51
|
Guitor AK, Yousuf EI, Raphenya AR, Hutton EK, Morrison KM, McArthur AG, Wright GD, Stearns JC. Capturing the antibiotic resistome of preterm infants reveals new benefits of probiotic supplementation. MICROBIOME 2022; 10:136. [PMID: 36008821 PMCID: PMC9414150 DOI: 10.1186/s40168-022-01327-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Probiotic use in preterm infants can mitigate the impact of antibiotic exposure and reduce rates of certain illnesses; however, the benefit on the gut resistome, the collection of antibiotic resistance genes, requires further investigation. We hypothesized that probiotic supplementation of early preterm infants (born < 32-week gestation) while in hospital reduces the prevalence of antibiotic resistance genes associated with pathogenic bacteria in the gut. We used a targeted capture approach to compare the resistome from stool samples collected at the term corrected age of 40 weeks for two groups of preterm infants (those that routinely received a multi-strain probiotic during hospitalization and those that did not) with samples from full-term infants at 10 days of age to identify if preterm birth or probiotic supplementation impacted the resistome. We also compared the two groups of preterm infants up to 5 months of age to identify persistent antibiotic resistance genes. RESULTS At the term corrected age, or 10 days of age for the full-term infants, we found over 80 antibiotic resistance genes in the preterm infants that did not receive probiotics that were not identified in either the full-term or probiotic-supplemented preterm infants. More genes associated with antibiotic inactivation mechanisms were identified in preterm infants unexposed to probiotics at this collection time-point compared to the other infants. We further linked these genes to mobile genetic elements and Enterobacteriaceae, which were also abundant in their gut microbiomes. Various genes associated with aminoglycoside and beta-lactam resistance, commonly found in pathogenic bacteria, were retained for up to 5 months in the preterm infants that did not receive probiotics. CONCLUSIONS This pilot survey of preterm infants shows that probiotics administered after preterm birth during hospitalization reduced the diversity and prevented persistence of antibiotic resistance genes in the gut microbiome. The benefits of probiotic use on the microbiome and the resistome should be further explored in larger groups of infants. Due to its high sensitivity and lower sequencing cost, our targeted capture approach can facilitate these surveys to further address the implications of resistance genes persisting into infancy without the need for large-scale metagenomic sequencing. Video Abstract.
Collapse
Affiliation(s)
- Allison K Guitor
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Efrah I Yousuf
- Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Amogelang R Raphenya
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Eileen K Hutton
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Canada
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada
| | - Katherine M Morrison
- Department of Pediatrics, McMaster University, Hamilton, Canada
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Jennifer C Stearns
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada.
- Department of Medicine, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
| |
Collapse
|
52
|
Gorczyca K, Obuchowska A, Kimber-Trojnar Ż, Wierzchowska-Opoka M, Leszczyńska-Gorzelak B. Changes in the Gut Microbiome and Pathologies in Pregnancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19169961. [PMID: 36011603 PMCID: PMC9408136 DOI: 10.3390/ijerph19169961] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 05/08/2023]
Abstract
Pregnancy is a special period in a woman's life when her organism undergoes multiple physiological changes so that the fetus has optimal conditions for growth and development. These include modifications in the composition of the microbiome that occur between the first and third trimesters of pregnancy. There is an increase in Akkermansia, Bifidobacterium, and Firmicutes, which have been associated with an increase in the need for energy storage. The growth in Proteobacteria and Actinobacteria levels has a protective effect on both the mother and the fetus via proinflammatory mechanisms. The aim of the study is to review the research on the relationship between the mother's intestinal microbiome and gestational pathologies. Changes in the maternal gut microbiome is probably one of the mechanisms that occurs in various pregnancy diseases such as preeclampsia, fetal growth restriction, gestational diabetes mellitus, excessive gestational weight gain, and premature birth. For this reason, it seems vital to pay attention to certain interventions that can benefit the affected patients both in the short term, by preventing complications during pregnancy, and in the long term, as one of the mechanisms occurring in various gestational diseases is dysbiosis of the maternal intestinal flora.
Collapse
|
53
|
Liu M, Chen C, Kang S, Kwon JI, Jin J, Che H. Effect of different feeding methods and gut microbiota on premature infants and clinical outcomes. Front Nutr 2022; 9:888304. [PMID: 35978959 PMCID: PMC9376281 DOI: 10.3389/fnut.2022.888304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Premature infants require special care, and clinical feeding methods for this patient group are generally divided into breastfeeding and formula milk. This retrospective study investigated the effects of these two feeding methods on premature infants admitted to the neonatal intensive care unit between 2017 and 2018. Data regarding the duration of complete enteral feeding, weight gain, and postnatal infections were collected, categorized, and compared. Pearson's correlation coefficient was used to determine the correlation between the intestinal flora and clinical outcomes. Results revealed no differences between the two feeding methods, and neither had significant effects on clinical indicators in premature infants, although the gut microbiota may be an important factor influencing many clinical indicators. Results of this study suggest an important role for the gut microbiota in the care of premature infants and provide a basis for promoting the healthy development of this patient population.
Collapse
Affiliation(s)
- Manman Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Cheng Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Songhao Kang
- College of Engineering, China Agricultural University, Beijing, China
| | - Jung-il Kwon
- Maeil Innovation Center, Maeil Dairies Co., Ltd., Seoul, South Korea
| | - Juan Jin
- Maeil Innovation Center, Maeil Dairies Co., Ltd., Seoul, South Korea
| | - Huilian Che
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
54
|
Toubon G, Butel MJ, Rozé JC, Lepage P, Delannoy J, Ancel PY, Charles MA, Aires J. Very Preterm Children Gut Microbiota Comparison at the Neonatal Period of 1 Month and 3.5 Years of Life. Front Microbiol 2022; 13:919317. [PMID: 35935237 PMCID: PMC9354809 DOI: 10.3389/fmicb.2022.919317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022] Open
Abstract
Prematurity is a risk factor for dysbiosis of the gut microbiota due to particular birth conditions and frequent prolonged hospitalization of neonates. Although gut microbiota colonization after birth and its establishment during the hospitalization period have been studied in preterm infants, data on gut microbiota following discharge, particularly during early childhood, are scarce. The present study investigated the relationship between gut microbiota at 1 month after birth (hospitalization period) and 3.5 years of age in 159 preterm children belonging to the French EPIFLORE prospective observational cohort study. Analysis using bacterial 16S rRNA gene sequencing showed that the gut microbiota of preterm neonates at 1 month was highly variable and characterized by six distinct enterotypes. In contrast, the gut microbiota of the same children at 3.5 years of age showed less variability, with only two discrete enterotypes. An absence of association between enterotypes at 1 month and 3.5 years of age was observed. While the alpha diversity of gut microbiota significantly increased between 1 month and 3.5 years of age, for both alpha and beta diversities, there was no correlation between the 1-month and 3.5-years time points. Comparison at 3.5 years between children born either preterm (n = 159) or full-term (n = 200) showed no differences in terms of enterotypes, but preterm children harbored a lower Shannon diversity index and a different overall composition of microbiota than full-term children. This study suggests that the characteristics of the early gut microbiota of preterm children are not predictive of the microbial community composition at 3.5 years of age. However, the impact of gestational age is still noticeable on the gut microbiota up to 3.5 years of age.
