofuel production. Curr Opin Biotechnol 2017; 45:92-103. [DOI: 10.1016/j.copbio.2017.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/05/2017] [Accepted: 02/09/2017] [Indexed: 11/29/2022]
|
56
|
Yu P, Chen X, Li P. Enhancing microbial production of biofuels by expanding microbial metabolic pathways. Biotechnol Appl Biochem 2017; 64:606-619. [PMID: 27507087 DOI: 10.1002/bab.1529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/31/2016] [Indexed: 12/29/2022]
Abstract
Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected.
Collapse
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xingge Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Peng Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
57
|
Huang M, Wei K, Li X, McClory J, Hu G, Zou JW, Timson D. Phosphorylation Mechanism of Phosphomevalonate Kinase: Implications for Rational Engineering of Isoprenoid Biosynthetic Pathway Enzymes. J Phys Chem B 2016; 120:10714-10722. [DOI: 10.1021/acs.jpcb.6b08480] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Meilan Huang
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom
| | - Kexin Wei
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom
| | - Xiao Li
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom
| | - James McClory
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom
| | - Guixiang Hu
- School
of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
| | - Jian-Wei Zou
- School
of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
| | - David Timson
- School
of Pharmacy and Biomolecular Sciences, The University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom
| |
Collapse
|
58
|
Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes. Appl Environ Microbiol 2016; 82:5730-40. [PMID: 27422837 DOI: 10.1128/aem.01192-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies.
Collapse
|
59
|
Wada K, Toya Y, Banno S, Yoshikawa K, Matsuda F, Shimizu H. 13C-metabolic flux analysis for mevalonate-producing strain of Escherichia coli. J Biosci Bioeng 2016; 123:177-182. [PMID: 27570223 DOI: 10.1016/j.jbiosc.2016.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/05/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
Mevalonate (MVA) is used to produce various useful products such as drugs, cosmetics and food additives. An MVA-producing strain of Escherichia coli (engineered) was constructed by introducing mvaES genes from Enterococcus faecalis. The engineered strain produced 1.84 mmol/gDCW/h yielding 22% (C-mol/C-mol) of MVA from glucose in the aerobic exponential growth phase. The mass balance analysis revealed that the MVA yield of the engineered strain was close to the upper limit at the biomass yield. Since MVA is synthesized from acetyl-CoA using NADPH as a cofactor, the production of MVA affects central metabolism in terms of carbon utilization and NADPH requirements. The reason for this highly efficient MVA production was investigated based on 13C-metabolic flux analysis. The estimated flux distributions revealed that the fluxes of acetate formation and the TCA cycle in the engineered strain were lower than those in the control strain. Although the oxidative pentose phosphate pathway is considered as the NADPH generating pathway in E. coli, no difference of the flux was observed between the control and engineered strains. The production/consumption balance of NADPH suggested that additional requirement of NADPH for MVA synthesis was obtained from the transhydrogenase reaction in the engineered strain. Comparison between the measured flux distribution and the ideal values for MVA production proposes a strategy for further engineering to improve the MVA production in E. coli.
Collapse
Affiliation(s)
- Keisuke Wada
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Satomi Banno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
60
|
Liao P, Hemmerlin A, Bach TJ, Chye ML. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv 2016; 34:697-713. [PMID: 26995109 DOI: 10.1016/j.biotechadv.2016.03.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 01/03/2023]
Abstract
The cytosol-localised mevalonic acid (MVA) pathway delivers the basic isoprene unit isopentenyl diphosphate (IPP). In higher plants, this central metabolic intermediate is also synthesised by the plastid-localised methylerythritol phosphate (MEP) pathway. Both MVA and MEP pathways conspire through exchange of intermediates and regulatory interactions. Products downstream of IPP such as phytosterols, carotenoids, vitamin E, artemisinin, tanshinone and paclitaxel demonstrate antioxidant, cholesterol-reducing, anti-ageing, anticancer, antimalarial, anti-inflammatory and antibacterial activities. Other isoprenoid precursors including isoprene, isoprenol, geraniol, farnesene and farnesol are economically valuable. An update on the MVA pathway and its interaction with the MEP pathway is presented, including the improvement in the production of phytosterols and other isoprenoid derivatives. Such attempts are for instance based on the bioengineering of microbes such as Escherichia coli and Saccharomyces cerevisiae, as well as plants. The function of relevant genes in the MVA pathway that can be utilised in metabolic engineering is reviewed and future perspectives are presented.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Andréa Hemmerlin
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67083 Strasbourg, France.
