51
|
Hedberg C, Niceta M, Fattori F, Lindvall B, Ciolfi A, D'Amico A, Tasca G, Petrini S, Tulinius M, Tartaglia M, Oldfors A, Bertini E. Childhood onset tubular aggregate myopathy associated with de novo STIM1 mutations. J Neurol 2014; 261:870-6. [PMID: 24570283 DOI: 10.1007/s00415-014-7287-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 12/30/2022]
Abstract
We investigated three unrelated patients with tubular-aggregate myopathy and slowly progressive muscle weakness manifesting in the first years of life. All patients showed type 1 muscle fiber predominance and hypotrophy of type 2 fibers. Tubular aggregates were abundant. In all three patients mutations were identified in the gene STIM1, and the mutations were found to be de novo in all patients. In one of the patients the mutation was identified by exome sequencing. Two patients harbored the previously described mutation c.326A>G p.(His109Arg), while the third patient had a novel mutation c.343A>T p.(Ile115Phe). Taking our series together with previously published cases, the c.326A>G p.(His109Arg) seems to be a hotspot mutation that is characteristically related to early onset muscle weakness.
Collapse
Affiliation(s)
- Carola Hedberg
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Kondratska K, Kondratskyi A, Yassine M, Lemonnier L, Lepage G, Morabito A, Skryma R, Prevarskaya N. Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance of pancreatic adenocarcinoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2263-9. [PMID: 24583265 DOI: 10.1016/j.bbamcr.2014.02.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 12/22/2022]
Abstract
The store-operated calcium channels (SOCs) represent one of the major calcium-entry pathways in non-excitable cells. SOCs and in particular their major components ORAI1 and STIM1 have been shown to be implicated in a number of physiological and pathological processes such as apoptosis, proliferation and invasion. Here we demonstrate that ORAI1 and STIM1 mediate store-operated calcium entry (SOCE) in pancreatic adenocarcinoma cell lines. We show that both ORAI1 and STIM1 play pro-survival anti-apoptotic role in pancreatic adenocarcinoma cell lines, as siRNA-mediated knockdown of ORAI1 and/or STIM1 increases apoptosis induced by chemotherapy drugs 5-fluorouracil (5-FU) or gemcitabine. We also demonstrate that both 5-FU and gemcitabine treatments increase SOCE in Panc1 pancreatic adenocarcinoma cell line via upregulation of ORAI1 and STIM1. Altogether our results reveal the novel calcium-dependent mechanism of action of the chemotherapy drugs 5-FU and gemcitabine and emphasize the anti-apoptotic role of ORAI1 and STIM1 in pancreatic adenocarcinoma cells. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Kateryna Kondratska
- Inserm U-1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Artem Kondratskyi
- Inserm U-1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Maya Yassine
- Inserm U-1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Loic Lemonnier
- Inserm U-1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Gilbert Lepage
- Inserm U-1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Angela Morabito
- Inserm U-1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm U-1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm U-1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France.
| |
Collapse
|
53
|
Goonasekera SA, Davis J, Kwong JQ, Accornero F, Wei-LaPierre L, Sargent MA, Dirksen RT, Molkentin JD. Enhanced Ca²⁺ influx from STIM1-Orai1 induces muscle pathology in mouse models of muscular dystrophy. Hum Mol Genet 2014; 23:3706-15. [PMID: 24556214 DOI: 10.1093/hmg/ddu079] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Muscular dystrophy is a progressive muscle wasting disease that is thought to be initiated by unregulated Ca(2+) influx into myofibers leading to their death. Store-operated Ca(2+) entry (SOCE) through sarcolemmal Ca(2+) selective Orai1 channels in complex with STIM1 in the sarcoplasmic reticulum is one such potential disease mechanism for pathologic Ca(2+) entry. Here, we generated a mouse model of STIM1 overexpression in skeletal muscle to determine whether this type of Ca(2+) entry could induce muscular dystrophy. Myofibers from muscle-specific STIM1 transgenic mice showed a significant increase in SOCE in skeletal muscle, modeling an observed increase in the same current in dystrophic myofibers. Histological and biochemical analysis of STIM1 transgenic mice showed fulminant muscle disease characterized by myofiber necrosis, swollen mitochondria, infiltration of inflammatory cells, enhanced interstitial fibrosis and elevated serum creatine kinase levels. This dystrophic-like disease in STIM1 transgenic mice was abrogated by crossing in a transgene expressing a dominant-negative Orai1 (dnOrai1) mutant. The dnOrai1 transgene also significantly reduced the severity of muscular dystrophy in both mdx (dystrophin mutant mice) and δ-sarcoglycan-deficient (Sgcd(-/-)) mouse models of disease. Hence, Ca(2+) influx across an unstable sarcolemma due to increased activity of a STIM1-Orai1 complex is a disease determinant in muscular dystrophy, and hence, SOCE represents a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati and Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA and