Collapse
Affiliation(s)
- Gaël Toubon
- INSERM, UMR1153 Centre de Recherche Épidémiologie et Statistiques (CRESS), Université Paris Cité, Paris, France,Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), Paris, France,FHU PREMA, Fighting Prematurity, Paris, France
| | - Marie-José Butel
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), Paris, France,FHU PREMA, Fighting Prematurity, Paris, France
| | - Jean-Christophe Rozé
- INRAE, UMR 1280, Physiologie des Adaptations Nutritionnelles (PhAN), Université hospitalière de Nantes, Nantes, France
| | - Patricia Lepage
- INRAE, UMR 1319, AgrosParisTech, Institut Micalis, Université Paris-Saclay, Paris, France
| | - Johanne Delannoy
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), Paris, France,FHU PREMA, Fighting Prematurity, Paris, France
| | - Pierre-Yves Ancel
- INSERM, UMR1153 Centre de Recherche Épidémiologie et Statistiques (CRESS), Université Paris Cité, Paris, France,FHU PREMA, Fighting Prematurity, Paris, France
| | - Marie-Aline Charles
- INSERM, UMR1153 Centre de Recherche Épidémiologie et Statistiques (CRESS), Université Paris Cité, Paris, France
| | - Julio Aires
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), Paris, France,FHU PREMA, Fighting Prematurity, Paris, France,*Correspondence: Julio Aires,
| | - for the EPIFLORE Study GroupRousseauClotildeDoreJoelNabhaniZiad AlRouxKarine LeMonotCelineMartinMarchandLaetitiaDuroxMelanieLapillonneAlexandrePicaudJean-CharlesBoudredFaridMitanchezDelphineBiranValerieStormeLaurentClarisOlivierCambonieGillesFlamantCyrilSauretAnneDickyOdileFavraisGeraldineHascoetJean-MichelGascoinGeraldineThiriezGerardDesfrereLucDurrmeyerXavierChollatClement(Federation of University Hospital, PREMA, UMR-S 1139, Faculty of Pharmacy, INSERM and Paris Descartes University); (INRA, UMR 1319 MICALIS); J-CR (Department of Neonatal Medicine, Nantes University Hospital); (INSERM, U1153, Obstetrical, Perinatal and Pediatric Epidemiology Team, Epidemiology and Biostatistics Sorbonne); (Department of Neonatal Medicine, Assistance Publique Hopitaux de Paris, Necker Enfants Malades Hospital); (Department of Neonatal Medicine, Hopital de la Croix-Rousse, Hospices Civils de Lyon); (Department of Neonatology, Faculte de Medecine, Aix-Marseille Université); (Division of Neonatology, Department of Perinatology, Armand Trousseau Hospital); (Department of Neonatalogy, Université Paris 7, Robert-Debre Hospital, Assistance Publique Hopitaux de Paris); (Department of Neonatal Medicine, Lille University Hospital); (Mothers and Children Hospital, Hospices Civils de Lyon); (Department of Neonatal Medicine, Montpellier University Hospital); (Department of Neonatal Medicine, Nantes University Hospital); (Department of Neonatal Medicine, Rennes University Hospital); (Department of Neonatal Medicine, Toulouse University Hospital); (Department of Neonatalogy, Tours University Hospital); (Department of Neonatal Medicine, Nancy University Hospital); (Department of Neonatal Medicine, Angers University Hospital); (Department of Pediatrics, Besancon University Hospital); (Department of Neonatal Medicine, Louis Mourier Hospital, Assistance Publique Hopitaux de Paris); (Department of Neonatal Medicine, Centre Hospitalier Intercommunal); (Department of Neonatal Medicine, Cochin University Hospital)
| |
Collapse
|
55
|
Diamond L, Wine R, Morris SK. Impact of intrapartum antibiotics on the infant gastrointestinal microbiome: a narrative review. Arch Dis Child 2022; 107:627-634. [PMID: 34716171 DOI: 10.1136/archdischild-2021-322590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The composition of the infant gastrointestinal (GI) microbiome has been linked to adverse long-term health outcomes and neonatal sepsis. Several factors are known to impact the composition of the microbiome, including mode of delivery, gestational age, feeding method and exposure to antibiotics. The impact of intrapartum antibiotics (IPAs) on the infant microbiome requires further research. OBJECTIVE We aimed to evaluate the impact of IPAs on the infant GI microbiome. METHODS We searched Ovid MEDLINE and Embase Classic+Embase for articles in English reporting on the microbiome of infants exposed to IPAs from the date of inception to 3 January 2021. Primary outcomes included abundance and colonisation of Bifidobacterium and Lactobacillus, as well as alpha and beta diversity. RESULTS 30 papers were included in this review. In the first year of life, following exposure to IPAs, 30% (6/20) of infant cohorts displayed significantly reduced Bifidobacterium, 89% (17/19) did not display any significant differences in Lactobacillus colonisation, 21% (7/34) displayed significantly reduced alpha diversity and 35% (12/34) displayed alterations in beta diversity. Results were further stratified by delivery, gestational age (preterm or full term) and feeding method. CONCLUSIONS IPAs impact the composition of the infant GI microbiome, resulting in possible reductions Bifidobacterium and alpha diversity, and possible alterations in beta diversity. Our findings may have implications for maternal and neonatal health, including interventions to prevent reductions in health-promoting bacteria (eg, probiotics) and IPA class selection.
Collapse
Affiliation(s)
- Laura Diamond
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Wine
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaun K Morris
- Division of Infectious Diseases and Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada .,Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
56
|
Intestinal ‘Infant-Type’ Bifidobacteria Mediate Immune System Development in the First 1000 Days of Life. Nutrients 2022; 14:nu14071498. [PMID: 35406110 PMCID: PMC9002861 DOI: 10.3390/nu14071498] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 01/05/2023] Open
Abstract
Immune system maturation begins early in life, but few studies have examined how early-life gut microbiota colonization educates the neonatal immune system. Bifidobacteria predominate in the intestines of breastfed infants and metabolize human milk oligosaccharides. This glycolytic activity alters the intestinal microenvironment and consequently stimulates immune system maturation at the neonatal stage. However, few studies have provided mechanistic insights into the contribution of ‘infant-type’ Bifidobacterium species, especially via metabolites such as short-chain fatty acids. In this review, we highlight the first 1000 days of life, which provide a window of opportunity for infant-type bifidobacteria to educate the neonatal immune system. Furthermore, we discuss the instrumental role of infant-type bifidobacteria in the education of the neonatal immune system by inducing immune tolerance and suppressing intestinal inflammation, and the potential underlying mechanism of this immune effect in the first 1000 days of life. We also summarize recent research that suggests the administration of infant-type bifidobacteria helps to modify the intestinal microecology and prevent the progress of immune-mediated disorders.