| | - Thomas J Bach
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67083 Strasbourg, France.
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
61
|
Domaille DW, Hafenstine GR, Greer MA, Goodwin AP, Cha JN. Catalytic Upgrading in Bacteria-Compatible Conditions via a Biocompatible Aldol Condensation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2016; 4:671-675. [PMID: 28480149 PMCID: PMC5417690 DOI: 10.1021/acssuschemeng.5b01590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Integrating non-enzymatic chemistry with living systems has the potential to greatly expand the types and yields of chemicals that can be sourced from renewable feedstocks. The in situ conversion of microbial metabolites to higher order products will ensure their continuous generation starting from a given cellular reaction mixture. We present here a systematic study of different organocatalysts that enable aldol condensation in biological media under physiological conditions of neutral pH, moderate temperature, and ambient pressure. The relative toxicities of each catalyst were tested against bacteria, and the catalysts were found to provide good yields of homoaldol products in bacterial cultures containing aldehydes. Lastly, we demonstrate that a biocompatible oil can be used to selectively extract the upgraded products, which enabes facile isolation and decreases the product toxicity to microbes.
Collapse
Affiliation(s)
- Dylan W. Domaille
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave., Boulder, Boulder, CO 80303
- To whom correspondence should be addressed to: ; ;
| | - Glenn R. Hafenstine
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave., Boulder, Boulder, CO 80303
| | - Mattias A. Greer
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave., Boulder, Boulder, CO 80303
| | - Andrew P. Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave., Boulder, Boulder, CO 80303
- Materials Science and Engineering Program, University of Colorado, 3415 Colorado Ave., Boulder, Boulder, CO 80303
- To whom correspondence should be addressed to: ; ;
| | - Jennifer N. Cha
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave., Boulder, Boulder, CO 80303
- Materials Science and Engineering Program, University of Colorado, 3415 Colorado Ave., Boulder, Boulder, CO 80303
- To whom correspondence should be addressed to: ; ;
| |
Collapse
|
62
|
Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metab Eng 2016; 34:25-35. [DOI: 10.1016/j.ymben.2015.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/02/2015] [Accepted: 12/07/2015] [Indexed: 11/20/2022]
|
63
|
A novel MVA-mediated pathway for isoprene production in engineered E. coli. BMC Biotechnol 2016; 16:5. [PMID: 26786050 PMCID: PMC4719670 DOI: 10.1186/s12896-016-0236-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 01/13/2016] [Indexed: 01/12/2023] Open
Abstract
Background To deal with the increasingly severe energy crisis and environmental consequences, biofuels and biochemicals generated from renewable resources could serve as a promising alternative for replacing petroleum as a source of fuel and chemicals, among which isoprene (2-methyl-1,3-butadiene) in particular is of great significance in that it is an important platform chemical, which has been used in industrial production of synthetic rubber for tires and coatings or aviation fuel. Results We firstly introduced fatty acid decarboxylase (OleTJE) from Jeotgalicoccus species into E. coli to directly convert MVA(mevalonate) into 3-methy-3-buten-1-ol. And then to transform 3-methy-3-buten-1-ol to isoprene, oleate hydratase (OhyAEM) from Elizabethkingia meningoseptica was overexpressed in E. coli. A novel biosynthetic pathway of isoprene in E. coli was established by co-expressing the heterologous