| |
Collapse
|
54
|
Trebak M, Zhang W, Ruhle B, Henkel MM, González-Cobos JC, Motiani RK, Stolwijk JA, Newton RL, Zhang X. What role for store-operated Ca²⁺ entry in muscle? Microcirculation 2013; 20:330-6. [PMID: 23312019 DOI: 10.1111/micc.12042] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/08/2013] [Indexed: 12/13/2022]
Abstract
Store-operated Ca²⁺ entry (SOCE) is a receptor-regulated Ca²⁺ entry pathway that is both ubiquitous and evolutionarily conserved. SOCE is activated by depletion of intracellular Ca²⁺ stores through receptor-mediated production of inositol 1,4,5-trisphosphate (IP₃). The depletion of endoplasmic reticulum (ER) Ca²⁺ is sensed by stromal interaction molecule 1 (STIM1). On store depletion, STIM1 aggregates and moves to areas where the ER comes close to the plasma membrane (PM; within 25 nm) to interact with Orai1 channels and activate Ca²⁺ entry. Ca²⁺ entry through store-operated Ca²⁺ (SOC) channels, originally thought to mediate the replenishment of Ca²⁺ stores, participate in active downstream signaling by coupling to the activation of enzymes and transcription factors that control a wide variety of long-term cell functions such as proliferation, growth, and migration. SOCE has also been proposed to contribute to short-term cellular responses such as muscle contractility. While there are significant STIM1/Orai1 protein levels and SOCE activity in adult skeletal muscle, the precise role of SOCE in skeletal muscle contractility is not clear. The dependence on SOCE during cardiac and smooth muscle contractility is even less certain. Here, we will hypothesize on the contribution of SOCE in muscle and its potential role in contractility and signaling.
Collapse
Affiliation(s)
- Mohamed Trebak
- Nanobioscience Constellation, College of Nanoscale Science and Engineering-CNSE, University at Albany, State University of New York, Albany, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases. Eur J Pharmacol 2013; 720:326-34. [PMID: 24140436 DOI: 10.1016/j.ejphar.2013.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/25/2013] [Accepted: 10/10/2013] [Indexed: 11/23/2022]
Abstract
Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses.
Collapse
|
56
|
STIM1 negatively regulates Ca²⁺ release from the sarcoplasmic reticulum in skeletal myotubes. Biochem J 2013; 453:187-200. [PMID: 23668188 DOI: 10.1042/bj20130178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
STIM1 (stromal interaction molecule 1) mediates SOCE (store-operated Ca²⁺ entry) in skeletal muscle. However, the direct role(s) of STIM1 in skeletal muscle, such as Ca²⁺ release from the SR (sarcoplasmic reticulum) for muscle contraction, have not been identified. The times required for the maximal expression of endogenous STIM1 or Orai1, or for the appearance of puncta during the differentiation of mouse primary skeletal myoblasts to myotubes, were all different, and the formation of puncta was detected with no stimulus during differentiation, suggesting that, in skeletal muscle, the formation of puncta is a part of the differentiation. Wild-type STIM1 and two STIM1 mutants (Triple mutant, missing Ca²⁺-sensing residues but possessing the intact C-terminus; and E136X, missing the C-terminus) were overexpressed in the myotubes. The wild-type STIM1 increased SOCE, whereas neither mutant had an effect on SOCE. It was interesting that increases in the formation of puncta were observed in the Triple mutant as well as in wild-type STIM1, suggesting that SOCE-irrelevant puncta could exist in skeletal muscle. On the other hand, overexpression of wild-type or Triple mutant, but not E136X, attenuated Ca²⁺ releases from the SR in response to KCl [evoking ECC (excitation-contraction coupling) via activating DHPR (dihydropyridine receptor)] in a dominant-negative manner. The attenuation was removed by STIM1 knockdown, and STIM1 was co-immunoprecipitated with DHRP in a Ca²⁺-independent manner. These results suggest that STIM1 negatively regulates Ca²⁺ release from the SR through the direct interaction of the STIM1 C-terminus with DHPR, and that STIM1 is involved in both ECC and SOCE in skeletal muscle.