Collapse
|
57
|
Hsu CN, Tain YL. Chronic Kidney Disease and Gut Microbiota: What Is Their Connection in Early Life? Int J Mol Sci 2022; 23:3954. [PMID: 35409313 PMCID: PMC9000069 DOI: 10.3390/ijms23073954] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The gut-kidney interaction implicating chronic kidney disease (CKD) has been the focus of increasing interest in recent years. Gut microbiota-targeted therapies could prevent CKD and its comorbidities. Considering that CKD can originate in early life, its treatment and prevention should start in childhood or even earlier in fetal life. Therefore, a better understanding of how the early-life gut microbiome impacts CKD in later life and how to develop ideal early interventions are unmet needs to reduce CKD. The purpose of the current review is to summarize (1) the current evidence on the gut microbiota dysbiosis implicated in pediatric CKD; (2) current knowledge supporting the impact of the gut-kidney axis in CKD, including inflammation, immune response, alterations of microbiota compositions, short-chain fatty acids, and uremic toxins; and (3) an overview of the studies documenting early gut microbiota-targeted interventions in animal models of CKD of developmental origins. Treatment options include prebiotics, probiotics, postbiotics, etc. To accelerate the transition of gut microbiota-based therapies for early prevention of CKD, an extended comprehension of gut microbiota dysbiosis implicated in renal programming is needed, as well as a greater focus on pediatric CKD for further clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
58
|
Capin I, Hinds A, Vomero B, Roth P, Blau J. Are Early-Onset Sepsis Evaluations and Empiric Antibiotics Mandatory for All Neonates Admitted with Respiratory Distress? Am J Perinatol 2022; 39:444-448. [PMID: 32947642 DOI: 10.1055/s-0040-1717070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the success and safety of an antimicrobial stewardship protocol for neonates admitted with respiratory distress at birth. STUDY DESIGN A retrospective cohort analysis of all infants admitted to the neonatal intensive care unit (NICU) with respiratory distress from January 2013 to February 2018 was conducted. In April 2016, an antimicrobial stewardship protocol was implemented, dividing neonates into two groups: maternal indications for delivery (no infectious risk factors for early-onset sepsis [EOS]) and fetal indications (risk factors present) for delivery. Neonates with risk factors for EOS were started on empiric antibiotics, those who lacked risk factors were observed. Paired sample t-test and descriptive statistics were used to compare the pre- and postprotocol implementation. RESULTS There were no missed cases of EOS in our study. Management with empiric antibiotics decreased from 95 to 41% of neonates with respiratory distress after initiation of the protocol. Newborns with a lower mean (±standard errors of the mean [SEM]) gestational age were more likely to receive empiric antibiotics (35.1 ± 0.4 [range: 23-42 weeks] vs. 37.7 ± 0.2 weeks [range: 24-42 weeks]; p < 0.05). Similar findings were seen for neonates with lower mean birth weights (2,627 ± 77 [range: 390-5,440 g] vs. 3,078 ± 51 g [range: 620-6,260 g]; p < 0.05). CONCLUSION The antibiotic stewardship protocol safely reduces the administration of empiric antibiotics to symptomatic neonates without missing any cases of sepsis. KEY POINTS · Newborns born with respiratory distress often receive broad-spectrum antibiotics upon NICU admission.. · An antibiotic stewardship program was created for this population and considered perinatal risk factors for sepsis when determining whether antibiotics were indicated.. · This antibiotic stewardship program was safe and effective, significantly reducing antibiotic use without missing any cases of sepsis..
Collapse
Affiliation(s)
- Ivana Capin
- Department of Pediatrics, Division of Neonatology, Staten Island University Hospital, Northwell Health, Staten Island, New York
| | - Autumn Hinds
- SUNY Downstate College of Medicine, Brooklyn, New York
| | - Bridgit Vomero
- Department of Pediatrics, Division of Neonatology, Staten Island University Hospital, Northwell Health, Staten Island, New York
| | - Philip Roth
- Department of Pediatrics, Division of Neonatology, Staten Island University Hospital, Northwell Health, Staten Island, New York.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Jonathan Blau
- Department of Pediatrics, Division of Neonatology, Staten Island University Hospital, Northwell Health, Staten Island, New York.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| |
Collapse
|
59
|
Miller EM. A critical biocultural approach to early growth in the United States. Am J Hum Biol 2022; 34:e23726. [PMID: 35122658 DOI: 10.1002/ajhb.23726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES A critical biocultural anthropology seeks to link perspectives from social theory and ethnography to human biology. In the United States (U.S.), multiple forms of structural inequalities affect early growth, including racism and poverty. The goal of this paper is to test the effects of social inequalities on birth weight and later height in the U.S. National Health and Nutrition Survey (NHANES), and to contextualize potential pathways of embodiment that link social structure and biology. METHODS This study used data from 8392 children ages 0-5 years from the 2005 to 2016 NHANES. Reported birth weight and measured length/height (converted to height-for-age z-scores) were used as outcome variables, while various measures of socioeconomic status and the NHANES-defined race and ethnicity categories were operationalized as social variables. Structural equation modeling (SEM) was chosen to represent the data. RESULTS The final model represented an excellent fit to the data. Higher birth weights were associated with higher height-for-age z-scores. The Black racial category was associated with lower birth weight and higher height-for-age z-score, while the "Other" racial category was also associated with lower birth weight. The socioeconomic status factor variable was significantly associated with birth weight and height-for-age z-scores. There were also multiple indirect effects of social variables on height-for-age z-scores mediated via their effects on birth weight. CONCLUSIONS Inequalities in race and socioeconomic status persist in birth weight and early childhood stature in the U.S. These findings can be contextualized by a critical biocultural anthropology that integrates lived experiences and pathways of embodiment.
Collapse
Affiliation(s)
- Elizabeth M Miller
- Department of Anthropology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
60
|
Arboleya S, Rios-Covian D, Maillard F, Langella P, Gueimonde M, Martín R. Preterm Delivery: Microbial Dysbiosis, Gut Inflammation and Hyperpermeability. Front Microbiol 2022; 12:806338. [PMID: 35185831 PMCID: PMC8854986 DOI: 10.3389/fmicb.2021.806338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Preterm birth is one of the main health problems encountered in the neonatal period, especially because it is also the first cause of death in the critical 1st month of life and the second in children under 5 years of age. Not only preterm birth entails short term health risks due to low weight and underdeveloped organs, but also increases the risk of suffering from non-transmissible diseases in the long term. To date, it is known that medical conditions and lifestyle factors could increase the risk of preterm birth, but the molecular mechanisms that control this process remain unclear. Luteolysis, increased inflammation or oxidative stress have been described as possible triggers for preterm birth and, in some cases, the cause of dysbiosis in preterm neonates. Several murine models have been developed to shed light into the mechanistic of preterm birth but, for the most part, are inflammation-based labor induction models and the offspring health readouts are mainly limited to survival and weight. Using a set of SWISS-CD1 mice born prematurely we analyzed inflammation and gut permeability parameters compared with term pups at weaning age. Overall, preterm mice presented higher systemic inflammation and gastrointestinal tract permeability. In this perspective article, we discuss the recent discoveries on preterm birth and the necessity of non-inflammatory murine models to really understand these phenotypes and be able to design strategies to prevent the sequels of this traumatic event in neonates.
Collapse
Affiliation(s)
| | - David Rios-Covian
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Flore Maillard
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Rebeca Martín
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- *Correspondence: Rebeca Martín,
| |
Collapse
|
61
|
Casaburi G, Wei J, Kazi S, Liu J, Wang K, Tao GZ, Lin PY, Dunn JCY, Henrick BM, Frese SA, Sylvester KG. Metabolic model of necrotizing enterocolitis in the premature newborn gut resulting from enteric dysbiosis. Front Pediatr 2022; 10:893059. [PMID: 36081629 PMCID: PMC9445129 DOI: 10.3389/fped.2022.893059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of premature newborn morbidity and mortality. The clinical features of NEC consistently include prematurity, gut dysbiosis and enteral inflammation, yet the pathogenesis remains obscure. Herein we combine metagenomics and targeted metabolomics, with functional in vivo and in vitro assessment, to define a novel molecular mechanism of NEC. One thousand six hundred and forty seven publicly available metagenomics datasets were analyzed (NEC = 245; healthy = 1,402) using artificial intelligence methodologies. Targeted metabolomic profiling was used to quantify the concentration of specified fecal metabolites at NEC onset (n = 8), during recovery (n = 6), and in age matched controls (n = 10). Toxicity assays of discovered metabolites were performed in vivo in mice and in vitro using human intestinal epithelial cells. Metagenomic and targeted metabolomic analyses revealed significant differences in pyruvate fermentation pathways and associated intermediates. Notably, the short chain fatty acid formate was elevated in the stool of NEC patients at disease onset (P = 0.005) dissipated during recovery (P = 0.02) and positively correlated with degree of intestinal injury (r 2 = 0.86). In vitro, formate caused enterocyte cytotoxicity in human cells through necroptosis (P < 0.01). In vivo, luminal formate caused significant dose and development dependent NEC-like injury in newborn mice. Enterobacter cloacae and Klebsiella pneumoniae were the most discriminatory taxa related to NEC dysbiosis and increased formate production. Together, these data suggest a novel biochemical mechanism of NEC through the microbial production of formate. Clinical efforts to prevent NEC should focus on reducing the functional consequences of newborn gut dysbiosis associated metabolic pathways.