mvaE gene encoding acetyl-CoA acetyltransferase/HMG-CoA reductase and mvaS gene encoding HMG-CoA synthase from Enterococcus faecalis, fatty acid decarboxylase (OleTJE) and oleate hydratase (OhyAEM). Furthermore, to enhance isoprene production, a further optimization of expression level of OleTJE, OhyAEM was carried out by using different promoters and copy numbers of plasmids. Thereafter, the fermentation process was also optimized to improve the production of isoprene. The final engineered strain, YJM33, bearing the innovative biosynthetic pathway of isoprene, was found to produce isoprene up to 2.2 mg/L and 620 mg/L under flask and fed-batch fermentation conditions, respectively. Conclusions In this study, by using metabolic engineering techniques, the novel MVA-mediated biosynthetic pathway of isoprene was successfully assembled in E. coli BL21(DE3) with the heterologous MVA upper pathway, OleTJE from Jeotgalicoccus species and OhyAEM from Elizabethkingia meningoseptica. Compared with traditional MVA pathway, the novel pathway is shortened by 3 steps. In addition, this is the first report on the reaction of converting MVA into 3-methy-3-buten-1-ol by fatty acid decarboxylase (OleTJE) from Jeotgalicoccus species. In brief, this study provided an alternative method for isoprene biosynthesis, which is largely different from the well-developed MEP pathway or MVA pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0236-2) contains supplementary material, which is available to authorized users.
Collapse
|
64
|
Beller HR, Lee TS, Katz L. Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat Prod Rep 2015. [PMID: 26216573 DOI: 10.1039/c5np00068h] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although natural products are best known for their use in medicine and agriculture, a number of fatty acid-derived and isoprenoid natural products are being developed for use as renewable biofuels and bio-based chemicals. This review summarizes recent work on fatty acid-derived compounds (fatty acid alkyl esters, fatty alcohols, medium- and short-chain methyl ketones, alkanes, α-olefins, and long-chain internal alkenes) and isoprenoids, including hemiterpenes (e.g., isoprene and isopentanol), monoterpenes (e.g., limonene), and sesquiterpenes (e.g., farnesene and bisabolene).
Collapse
Affiliation(s)
- Harry R Beller
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, Emeryville, California, 94608 USA.
| | | | | |
Collapse
|
65
|
Dynamic interplay of multidrug transporters with TolC for isoprenol tolerance in Escherichia coli. Sci Rep 2015; 5:16505. [PMID: 26563610 PMCID: PMC4643228 DOI: 10.1038/srep16505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 02/04/2023] Open
Abstract
Engineering of efflux pumps is a promising way to improve host’s tolerance to biofuels such as medium-chain alcohols (CmOHs); however, this strategy is restricted by poor understanding of the efflux pumps engaged in extrusion of solvents. In this study, several Escherichia coli mutants of multidrug transporters were evaluated for isoprenol tolerance. Susceptible phenotypes were observed in the mutants with individual deletion of six transporters, AcrD, EmrAB, MacAB, MdtBC, MdtJI and YdiM, whereas inactivation of AcrAB transporter resulted in an improved tolerance to isoprenol and other CmOHs. AcrAB is the major transporter forming tripartite transperiplasmic complex with outer membrane channel TolC for direct extrusion of toxic molecules in E. coli. The AcrAB inactivation enables to enhance TolC availability for the multidrug transporters associated with extrusion of CmOHs and increase the tolerance to CmOHs including isoprenol. It is assumed that outer membrane channel TolC plays an important role in extrusion of isoprenol and other CmOHs.