Collapse
|
57
|
Harisseh R, Chatelier A, Magaud C, Déliot N, Constantin B. Involvement of TRPV2 and SOCE in calcium influx disorder in DMD primary human myotubes with a specific contribution of α1-syntrophin and PLC/PKC in SOCE regulation. Am J Physiol Cell Physiol 2013; 304:C881-94. [DOI: 10.1152/ajpcell.00182.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Calcium homeostasis is critical for several vital functions in excitable and nonexcitable cells and has been shown to be impaired in many pathologies including Duchenne muscular dystrophy (DMD). Various studies using murine models showed the implication of calcium entry in the dystrophic phenotype. However, alteration of store-operated calcium entry (SOCE) and transient receptor potential vanilloid 2 (TRPV2)-dependant cation entry has not been investigated yet in human skeletal muscle cells. We pharmacologically characterized basal and store-operated cation entries in primary cultures of myotubes prepared from muscle of normal and DMD patients and found, for the first time, an increased SOCE in DMD myotubes. Moreover, this increase cannot be explained by an over expression of the well-known SOCE actors: TRPC1/4, Orai1, and stromal interaction molecule 1 (STIM1) mRNA and proteins. Thus we investigated the modes of regulation of this cation entry. We firstly demonstrated the important role of the scaffolding protein α1-syntrophin, which regulates SOCE in primary human myotubes through its PDZ domain. We also studied the implication of phospholipase C (PLC) and protein kinase C (PKC) in SOCE and showed that their inhibition restores normal levels of SOCE in DMD human myotubes. In addition, the involvement of TRPV2 in calcium deregulation in DMD human myotubes was explored. We showed an abnormal elevation of TRPV2-dependant cation entry in dystrophic primary human myotubes compared with normal ones. These findings show that calcium homeostasis mishandling in DMD myotubes depends on SOCE under the influence of Ca2+/PLC/PKC pathway and α1-syntrophin regulation as well as on TRPV2-dependant cation influx.
Collapse
Affiliation(s)
- Rania Harisseh
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers/Centre National de la Recherche Scientifique FRE-3511 Poitiers, France
| | - Aurélien Chatelier
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers/Centre National de la Recherche Scientifique FRE-3511 Poitiers, France
| | - Christophe Magaud
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers/Centre National de la Recherche Scientifique FRE-3511 Poitiers, France
| | - Nadine Déliot
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers/Centre National de la Recherche Scientifique FRE-3511 Poitiers, France
| | - Bruno Constantin
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers/Centre National de la Recherche Scientifique FRE-3511 Poitiers, France
| |
Collapse
|
58
|
Lee EH, Woo JS, Hwang JH, Park JH, Cho CH. Angiopoietin 1 enhances the proliferation and differentiation of skeletal myoblasts. J Cell Physiol 2013; 228:1038-44. [PMID: 23041942 DOI: 10.1002/jcp.24251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/26/2012] [Indexed: 01/23/2023]
Abstract
Angiopoietin 1 (Ang1) plays an important role in various endothelial functions, such as vascular integrity and angiogenesis; however, less is known about its function outside of the endothelium. In this study, we examined whether Ang1 has direct effects on skeletal muscle cells. We found that Ang1 exhibited myogenic potential, as it promoted the proliferation, migration, and differentiation of mouse primary skeletal myoblasts. The positive effect of Ang1 on myoblast proliferation could have been mediated by the α7 and β1 integrins. We also found that Ang1 potentiated cellular Ca(2+) movements in differentiated myotubes in response to stimuli, possibly through the increased expression of two Ca(2+) -related proteins, namely, Orai1 and calmodulin. Ang1 also increased Orai1 and calmodulin expression in mouse hearts in vivo. These results provide an insight into the molecular mechanisms by which Ang1 directly affects the myogenesis of striated muscle.