Collapse
Affiliation(s)
| | - Jingjing Wei
- Department of Surgery, Stanford University, Stanford, CA, United States.,Department of Pediatrics, Shanxi Medical University, Taiyuan, China
| | - Sufyan Kazi
- Evolve Biosystems, Inc., Davis, CA, United States
| | - Junlin Liu
- Department of Surgery, Stanford University, Stanford, CA, United States.,Department of General Surgery, The People's Hospital of Liuyang City, Liuyang, China
| | - Kewei Wang
- Department of Surgery, Stanford University, Stanford, CA, United States.,Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Guo-Zhong Tao
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Po-Yu Lin
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - James C Y Dunn
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Bethany M Henrick
- Evolve Biosystems, Inc., Davis, CA, United States.,Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Steven A Frese
- Evolve Biosystems, Inc., Davis, CA, United States.,Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States.,Department of Nutrition, University of Nevada Reno, Reno, NV, United States
| | - Karl G Sylvester
- Department of Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
62
|
Prevalence and patterns of gestational parent's own milk feeds among infants with major congenital surgical anomalies in the NICU. J Perinatol 2021; 41:2782-2788. [PMID: 34331003 DOI: 10.1038/s41372-021-01176-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 07/07/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To describe the prevalence and patterns of gestational parent's own milk (GPOM) feedings among infants undergoing major surgery during their neonatal intensive care unit (NICU) admission. STUDY DESIGN We analyzed de-identified electronic medical records of all infants admitted to a regional NICU 2014-2015 who underwent surgery for a gastrointestinal, cardiac, or other major organ system defect(s). RESULTS Of 79 infants, 85% received any GPOM during the NICU hospitalization. The median proportion of GPOM feeds was 66%. There was a trend toward decreassing proportions of GPOM with progressive months in NICU. The rate of any and exclusive GPOM feeds at NICU discharge was 49% and 29%, respectively. Infants who had a GI anomaly were more likely than infants with a cardiac anomaly to be discharged from NICU receiving GPOM. CONCLUSION Barriers to the exclusive and continued provision of GPOM in this population require further study and intervention.
Collapse
|
63
|
Chetta KE, Alcorn JL, Baatz JE, Wagner CL. Cytotoxic Lactalbumin-Oleic Acid Complexes in the Human Milk Diet of Preterm Infants. Nutrients 2021; 13:4336. [PMID: 34959888 PMCID: PMC8707396 DOI: 10.3390/nu13124336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022] Open
Abstract
Frozen storage is necessary to preserve expressed human milk for critically ill and very preterm infants. Milk pasteurization is essential for donor milk given to this special population. Due to these storage and processing conditions, subtle changes occur in milk nutrients. These changes may have clinical implications. Potentially, bioactive complexes of unknown significance could be found in human milk given to preterm infants. One such complex, a cytotoxic α-lactalbumin-oleic acid complex named "HAMLET," (Human Alpha-Lactalbumin Made Lethal to Tumor cells) is a folding variant of alpha-lactalbumin that is bound to oleic acid. This complex, isolated from human milk casein, has specific toxicity to both carcinogenic cell lines and immature non-transformed cells. Both HAMLET and free oleic acid trigger similar apoptotic mechanisms in tissue and stimulate inflammation via the NF-κB and MAPK p38 signaling pathways. This protein-lipid complex could potentially trigger various inflammatory pathways with unknown consequences, especially in immature intestinal tissues. The very preterm population is dependent on human milk as a medicinal and broadly bioactive nutriment. Therefore, HAMLET's possible presence and bioactive role in milk should be addressed in neonatal research. Through a pediatric lens, HAMLET's discovery, formation and bioactive benefits will be reviewed.
Collapse
Affiliation(s)
- Katherine E. Chetta
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA; (J.E.B.); (C.L.W.)
| | - Joseph L. Alcorn
- Department of Pediatrics, Division of Neonatology and Pediatric Research Center, The University of Texas Health & Science Center at Houston, 6631 Fannin Street MSB 3.252, Houston, TX 77030, USA;
| | - John E. Baatz
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA; (J.E.B.); (C.L.W.)
| | - Carol L. Wagner
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA; (J.E.B.); (C.L.W.)
| |
Collapse
|
64
|
Hill L, Sharma R, Hart L, Popov J, Moshkovich M, Pai N. The neonatal microbiome in utero and beyond: perinatal influences and long-term impacts. J LAB MED 2021. [DOI: 10.1515/labmed-2021-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The neonatal microbiome offers a valuable model for studying the origins of human health and disease. As the field of metagenomics expands, we also increase our understanding of early life influences on its development. In this review we will describe common techniques used to define and measure the microbiome. We will review in utero influences, normal perinatal development, and known risk factors for abnormal neonatal microbiome development. Finally, we will summarize current evidence that links early life microbial impacts on the development of chronic inflammatory diseases, obesity, and atopy.
Collapse
Affiliation(s)
- Lee Hill
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- Department of Human Biology, Division of Exercise Science and Sports Medicine , University of Cape Town , Cape Town , South Africa
| | - Ruchika Sharma
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- McMaster University , Hamilton , Canada
| | - Lara Hart
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
| | - Jelena Popov
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- University College Cork, College of Medicine and Health , Cork , Ireland
| | - Michal Moshkovich
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- Faculty of Health Sciences , McMaster University , Hamilton , Canada
| | - Nikhil Pai
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- Farncombe Family Digestive Health Research Institute , McMaster University , Hamilton , Canada
| |
Collapse
|
65
|
Lee CC, Feng Y, Yeh YM, Lien R, Chen CL, Zhou YL, Chiu CH. Gut Dysbiosis, Bacterial Colonization and Translocation, and Neonatal Sepsis in Very-Low-Birth-Weight Preterm Infants. Front Microbiol 2021; 12:746111. [PMID: 34690993 PMCID: PMC8529156 DOI: 10.3389/fmicb.2021.746111] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Gut dysbiosis may precede neonatal sepsis, but the association is still not well-understood. The goal of this study is to investigate the association between gut microbiota and neonatal sepsis, and to seek the evidence of colonization of pathogenic bacteria in the gut before evolving into an invasive infection. A prospective cohort study examined fecal microbiota composition in preterm infants with and without sepsis. Thirty-two very-low-birth-weight (VLBW) preterm infants and 10 healthy term infants as controls were enrolled. The fecal samples collected from the participants at the first, fourth, and seventh weeks of life underwent 16S rRNA amplicon sequencing for measurement of the diversity and composition of the microbiota. The bacterial isolates causing neonatal sepsis were genome sequenced. PCR was performed to confirm the translocation of the bacteria from the gut to the blood. The results showed that VLBW preterm infants with sepsis had lower microbial diversity in the gut at birth compared to preterm infants without sepsis and term infants. The composition of gut microbiome in preterm infants was similar to healthy terms at birth but evolved toward dysbiosis with increasing Proteobacteria and decreasing Firmicutes weeks later. The strain-specific PCR confirmed the presence of causative pathogens in the gut in 4 (40%) out of 10 VLBW preterms with sepsis before or at onset of sepsis, and persistence of the colonization for weeks after antibiotic treatment. The same bacterial strain could horizontally spread to cause infection in other infants. Prolonged antibiotic exposure significantly reduced beneficial Bifidobacterium and Lactobacillus in the gut. In conclusion, preterm infants with gut dysbiosis are at risk for neonatal sepsis, and the causative pathogens may be from the gut and persist to spread horizontally. The association of increased Proteobacteria abundance and decrease in microbiome diversity suggests the need for interventions targeting the gut microbiome to prevent dysbiosis and sepsis in VLBW preterm infants.