Collapse
|
66
|
Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol Adv 2015; 33:1455-66. [DOI: 10.1016/j.biotechadv.2014.11.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/23/2014] [Accepted: 11/09/2014] [Indexed: 11/22/2022]
|
67
|
Khosraviani M, Saheb Zamani M, Bidkhori G. FogLight: an efficient matrix-based approach to construct metabolic pathways by search space reduction. Bioinformatics 2015; 32:398-408. [PMID: 26454274 DOI: 10.1093/bioinformatics/btv578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022] Open
Abstract
MOTIVATION A fundamental computational problem in the area of metabolic engineering is finding metabolic pathways between a pair of source and target metabolites efficiently. We present an approach, namely FogLight, for searching metabolic networks utilizing Boolean (AND-OR) operations represented in matrix notation to efficiently reduce the search space. This enables the enumeration of all pathways between metabolites that are too distant for the application of brute-force methods. RESULTS Benchmarking tests run with FogLight show that it can reduce the search space by up to 98%, after which the accelerated search for high accurate results is guaranteed. Using FogLight, several pathways between eight given pairs of metabolites are found of which the pathways from CO2 to ethanol are specifically discussed. Additionally, in comparison with three path-finding tools, namely PHT, FMM and RouteSearch, FogLight can find shorter and more pathways for attempted source-target metabolite pairs. CONTACT szamani@aut.ac.ir, gholamreza.bidkhori@vtt.fi SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mehrshad Khosraviani
- Department of Computer Engineering & IT, Amirkabir University of Technology, Tehran, Iran and
| | - Morteza Saheb Zamani
- Department of Computer Engineering & IT, Amirkabir University of Technology, Tehran, Iran and
| | - Gholamreza Bidkhori
- Department of Computer Engineering & IT, Amirkabir University of Technology, Tehran, Iran and
| |
Collapse
|
68
|
Shippy DC, Fadl AA. RNA modification enzymes encoded by the gid operon: Implications in biology and virulence of bacteria. Microb Pathog 2015; 89:100-7. [PMID: 26427881 DOI: 10.1016/j.micpath.2015.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023]
Abstract
Ribonucleic acid (RNA) molecules consist of numerous chemically modified nucleosides that are highly conserved in eukarya, archeae, and bacteria, while others are unique to each domain of life. In bacteria, hundreds of RNA modification enzymes have been identified and implicated in biological pathways associated with many cell processes. The glucose-inhibited division (gid) operon encodes genes for two RNA modification enzymes named GidA and GidB. Studies have shown GidA is essential for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) of bacterial transfer RNA (tRNA) with GidB responsible for the methylation of the 16S ribosomal RNA (rRNA). Furthermore, deletion of gidA and gidB has shown to alter numerous bacterial properties like virulence, stress response, morphology, growth, antibiotic susceptibility, and others. In this review, we discuss the present knowledge of the RNA modification enzymes GidA and GidB, and their potential role in the biology and virulence of bacteria.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amin A Fadl
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
69
|
Gupta P, Phulara SC. Metabolic engineering for isoprenoid-based biofuel production. J Appl Microbiol 2015; 119:605-19. [PMID: 26095690 DOI: 10.1111/jam.12871] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 01/14/2023]
Abstract
Sustainable economic and industrial growth is the need of the hour and it requires renewable energy resources having better performance and compatibility with existing fuel infrastructure from biological routes. Isoprenoids (C ≥ 5) can be a potential alternative due to their diverse nature and physiochemical properties similar to that of petroleum based fuels. In the past decade, extensive research has been done to utilize metabolic engineering strategies in micro-organisms primarily, (i) to overcome the limitations associated with their natural and non-natural production and (ii) to develop commercially competent microbial strain for isoprenoid-based biofuel production. This review briefly describes the engineered isoprenoid biosynthetic pathways in well-characterized microbial systems for the production of several isoprenoid-based biofuels and fuel precursors.