Collapse
Affiliation(s)
- Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
59
|
Takamori M. Structure of the neuromuscular junction: function and cooperative mechanisms in the synapse. Ann N Y Acad Sci 2013; 1274:14-23. [PMID: 23252893 DOI: 10.1111/j.1749-6632.2012.06784.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As an overview of the structure of the neuromuscular junction, three items are described focusing on cooperative mechanisms involving the synapse and leading to muscle contraction: (1) presynaptic acetylcholine release regulated by vesicle cycling (exocytosis and endocytosis); the fast-mode of endocytosis requires a large influx of external Ca(2+) and is promoted by the activation of G protein-coupled receptors and receptor tyrosine kinases; (2) postsynaptic acetylcholine receptor clustering mediated by the muscle-specific, Dok7-stimulated tyrosine kinase (MuSK) through two signaling mechanisms: one via agrin-Lrp4-MuSK (Ig1/2 domains) and the second via Wnt-MuSK (Frizzled-like cysteine-rich domain)-adaptor Dishevelled; Wnts/MuSK and Lrp4 direct a retrograde signal to presynaptic differentiation; (3) muscle contractile machinery regulated by Ca(2+) -release and Ca(2+) -influx channels, including the depolarization-activated ryanodine receptor-1 and the receptor- and/or store-operated transient receptor potential canonical. The first mechanism is dysfunctional in Lambert-Eaton myasthenic syndrome, the second in anti-acetylcholine receptor-negative myasthenia gravis (MG), and the third in thymoma-associated MG.
Collapse
|
60
|
Hourdé C, Joanne P, Medja F, Mougenot N, Jacquet A, Mouisel E, Pannerec A, Hatem S, Butler-Browne G, Agbulut O, Ferry A. Voluntary physical activity protects from susceptibility to skeletal muscle contraction-induced injury but worsens heart function in mdx mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1509-18. [PMID: 23465861 DOI: 10.1016/j.ajpath.2013.01.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 12/19/2012] [Accepted: 01/14/2013] [Indexed: 12/25/2022]
Abstract
It is well known that inactivity/activity influences skeletal muscle physiological characteristics. However, the effects of inactivity/activity on muscle weakness and increased susceptibility to muscle contraction-induced injury have not been extensively studied in mdx mice, a murine model of Duchenne muscular dystrophy with dystrophin deficiency. In the present study, we demonstrate that inactivity (ie, leg immobilization) worsened the muscle weakness and the susceptibility to contraction-induced injury in mdx mice. Inactivity also mimicked these two dystrophic features in wild-type mice. In contrast, we demonstrate that these parameters can be improved by activity (ie, voluntary wheel running) in mdx mice. Biochemical analyses indicate that the changes induced by inactivity/activity were not related to fiber-type transition but were associated with altered expression of different genes involved in fiber growth (GDF8), structure (Actg1), and calcium homeostasis (Stim1 and Jph1). However, activity reduced left ventricular function (ie, ejection and shortening fractions) in mdx, but not C57, mice. Altogether, our study suggests that muscle weakness and susceptibility to contraction-induced injury in dystrophic muscle could be attributable, at least in part, to inactivity. It also suggests that activity exerts a beneficial effect on dystrophic skeletal muscle but not on the heart.
Collapse
Affiliation(s)
- Christophe Hourdé
- Institute of Myology, INSERM U974, CNRS UMR7215, UPMC UM76, Université Pierre et Marie Curie-Paris 6, Sorbonne Universities, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Böhm J, Chevessier F, Maues De Paula A, Koch C, Attarian S, Feger C, Hantaï D, Laforêt P, Ghorab K, Vallat JM, Fardeau M, Figarella-Branger D, Pouget J, Romero NB, Koch M, Ebel C, Levy N, Krahn M, Eymard B, Bartoli M, Laporte J. Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 2013; 92:271-8. [PMID: 23332920 DOI: 10.1016/j.ajhg.2012.12.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/31/2012] [Accepted: 12/14/2012] [Indexed: 01/20/2023] Open
Abstract
Tubular aggregates are regular arrays of membrane tubules accumulating in muscle with age. They are found as secondary features in several muscle disorders, including alcohol- and drug-induced myopathies, exercise-induced cramps, and inherited myasthenia, but also exist as a pure genetic form characterized by slowly progressive muscle weakness. We identified dominant STIM1 mutations as a genetic cause of tubular-aggregate myopathy (TAM). Stromal interaction molecule 1 (STIM1) is the main Ca(2+) sensor in the endoplasmic reticulum, and all mutations were found in the highly conserved intraluminal Ca(2+)-binding EF hands. Ca(2+) stores are refilled through a process called store-operated Ca(2+) entry (SOCE). Upon Ca(2+)-store depletion, wild-type STIM1 oligomerizes and thereby triggers extracellular Ca(2+) entry. In contrast, the missense mutations found in our four TAM-affected families induced constitutive STIM1 clustering, indicating that Ca(2+) sensing was impaired. By monitoring the calcium response of TAM myoblasts to SOCE, we found a significantly higher basal Ca(2+) level in TAM cells and a dysregulation of intracellular Ca(2+) homeostasis. Because recessive STIM1 loss-of-function mutations were associated with immunodeficiency, we conclude that the tissue-specific impact of STIM1 loss or constitutive activation is different and that a tight regulation of STIM1-dependent SOCE is fundamental for normal skeletal-muscle structure and function.