Collapse
Affiliation(s)
- Chien-Chung Lee
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ye Feng
- Sir Run Run Shaw Hospital, Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Reyin Lien
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Li Zhou
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
66
|
Handakas E, Keski-Rahkonen P, Chatzi L, Alfano R, Roumeliotaki T, Plusquin M, Maitre L, Richiardi L, Brescianini S, Scalbert A, Robinot N, Nawrot T, Sassi F, Vrijheid M, Vineis P, Robinson O. Cord blood metabolic signatures predictive of childhood overweight and rapid growth. Int J Obes (Lond) 2021; 45:2252-2260. [PMID: 34253844 PMCID: PMC8455328 DOI: 10.1038/s41366-021-00888-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Metabolomics may identify biological pathways predisposing children to the risk of overweight and obesity. In this study, we have investigated the cord blood metabolic signatures of rapid growth in infancy and overweight in early childhood in four European birth cohorts. METHODS Untargeted liquid chromatography-mass spectrometry metabolomic profiles were measured in cord blood from 399 newborns from four European cohorts (ENVIRONAGE, Rhea, INMA and Piccolipiu). Rapid growth in the first year of life and overweight in childhood was defined with reference to WHO growth charts. Metabolome-wide association scans for rapid growth and overweight on over 4500 metabolic features were performed using multiple adjusted logistic mixed-effect models and controlling the false discovery rate (FDR) at 5%. In addition, we performed a look-up analysis of 43 pre-annotated metabolites, previously associated with birthweight or rapid growth. RESULTS In the Metabolome-Wide Association Study analysis, we identified three and eight metabolites associated with rapid growth and overweight, respectively, after FDR correction. Higher levels of cholestenone, a cholesterol derivative produced by microbial catabolism, were predictive of rapid growth (p = 1.6 × 10-3). Lower levels of the branched-chain amino acid (BCAA) valine (p = 8.6 × 10-6) were predictive of overweight in childhood. The area under the receiver operator curve for multivariate prediction models including these metabolites and traditional risk factors was 0.77 for rapid growth and 0.82 for overweight, compared with 0.69 and 0.69, respectively, for models using traditional risk factors alone. Among the 43 pre-annotated metabolites, seven and five metabolites were nominally associated (P < 0.05) with rapid growth and overweight, respectively. The BCAA leucine, remained associated (1.6 × 10-3) with overweight after FDR correction. CONCLUSION The metabolites identified here may assist in the identification of children at risk of developing obesity and improve understanding of mechanisms involved in postnatal growth. Cholestenone and BCAAs are suggestive of a role of the gut microbiome and nutrient signalling respectively in child growth trajectories.
Collapse
Affiliation(s)
- Evangelos Handakas
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rossella Alfano
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Léa Maitre
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Torino, Italy
| | - Sonia Brescianini
- Centre for Behavioural Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Augustin Scalbert
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Nivonirina Robinot
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Franco Sassi
- Centre for Health Economics & Policy Innovation, Department of Economics & Public Policy, Imperial College Business School, South Kensington Campus, London, UK
| | - Martine Vrijheid
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Paolo Vineis
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Oliver Robinson
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
67
|
Gut microbiome linked to pancreatitis. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
68
|
Rohsiswatmo R. Nutritional Management and Recommendation for Preterm Infants: A Narrative Review. AMERTA NUTRITION 2021. [DOI: 10.20473/amnt.v5i1sp.2021.1-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Preterm birth is defined as birth before 37 completed weeks of pregnancy. It is the most important predictor of adverse health and development infant outcomes that extend into the early childhood and beyond. It is also the leading cause of childhood mortality under 5 years of age worldwide and responsible for approximately one million neonatal deaths. It is also a significant contributor to childhood morbidities, with many survivors are facing an increased risk of lifelong disability and poor quality of life. Purpose: In this article, we aimed to describe features of preterm infants, what makes them different from term infants, and what to consider in nutritional management of preterm infants through a traditional narrative literature review. Discussion: Preterm infants are predisposed to more health complications than term infants with higher morbidity and mortality. This morbidity and mortality can be reduced through timely interventions for the mother and the preterm infant. Maternal interventions, such as health education and administration of micronutrient supplementation, are given before or during pregnancy and at delivery, whereas appropriate care for the preterm infants should be initiated immediately after birth, which include early breastfeeding and optimalization of weight gain. Conclusion: Essential care of the preterm infants and early aggressive nutrition should be provided to support rapid growth that is associated with improved neurodevelopmental outcomes. The goal is not only about survival but making sure that these preterm infants grow and develop without any residual morbidity.
Collapse
|
69
|
Neuroinflammation: A Signature or a Cause of Epilepsy? Int J Mol Sci 2021; 22:ijms22136981. [PMID: 34209535 PMCID: PMC8267969 DOI: 10.3390/ijms22136981] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Epilepsy can be both a primary pathology and a secondary effect of many neurological conditions. Many papers show that neuroinflammation is a product of epilepsy, and that in pathological conditions characterized by neuroinflammation, there is a higher probability to develop epilepsy. However, the bidirectional mechanism of the reciprocal interaction between epilepsy and neuroinflammation remains to be fully understood. Here, we attempt to explore and discuss the relationship between epilepsy and inflammation in some paradigmatic neurological and systemic disorders associated with epilepsy. In particular, we have chosen one representative form of epilepsy for each one of its actual known etiologies. A better understanding of the mechanistic link between neuroinflammation and epilepsy would be important to improve subject-based therapies, both for prophylaxis and for the treatment of epilepsy.