Collapse
Affiliation(s)
- P Gupta
- National Institute of Technology, Raipur, Chhattisgarh, India
| | - S C Phulara
- National Institute of Technology, Raipur, Chhattisgarh, India
| |
Collapse
|
70
|
Liu W, Zhang R, Tian N, Xu X, Cao Y, Xian M, Liu H. Utilization of alkaline phosphatase PhoA in the bioproduction of geraniol by metabolically engineered Escherichia coli. Bioengineered 2015; 6:288-93. [PMID: 26091008 DOI: 10.1080/21655979.2015.1062188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Geraniol is a valuable acyclic monoterpene alcohol and has many applications in the perfume industries, pharmacy and others. It has been hypothesized that phosphatases can convert geranyl diphosphate (GPP) into geraniol. However, whether and which phosphatases can transform GPP to geraniol has remained unanswered up till now. In this paper, the catalysis abilities of 4 different types of phosphatases were studied with GPP as substrate in vitro. They are bifunctional diacylglycerol diphosphate phosphatase (DPP1) and lipid phosphate phosphatase (LPP1) from Saccharomyces cerevisiae, ADP-ribose pyrophosphatase (NudF) and alkaline phosphatase (PhoA) from Escherichia coli. The results show that just PhoA from E. coli can convert GPP into geraniol. Moreover, in order to confirm the ability of PhoA in vivo, the heterologous mevalonate pathway and geranyl diphosphate synthase gene from Abies grandis were co-overexpressed in E. coli with PhoA gene and 5.3 ± 0.2 mg/l geraniol was produced from glucose in flask-culture. Finally, we also evaluated the fed-batch fermentation of this engineered E. coli and a maximum concentration of 99.3 mg/l geraniol was produced while the conversion efficiency of glucose to geranoid (gram to gram) was 0.51%. Our results offer a new option for geraniol biosynthesis and promote the industrial bio-production of geraniol.
Collapse
Affiliation(s)
- Wei Liu
- a CAS Key Laboratory of Bio-Based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences ; Qingdao , China.,b Key Laboratory of Green Process and Engineering; Institute of Process Engineering; Chinese Academy of Sciences ; Beijing , China.,c University of Chinese Academy of Sciences ; Beijing , China
| | - Rubing Zhang
- a CAS Key Laboratory of Bio-Based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences ; Qingdao , China.,c University of Chinese Academy of Sciences ; Beijing , China
| | - Ning Tian
- a CAS Key Laboratory of Bio-Based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences ; Qingdao , China
| | - Xin Xu
- a CAS Key Laboratory of Bio-Based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences ; Qingdao , China
| | - Yujing Cao
- a CAS Key Laboratory of Bio-Based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences ; Qingdao , China
| | - Mo Xian
- a CAS Key Laboratory of Bio-Based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences ; Qingdao , China
| | - Huizhou Liu
- a CAS Key Laboratory of Bio-Based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences ; Qingdao , China
| |
Collapse
|
71
|
Metabolic engineering for the high-yield production of isoprenoid-based C₅ alcohols in E. coli. Sci Rep 2015; 5:11128. [PMID: 26052683 PMCID: PMC4459108 DOI: 10.1038/srep11128] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022] Open
Abstract
Branched five carbon (C5) alcohols are attractive targets for microbial production due to their desirable fuel properties and importance as platform chemicals. In this study, we engineered a heterologous isoprenoid pathway in E. coli for the high-yield production of 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, and 3-methyl-1-butanol, three C5 alcohols that serve as potential biofuels. We first constructed a pathway for 3-methyl-3-buten-1-ol, where metabolite profiling identified NudB, a promiscuous phosphatase, as a likely pathway bottleneck. We achieved a 60% increase in the yield of 3-methyl-3-buten-1-ol by engineering the Shine-Dalgarno sequence of nudB, which increased protein levels by 9-fold and reduced isopentenyl diphosphate (IPP) accumulation by 4-fold. To further optimize the pathway, we adjusted mevalonate kinase (MK) expression and investigated MK enzymes from alternative microbes such as Methanosarcina mazei. Next, we expressed a fusion protein of IPP isomerase and the phosphatase (Idi1~NudB) along with a reductase (NemA) to diversify production to 3-methyl-2-buten-1-ol and 3-methyl-1-butanol. Finally, we used an oleyl alcohol overlay to improve alcohol recovery, achieving final titers of 2.23 g/L of 3-methyl-3-buten-1-ol (~70% of pathway-dependent theoretical yield), 150 mg/L of 3-methyl-2-buten-1-ol, and 300 mg/L of 3-methyl-1-butanol.