Collapse
Affiliation(s)
- Johann Böhm
- Département de Médecine Translationelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Phuong TTT, Yun YH, Kim SJ, Kang TM. Positive feedback control between STIM1 and NFATc3 is required for C2C12 myoblast differentiation. Biochem Biophys Res Commun 2012. [PMID: 23206701 DOI: 10.1016/j.bbrc.2012.11.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Up-regulation of STIM1-mediated store-operated Ca(2+) entry (SOCE) and Ca(2+)-dependent NFAT signaling is important for myogenic differentiation. However, the molecular mechanisms for differentiation specific up-regulation of STIM1/SOCE-mediated signaling are poorly understood. This study explored whether functional crosstalk between STIM1 and a member of NFAT transcription factor is important for C2C12 myoblast differentiation. Transient increase of NFATc3 expression was observed in the initial phase of differentiation, and the increased activity of NFATc3 isoform was correlated with up-regulation of STIM1 expression. Overexpression of NFATc3 increased STIM1 expression, SOCE activity, and myotube formation, whereas NFATc3 knockdown showed the opposite effects. Overexpression of STIM1 increased the activity and expression level of NFATc3, and enhanced myotube formation, whereas STIM1 knockdown resulted in the opposite effects. Taken together, our findings suggest that a positive feedback control between STIM1/SOCE and NFATc3 is required for efficient induction and progression of myoblast differentiation.
Collapse
Affiliation(s)
- Tam Thi Thanh Phuong
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | | | | | | |
Collapse
|
63
|
Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 2012; 13:549-65. [PMID: 22914293 DOI: 10.1038/nrm3414] [Citation(s) in RCA: 537] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stromal interaction molecule (STIM) proteins function in cells as dynamic coordinators of cellular calcium (Ca(2+)) signals. Spanning the endoplasmic reticulum (ER) membrane, they sense tiny changes in the levels of Ca(2+) stored within the ER lumen. As ER Ca(2+) is released to generate primary Ca(2+) signals, STIM proteins undergo an intricate activation reaction and rapidly translocate into junctions formed between the ER and the plasma membrane. There, STIM proteins tether and activate the highly Ca(2+)-selective Orai channels to mediate finely controlled Ca(2+) signals and to homeostatically balance cellular Ca(2+). Details are emerging on the remarkable organization within these STIM-induced junctional microdomains and the identification of new regulators and alternative target proteins for STIM.
Collapse
Affiliation(s)
- Jonathan Soboloff
- Department of Biochemistry, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
64
|
Avdonin PV. Orai and TRP channels in skeletal muscle cells. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2012. [DOI: 10.1134/s1990747812010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
65
|
Abstract
Stromal interaction molecules (STIM1 and STIM2) are single pass transmembrane proteins located mainly in the endoplasmic reticulum (ER). STIM proteins contain an EF-hand in their N-termini that faces the lumen side of the ER allowing them to act as ER calcium (Ca(2+)) sensors. STIM1 has been recognized as central to the activation of the highly Ca(2+) selective store-operated Ca(2+) (SOC) entry current mediated by the Ca(2+) release-activated Ca(2+) (CRAC) channel; CRAC channels are formed by tetramers of the plasma membrane (PM) protein Orai1. Physiologically, the production of inositol 1,4,5-trisphosphate (IP(3)) upon stimulation of phospholipase C-coupled receptors and the subsequent emptying of IP(3)-sensitive ER Ca(2+) stores are sensed by STIM1 molecules which aggregate and move closer to the PM to interact physically with Orai1 channels and activate Ca(2+) entry. Orai1 has two homologous proteins encoded by separate genes, Orai2 and Orai3. Other modes of receptor-regulated Ca(2+) entry into cells are store-independent; for example, arachidonic acid activates a highly Ca(2+) selective store-independent channel formed by heteropentamers of Orai1 and Orai3 and regulated by the PM pool of STIM1. Here, I will discuss results pertaining to the roles of STIM and Orai proteins in smooth muscle Ca(2+) entry pathways and their role in vascular remodelling.
Collapse
Affiliation(s)
- Mohamed Trebak
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|