Collapse
|
70
|
Chang HY, Chiang Chiau JS, Ho YH, Chang JH, Tsai KN, Liu CY, Hsu CH, Lin CY, Ko MHJ, Lee HC. Impact of Early Empiric Antibiotic Regimens on the Gut Microbiota in Very Low Birth Weight Preterm Infants: An Observational Study. Front Pediatr 2021; 9:651713. [PMID: 34136438 PMCID: PMC8200535 DOI: 10.3389/fped.2021.651713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Frequent use of antibiotics in preterm infants disturbs their gut microbial balance. In this preliminary observational study, we investigated the effect of different antibiotic regimens, administered during the first week of life, on microbial composition and diversity in very low birth weight (VLBW) preterm infants. We performed fecal sampling of breastfed VLBW infants on days 7, 14, and 30. After excluding stool samples from infants who received probiotics or who were administered antibiotics beyond the age of 7 days, we compared gut microbiota profiles between infants receiving a combination of ampicillin and gentamicin for 3 days (AG group, n = 10) and those receiving a combination of ampicillin and cefotaxime for 7 days (AC group, n = 14) using 16S ribosomal DNA community profiling. We also assessed the changes over time in each group. Compared to the AG group, Enterococcus species were significantly more abundant in the AC group (P = 0.002), especially in 7-day samples (12.3 vs. 0.6%, respectively, P = 0.032). No difference was observed at phylum and genus level over time within each group. Species richness in the AC group decreased significantly in the 14-day (P = 0.038) and 30-day (P = 0.03) samples compared to that in the 7-day sample. The same was observed for microbial evenness; in contrast, no significant difference in Shannon index and beta-diversity was detected between the two groups. Controlling for relevant confounding variables did not change the results. In conclusion, different antibiotic regimens affect the early development of gut microbiota in VLBW preterm infants. Prolonged use of ampicillin and cefotaxime might result in overabundance of Enterococcus. However, given that no significant differences were observed in 1-month samples, bacterial genera appear to continue colonizing the gastrointestinal tract despite previous exposure to antibiotics. The clinical relevance of these findings should be elucidated by further studies.
Collapse
Affiliation(s)
- Hung-Yang Chang
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | | | - Yu-Hsuan Ho
- Life Science, Delta Research Center, Delta Electronics Incorporation, Taipei, Taiwan
| | - Jui-Hsing Chang
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Kun-Nan Tsai
- Life Science, Delta Research Center, Delta Electronics Incorporation, Taipei, Taiwan
| | - Chia-Yen Liu
- Life Science, Delta Research Center, Delta Electronics Incorporation, Taipei, Taiwan
| | - Chyong-Hsin Hsu
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Chia-Ying Lin
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Mary Hsin-Ju Ko
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Hung-Chang Lee
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
71
|
Anwar H, Iftikhar A, Muzaffar H, Almatroudi A, Allemailem KS, Navaid S, Saleem S, Khurshid M. Biodiversity of Gut Microbiota: Impact of Various Host and Environmental Factors. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5575245. [PMID: 34055983 PMCID: PMC8133857 DOI: 10.1155/2021/5575245] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Human bodies encompass very important symbiotic and mutualistic relationships with tiny creatures known as microbiota. Trillions of these tiny creatures including protozoa, viruses, bacteria, and fungi are present in and on our bodies. They play important roles in various physiological mechanisms of our bodies. In return, our bodies provide them with the habitat and food necessary for their survival. In this review, we comprehend the gut microbial species present in various regions of the gut. We can get benefits from microbiota only if they are present in appropriate concentrations, as if their concentration is altered, it will lead to dysbiosis of microbiota which further contributes to various health ailments. The composition, diversity, and functionality of gut microbiota do not remain static throughout life as they keep on changing over time. In this review, we also reviewed the various biotic and abiotic factors influencing the quantity and quality of these microbiota. These factors serve a significant role in shaping the gut microbiota population.
Collapse
Affiliation(s)
- Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Arslan Iftikhar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Humaira Muzaffar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Soha Navaid
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Sana Saleem
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
72
|
Cuna A, Morowitz MJ, Ahmed I, Umar S, Sampath V. Dynamics of the preterm gut microbiome in health and disease. Am J Physiol Gastrointest Liver Physiol 2021; 320:G411-G419. [PMID: 33439103 PMCID: PMC8238167 DOI: 10.1152/ajpgi.00399.2020] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advances in metagenomics have allowed a detailed study of the gut microbiome, and its role in human health and disease. Infants born prematurely possess a fragile gut microbial ecosystem that is vulnerable to perturbation. Alterations in the developing gut microbiome in preterm infants are linked to life-threatening diseases such as necrotizing enterocolitis (NEC) and late-onset sepsis; and may impact future risk of asthma, atopy, obesity, and psychosocial disease. In this mini-review, we summarize recent literature on the origins and patterns of development of the preterm gut microbiome in the perinatal period. The host-microbiome-environmental factors that portend development of dysbiotic intestinal microbial patterns associated with NEC and sepsis are reviewed. Strategies to manipulate the microbiome and mitigate dysbiosis, including the use of probiotics and prebiotics will also be discussed. Finally, we explore the challenges and future directions of gut microbiome research in preterm infants.
Collapse
Affiliation(s)
- Alain Cuna
- 1Division of Neonatology, Children’s Mercy Kansas City, Kansas City, Missouri,2School of Medicine, University of Missouri Kansas City, Kansas City, Missouri
| | | | - Ishfaq Ahmed
- 4Department of Math, Science and Business Technology, Kansas City Kansas Community College, Kansas City, Kansas
| | - Shahid Umar
- 5Departments of Surgery and Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Venkatesh Sampath
- 1Division of Neonatology, Children’s Mercy Kansas City, Kansas City, Missouri,2School of Medicine, University of Missouri Kansas City, Kansas City, Missouri
| |
Collapse
|
73
|
Al-Hadidi A, Navarro J, Goodman SD, Bailey MT, Besner GE. Lactobacillus reuteri in Its Biofilm State Improves Protection from Experimental Necrotizing Enterocolitis. Nutrients 2021; 13:nu13030918. [PMID: 33809097 PMCID: PMC8000340 DOI: 10.3390/nu13030918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease predominately found in premature infants that is associated with significant morbidity and mortality. Despite decades of research, medical management with broad spectrum antibiotics and bowel rest has remained relatively unchanged, with no significant improvement in patient outcomes. The etiology of NEC is multi-factorial; however, gastrointestinal dysbiosis plays a prominent role in a neonate's vulnerability to and development of NEC. Probiotics have recently emerged as a new avenue for NEC therapy. However, current delivery methods are associated with potential limitations, including the need for at least daily administration in order to obtain any improvement in outcomes. We present a novel formulation of enterally delivered probiotics that addresses the current limitations. A single enteral dose of Lactobacillus reuteri delivered in a biofilm formulation increases probiotic survival in acidic gastric conditions, increases probiotic adherence to gastrointestinal epithelial cells, and reduces the incidence, severity, and neurocognitive sequelae of NEC in experimental models.
Collapse
Affiliation(s)
- Ameer Al-Hadidi
- Department of Pediatric Surgery, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA;
| | - Jason Navarro
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; (J.N.); (S.D.G.); (M.T.B.)
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; (J.N.); (S.D.G.); (M.T.B.)
| | - Michael T. Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; (J.N.); (S.D.G.); (M.T.B.)
| | - Gail E. Besner
- Department of Pediatric Surgery, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA;
- Correspondence: ; Tel.: +1-614-722-3914
| |
Collapse
|
74
|
Wang S, Egan M, Ryan CA, Boyaval P, Dempsey EM, Ross RP, Stanton C. A good start in life is important-perinatal factors dictate early microbiota development and longer term maturation. FEMS Microbiol Rev 2021; 44:763-781. [PMID: 32821932 PMCID: PMC7685781 DOI: 10.1093/femsre/fuaa030] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal health status is vital for the development of the offspring of humans, including physiological health and psychological functions. The complex and diverse microbial ecosystem residing within humans contributes critically to these intergenerational impacts. Perinatal factors, including maternal nutrition, antibiotic use and maternal stress, alter the maternal gut microbiota during pregnancy, which can be transmitted to the offspring. In addition, gestational age at birth and mode of delivery are indicated frequently to modulate the acquisition and development of gut microbiota in early life. The early-life gut microbiota engages in a range of host biological processes, particularly immunity, cognitive neurodevelopment and metabolism. The perturbed early-life gut microbiota increases the risk for disease in early and later life, highlighting the importance of understanding relationships of perinatal factors with early-life microbial composition and functions. In this review, we present an overview of the crucial perinatal factors and summarise updated knowledge of early-life microbiota, as well as how the perinatal factors shape gut microbiota in short and long terms. We further discuss the clinical consequences of perturbations of early-life gut microbiota and potential therapeutic interventions with probiotics/live biotherapeutics.