Collapse
|
72
|
Lee SY, Kim HM, Cheon S. Metabolic engineering for the production of hydrocarbon fuels. Curr Opin Biotechnol 2015; 33:15-22. [DOI: 10.1016/j.copbio.2014.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/22/2014] [Accepted: 09/26/2014] [Indexed: 12/17/2022]
|
73
|
Engineering biological systems toward a sustainable bioeconomy. J Ind Microbiol Biotechnol 2015; 42:813-38. [PMID: 25845304 DOI: 10.1007/s10295-015-1606-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/09/2015] [Indexed: 01/07/2023]
Abstract
The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.
Collapse
|
74
|
Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. J Biosci Bioeng 2015; 119:165-71. [DOI: 10.1016/j.jbiosc.2014.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 02/08/2023]
|
75
|
The Putative mevalonate diphosphate decarboxylase from Picrophilus torridus is in reality a mevalonate-3-kinase with high potential for bioproduction of isobutene. Appl Environ Microbiol 2015; 81:2625-34. [PMID: 25636853 PMCID: PMC4357925 DOI: 10.1128/aem.04033-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mevalonate diphosphate decarboxylase (MVD) is an ATP-dependent enzyme that catalyzes the phosphorylation/decarboxylation of (R)-mevalonate-5-diphosphate to isopentenyl pyrophosphate in the mevalonate (MVA) pathway. MVD is a key enzyme in engineered metabolic pathways for bioproduction of isobutene, since it catalyzes the conversion of 3-hydroxyisovalerate (3-HIV) to isobutene, an important platform chemical. The putative homologue from Picrophilus torridus has been identified as a highly efficient variant in a number of patents, but its detailed characterization has not been reported. In this study, we have successfully purified and characterized the putative MVD from P. torridus. We discovered that it is not a decarboxylase per se but an ATP-dependent enzyme, mevalonate-3-kinase (M3K), which catalyzes the phosphorylation of MVA to mevalonate-3-phosphate. The enzyme's potential in isobutene formation is due to the conversion of 3-HIV to an unstable 3-phosphate intermediate that undergoes consequent spontaneous decarboxylation to form isobutene. Isobutene production rates were as high as 507 pmol min−1 g cells−1 using Escherichia coli cells expressing the enzyme and 2,880 pmol min−1 mg protein−1 with the purified histidine-tagged enzyme, significantly higher than reported previously. M3K is a key enzyme of the novel MVA pathway discovered very recently in Thermoplasma acidophilum. We suggest that P. torridus metabolizes MVA by the same pathway.
Collapse
|
76
|
George KW, Alonso-Gutierrez J, Keasling JD, Lee TS. Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:355-89. [PMID: 25577395 DOI: 10.1007/10_2014_288] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Isoprenoids have been identified and used as natural pharmaceuticals, fragrances, solvents, and, more recently, advanced biofuels. Although isoprenoids are most commonly found in plants, researchers have successfully engineered both the eukaryotic and prokaryotic isoprenoid biosynthetic pathways to produce these valuable chemicals in microorganisms at high yields. The microbial synthesis of the precursor to artemisinin--an important antimalarial drug produced from the sweet wormwood Artemisia annua--serves as perhaps the most successful example of this approach. Through advances in synthetic biology and metabolic engineering, microbial-derived semisynthetic artemisinin may soon replace plant-derived artemisinin as the primary source of this valuable pharmaceutical. The richness and diversity of isoprenoid structures also make them ideal candidates for advanced biofuels that may act as "drop-in" replacements for gasoline, diesel, and jet fuel. Indeed, the sesquiterpenes farnesene and bisabolene, monoterpenes pinene and limonene, and hemiterpenes isopentenol and isopentanol have been evaluated as fuels or fuel precursors. As in the artemisinin project, these isoprenoids have been produced microbially through synthetic biology and metabolic engineering efforts. Here, we provide a brief review of the numerous isoprenoid compounds that have found use as pharmaceuticals, flavors, commodity chemicals, and, most importantly, advanced biofuels. In each case, we highlight the metabolic engineering strategies that were used to produce these compounds successfully in microbial hosts. In addition, we present a current outlook on microbial isoprenoid production, with an eye towards the many challenges that must be addressed to achieve higher yields and industrial-scale production.