Collapse
Affiliation(s)
- Shaopu Wang
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| | - Muireann Egan
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| | - C Anthony Ryan
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Department of Paediatrics & Child Health, University College Cork, Cork, Ireland, T12 YN60
| | - Patrick Boyaval
- DuPont Nutrition & Biosciences, Danisco France SAS - DuPont, 22, rue Brunel, F- 75017 Paris, France
| | - Eugene M Dempsey
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Department of Paediatrics & Child Health, University College Cork, Cork, Ireland, T12 YN60
| | - R Paul Ross
- APC Microbiome Ireland, Cork, Ireland, P12 YT20
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| |
Collapse
|
75
|
Lee YQ, Ahmad Kamar A, Velayuthan RD, Chong CW, Teh CSJ. Clonal relatedness in the acquisition of intestinal carriage and transmission of multidrug resistant (MDR) Klebsiella pneumoniae and Escherichia coli and its risk factors among preterm infants admitted to the neonatal intensive care unit (NICU). Pediatr Neonatol 2021; 62:129-137. [PMID: 33218933 DOI: 10.1016/j.pedneo.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Gastrointestinal carriage of multidrug resistant (MDR) Gram-negative bacilli, especially Klebsiella pneumoniae and Escherichia coli, was highly associated with severe nosocomial infections. The main objectives of this study were to determine the clonal relatedness of intestinal carriage and transmission risk factors of MDR E. coli and K. pneumoniae amongst preterm infants admitted to the neonatal intensive care unit (NICU). METHODS A prospective cohort study of preterm infants with gestational age < 37 weeks was conducted in the NICU of the University of Malaya Medical Centre (UMMC). Infants' stool specimens were collected on day 1 (meconium), week 1, week 2, week 8 and week 10 during their admission (from 1st June to 31st August 2017) until discharge. The presence and antibiotic resistance pattern of MDR E. coli and K. pneumoniae were determined. Strain clonality and relatedness were explored via pulsed-field gel electrophoresis (PFGE) fingerprints. The risk factors for MDR strains acquisition were evaluated using the Cox proportional-hazards model and Firth logistic regression. RESULTS A total of 139 stool specimens were obtained from 50 subjects. Twenty-six (52%) infants were colonized with MDR K. pneumoniae and/or E. coli. High clonal dissemination between two clusters of ESBL-producing K. pneumoniae strains was seen from PFGE profile. We detected a persistent, dominant, aminoglycosides-resistant strains cluster (cluster B), which harbored blaTEM, blaSHV, blaOXA-1, blaCTX-M-1, ompK35 and ompK36 genes. Infants born to women who were anemic in pregnancy [OR = 0.01 (CI = 0.00-0.39), P-value = 0.042] and infants exposed to penicillin/β-lactams group antibiotics during the first week of life [OR = 0.02 (CI = 0.02-0.32), P-value = 0.013] were found to have a lower risk of MDR K. pneumoniae and E. coli colonization. CONCLUSIONS The prevalence of dominant aminoglycosides-resistant strains cluster in the NICU is alarming. Awareness of and vigilance for the dominant cluster found will enable the reduction of cross-transmission amongst high-risk infants.
Collapse
Affiliation(s)
- Yee Qing Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Azanna Ahmad Kamar
- Department of Paediatrics, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rukumani Devi Velayuthan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
76
|
Nguyen M, Holdbrooks H, Mishra P, Abrantes MA, Eskew S, Garma M, Oca CG, McGuckin C, Hein CB, Mitchell RD, Kazi S, Chew S, Casaburi G, Brown HK, Frese SA, Henrick BM. Impact of Probiotic B. infantis EVC001 Feeding in Premature Infants on the Gut Microbiome, Nosocomially Acquired Antibiotic Resistance, and Enteric Inflammation. Front Pediatr 2021; 9:618009. [PMID: 33665175 PMCID: PMC7921802 DOI: 10.3389/fped.2021.618009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Preterm birth is a major determinant of neonatal survival and morbidity, but the gut microbiome and associated enteric inflammation are also key factors in neonatal development and the risk of associated morbidities. We prospectively and longitudinally followed two cohorts of preterm infants, one of which was fed activated Bifidobacterium longum subsp. infantis (B. infantis) EVC001 8 × 109 CFU daily, and the other was not fed a probiotic. Hospital feeding protocol assigned all infants born at <1500 g and/or < 32 weeks corrected gestational age to the probiotic feeding protocol, whereas infants born at >1500 g and/or >32 weeks corrected gestational age were not fed a probiotic. Fecal samples were opportunistically collected from 77 infants throughout the hospital stay, and subjected to shotgun metagenomic sequencing and quantification of enteric inflammation. De-identified metadata was collected from patient medical records. Results: The gut microbiome of preterm infants was typified by a high abundance of Enterobacteriaceae and/or Staphylococcaceae, and multivariate modeling identified the probiotic intervention, rather than degree of prematurity, day of life, or other clinical interventions, as the primary source of change in the gut microbiome. Among infants fed B. infantis EVC001, a high abundance of total Bifidobacteriaceae developed rapidly, the majority of which was B. infantis confirmed via subspecies-specific qPCR. Associated with this higher abundance of Bifidobacteriaceae, we found increased functional capacity for utilization of human milk oligosaccharides (HMOs), as well as reduced abundance of antibiotic resistance genes (ARGs) and the taxa that harbored them. Importantly, we found that infants fed B. infantis EVC001 exhibited diminished enteric inflammation, even when other clinical variables were accounted for using multivariate modeling. Conclusion: These results provide an important observational background for probiotic use in a NICU setting, and describe the clinical, physiological, and microbiome-associated improvements in preterm infants associated with B. infantis EVC001 feeding.
Collapse
Affiliation(s)
- Marielle Nguyen
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | - Heaven Holdbrooks
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | - Prasanthi Mishra
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | - Maria A. Abrantes
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | - Sherri Eskew
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | - Mariajamiela Garma
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | - Cyr-Geraurd Oca
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | | | | | | | - Sufyan Kazi
- Evolve Biosystems Inc., Davis, CA, United States
| | | | | | | | - Steven A. Frese
- Evolve Biosystems Inc., Davis, CA, United States
- Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE, United States
- Department of Nutrition, University of Nevada, Reno, NV, United States
| | - Bethany M. Henrick
- Evolve Biosystems Inc., Davis, CA, United States
- Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE, United States
| |
Collapse
|
77
|
Venkatraman A, Yu W, Nitkin C, Sampath V. Intestinal Stem Cell Development in the Neonatal Gut: Pathways Regulating Development and Relevance to Necrotizing Enterocolitis. Cells 2021; 10:cells10020312. [PMID: 33546361 PMCID: PMC7913590 DOI: 10.3390/cells10020312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
The intestine is extremely dynamic and the epithelial cells that line the intestine get replaced every 3–5 days by highly proliferative intestinal stem cells (ISCs). The instructions for ISCs to self-renew or to differentiate come as cues from their surrounding microenvironment or their niche. A small number of evolutionarily conserved signaling pathways act as a critical regulator of the stem cells in the adult intestine, and these pathways are well characterized. However, the mechanisms, nutritional, and environmental signals that help establish the stem cell niche in the neonatal intestine are less studied. Deciphering the key signaling pathways that regulate the development and maintenance of the stem cells is particularly important to understanding how the intestine regenerates from necrotizing enterocolitis, a devastating disease in newborn infants characterized by inflammation, tissues necrosis, and stem cell injury. In this review, we piece together current knowledge on morphogenetic and immune pathways that regulate intestinal stem cell in neonates and highlight how the cross talk among these pathways affect tissue regeneration. We further discuss how these key pathways are perturbed in NEC and review the scientific knowledge relating to options for stem cell therapy in NEC gleaned from pre-clinical experimental models of NEC.