Collapse
Affiliation(s)
- Kevin W George
- Joint BioEnergy Institute, 5885 Hollis St. 4th floor, Emeryville, CA, 94608, USA
| | | | | | | |
Collapse
|
77
|
Jiang Y, Liu W, Zou H, Cheng T, Tian N, Xian M. Microbial production of short chain diols. Microb Cell Fact 2014; 13:165. [PMID: 25491899 PMCID: PMC4269916 DOI: 10.1186/s12934-014-0165-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 11/14/2014] [Indexed: 11/28/2022] Open
Abstract
Short chain diols (propanediols, butanediols, pentanediols) have been widely used in bulk and fine chemical industries as fuels, solvents, polymer monomers and pharmaceutical precursors. The chemical production of short chain diols from fossil resources has been developed and optimized for decades. Consideration of the exhausting fossil resources and the increasing environment issues, the bio-based process to produce short chain diols is attracting interests. Currently, a variety of biotechnologies have been developed for the microbial production of the short chain diols from renewable feed-stocks. In order to efficiently produce bio-diols, the techniques like metabolically engineering the production strains, optimization of the fermentation processes, and integration of a reasonable downstream recovery processes have been thoroughly investigated. In this review, we summarized the recent development in the whole process of bio-diols production including substrate, microorganism, metabolic pathway, fermentation process and downstream process.
Collapse
Affiliation(s)
- Yudong Jiang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Wei Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Huibin Zou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Tao Cheng
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Ning Tian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| |
Collapse
|
78
|
Wagemann K. Herstellung von Grundchemikalien auf Basis nachwachsender Rohstoffe als Alternative zur Petrochemie? CHEM-ING-TECH 2014. [DOI: 10.1002/cite.201400108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
79
|
Abstract
Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerance phenotypes belonged to diverse functional groups, such as oxidative stress response (soxS, fpr, and nrdH), general stress response (metR, yqhD, and gidB), heat shock-related response (ibpA), and transport (mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production. The use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically viable production levels, it is also necessary to engineer production strains with improved tolerance to these compounds. We demonstrate that microbial tolerance engineering using transcriptomics data can also identify targets that improve production. Our results include an exporter and a methionine biosynthesis regulator that improve isopentenol production, providing a starting point to further engineer the host for biogasoline production.
Collapse
|
80
|
Liu H, Wang Y, Tang Q, Kong W, Chung WJ, Lu T. MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli. Microb Cell Fact 2014; 13:135. [PMID: 25212876 PMCID: PMC4172795 DOI: 10.1186/s12934-014-0135-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/01/2014] [Indexed: 11/23/2022] Open
Abstract
Background Isopentenols, such as prenol and isoprenol, are promising advanced biofuels because of their higher energy densities and better combustion efficiencies compared with ethanol. Microbial production of isopentenols has been developed recently via metabolically engineered E. coli. However, current yields remain low and the underlying pathways require systematic optimization. Results In this study, we targeted the E. coli native 2-methyl-(D)-erythritol-4-phosphate (MEP) pathway and its upstream glycolysis pathway for the optimization of isopentenol production. Two codon optimized genes, nudF and yhfR from Bacillus subtilis, were synthesized and expressed in E. coli W3110 to confer the isopentenol production of the strain. Two key enzymes (IspG and Dxs) were then overexpressed to optimize the E. coli native MEP pathway, which led to a significant increase (3.3-fold) in isopentenol production. Subsequently, the glycolysis pathway was tuned to enhance the precursor and NADPH supplies for the MEP pathway by activating the pentose phosphate pathway (PPP) and Entner-Doudoroff pathway (ED), which resulted in additional 1.9 folds of increase in isopentenol production. A 5 L-scale batch cultivation experiment was finally implemented, showing a total of 61.9 mg L−1 isopentenol production from 20 g L−1 of glucose. Conclusion The isopentenol production was successfully increased through multi-step optimization of the MEP and its upstream glycolysis pathways. It demonstrated that the total fluxes and their balance of the precursors of the MEP pathway are of critical importance in isopentenol production. In the future, an elucidation of the contribution of PPP and ED to MEP is needed for further optimization of isopentenol production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0135-y) contains supplementary material, which is available to authorized users.
Collapse
|
81
|
Nozzi NE, Desai SH, Case AE, Atsumi S. Metabolic engineering for higher alcohol production. Metab Eng 2014; 25:174-82. [DOI: 10.1016/j.ymben.2014.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
|
82
|
Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, Li L, Ma C, Xu P. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng 2014; 23:22-33. [DOI: 10.1016/j.ymben.2014.02.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/15/2014] [Accepted: 02/03/2014] [Indexed: 12/25/2022]
|
83
|
Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnol Bioeng 2014; 111:1648-58. [DOI: 10.1002/bit.25226] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/23/2014] [Accepted: 02/18/2014] [Indexed: 01/21/2023]
|
84
|
Bhutto AW, Qureshi K, Harijan K, Zahedi G, Bahadori A. Strategies for the consolidation of biologically mediated events in the conversion of pre-treated lignocellulose into ethanol. RSC Adv 2014. [DOI: 10.1039/c3ra44020f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
85
|
Lu W, Ye L, Xu H, Xie W, Gu J, Yu H. Enhanced production of coenzyme Q10 by self-regulating the engineered MEP pathway in Rhodobacter sphaeroides. Biotechnol Bioeng 2013; 111:761-9. [PMID: 24122603 DOI: 10.1002/bit.25130] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 11/10/2022]
Abstract
Fine-tuning the expression level of an engineered pathway is crucial for the metabolic engineering of a host toward a desired phenotype. However, most engineered hosts suffer from nonfunctional protein expression, metabolic imbalance, cellular burden or toxicity from intermediates when an engineered pathway is first introduced, which can decrease production of the desired product. To circumvent these obstacles, we developed a self-regulation system utilizing the trc/tac promoter, LacI(q) protein and ribosomal binding sites (RBS). With the purpose of improving coenzyme Q10 (CoQ10 ) production by increasing the decaprenyl diphosphate supplement, enzymes DXS, DXR, IDI, and IspD were constitutively overexpressed under the control of the trc promoter in Rhodobacter sphaeroides. Then, a self-regulation system combining a set of RBSs for adjusting the expression of the LacI(q) protein was applied to tune the expression of the four genes, resulting in improved CoQ10 production. Finally, another copy of the tac promoter with the UbiG gene (involved in the ubiquinone pathway of CoQ10 biosynthesis) was introduced into the engineered pathway. By optimizing the expression level of both the upstream and downstream pathway, CoQ10 production in the mutants was improved up to 93.34 mg/L (7.16 mg/g DCW), about twofold of the wild-type (48.25 mg/L, 3.24 mg/g DCW).
Collapse
Affiliation(s)
- Wenqiang Lu
- Department of Chemical and Biological Engineering, Institute of Bioengineering, Zhejiang University, Hangzhou, 310027, PR China
| | | | | | | | | | | |
Collapse
|