Collapse
|
78
|
The Effects of Genetic Relatedness on the Preterm Infant Gut Microbiota. Microorganisms 2021; 9:microorganisms9020278. [PMID: 33572789 PMCID: PMC7911719 DOI: 10.3390/microorganisms9020278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
The preterm infant gut microbiota is influenced by environmental, endogenous, maternal, and genetic factors. Although siblings share similar gut microbial composition, it is not known how genetic relatedness affects alpha diversity and specific taxa abundances in preterm infants. We analyzed the 16S rRNA gene content of stool samples, ≤ and >3 weeks postnatal age, and clinical data from preterm multiplets and singletons at two Neonatal Intensive Care Units (NICUs), Tampa General Hospital (TGH; FL, USA) and Carle Hospital (IL, USA). Weeks on bovine milk-based fortifier (BMF) and weight gain velocity were significant predictors of alpha diversity. Alpha diversity between siblings were significantly correlated, particularly at ≤3 weeks postnatal age and in the TGH NICU, after controlling for clinical factors. Siblings shared higher gut microbial composition similarity compared to unrelated individuals. After residualizing against clinical covariates, 30 common operational taxonomic units were correlated between siblings across time points. These belonged to the bacterial classes Actinobacteria, Bacilli, Bacteroidia, Clostridia, Erysipelotrichia, and Negativicutes. Besides the influence of BMF and weight variables on the gut microbial diversity, our study identified gut microbial similarities between siblings that suggest genetic or shared maternal and environmental effects on the preterm infant gut microbiota.
Collapse
|
79
|
The Association between Early-Life Gut Microbiota and Long-Term Health and Diseases. J Clin Med 2021; 10:jcm10030459. [PMID: 33504109 PMCID: PMC7865818 DOI: 10.3390/jcm10030459] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Early life gut microbiota have been increasingly recognized as major contributors to short and/or long-term human health and diseases. Numerous studies have demonstrated that human gut microbial colonization begins at birth, but continues to develop a succession of taxonomic abundances for two to three years until the gut microbiota reaches adult-like diversity and proportions. Several factors, including gestational age (GA), delivery mode, birth weight, feeding types, antibiotic exposure, maternal microbiome, and diet, influence the diversity, abundance, and function of early life gut microbiota. Gut microbial life is essential for assisting with the digestion of food substances to release nutrients, exerting control over pathogens, stimulating or modulating the immune system, and influencing many systems such as the liver, brain, and endocrine system. Microbial metabolites play multiple roles in these interactions. Furthermore, studies provide evidence supporting that imbalances of the gut microbiota in early life, referred to as dysbiosis, are associated with specific childhood or adult disease outcomes, such as asthma, atopic dermatitis, diabetes, allergic diseases, obesity, cardiovascular diseases (CVD), and neurological disorders. These findings support that the human gut microbiota may play a fundamental role in the risk of acquiring diseases that may be programmed during early life. In fact, it is critical to explore the role of the human gut microbiota in early life.
Collapse
|
80
|
Casaburi G, Duar RM, Brown H, Mitchell RD, Kazi S, Chew S, Cagney O, Flannery RL, Sylvester KG, Frese SA, Henrick BM, Freeman SL. Metagenomic insights of the infant microbiome community structure and function across multiple sites in the United States. Sci Rep 2021; 11:1472. [PMID: 33479326 PMCID: PMC7820601 DOI: 10.1038/s41598-020-80583-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome plays an important role in early life, protecting newborns from enteric pathogens, promoting immune system development and providing key functions to the infant host. Currently, there are limited data to broadly assess the status of the US healthy infant gut microbiome. To address this gap, we performed a multi-state metagenomic survey and found high levels of bacteria associated with enteric inflammation (e.g. Escherichia, Klebsiella), antibiotic resistance genes, and signatures of dysbiosis, independent of location, age, and diet. Bifidobacterium were less abundant than generally expected and the species identified, including B. breve, B. longum and B. bifidum, had limited genetic capacity to metabolize human milk oligosaccharides (HMOs), while B. infantis strains with a complete capacity for HMOs utilization were found to be exceptionally rare. Considering microbiome composition and functional capacity, this survey revealed a previously unappreciated dysbiosis that is widespread in the contemporary US infant gut microbiome.
Collapse
Affiliation(s)
| | | | | | | | - Sufyan Kazi
- Evolve BioSystems, Inc., Davis, CA, 95618, USA
| | | | - Orla Cagney
- Evolve BioSystems, Inc., Davis, CA, 95618, USA
| | | | | | - Steven A Frese
- Evolve BioSystems, Inc., Davis, CA, 95618, USA
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Nutrition, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Bethany M Henrick
- Evolve BioSystems, Inc., Davis, CA, 95618, USA
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA
| | | |
Collapse
|
81
|
Egan M, Dempsey E, Ryan CA, Ross RP, Stanton C. The Sporobiota of the Human Gut. Gut Microbes 2021; 13:1-17. [PMID: 33406976 PMCID: PMC7801112 DOI: 10.1080/19490976.2020.1863134] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 02/04/2023] Open
Abstract
The human gut microbiome is a diverse and complex ecosystem that plays a critical role in health and disease. The composition of the gut microbiome has been well studied across all stages of life. In recent years, studies have investigated the production of endospores by specific members of the gut microbiome. An endospore is a tough, dormant structure formed by members of the Firmicutes phylum, which allows for greater resistance to otherwise inhospitable conditions. This innate resistance has consequences for human health and disease, as well as in biotechnology. In particular, the formation of endospores is strongly linked to antibiotic resistance and the spread of antibiotic resistance genes, also known as the resistome. The term sporobiota has been used to define the spore-forming cohort of a microbial community. In this review, we present an overview of the current knowledge of the sporobiota in the human gut. We discuss the development of the sporobiota in the infant gut and the perinatal factors that may have an effect on vertical transmission from mother to infant. Finally, we examine the sporobiota of critically important food sources for the developing infant, breast milk and powdered infant formula.
Collapse
Affiliation(s)
- Muireann Egan
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - C. Anthony Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
82
|
Aguilar-Lopez M, Wetzel C, MacDonald A, Ho TTB, Donovan SM. Human Milk-Based or Bovine Milk-Based Fortifiers Differentially Impact the Development of the Gut Microbiota of Preterm Infants. Front Pediatr 2021; 9:719096. [PMID: 34917555 PMCID: PMC8669825 DOI: 10.3389/fped.2021.719096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Preterm infants are exposed to different dietary inputs during their hospitalization in the neonatal intensive care unit (NICU). These include human milk (HM), with a human milk-based (HMF) or a bovine milk-based (BMF) fortifier, or formula. Milk consumption and the type of fortification will cause changes in the gut microbiota structure of preterm infants. This study aimed to characterize the gut microbiota of PT infant according to the type of feeding and the type of HM fortification and its possible association with infant's growth. Methods: Ninety-seven infants born ≤33 wks of gestation or <1,500 g were followed during the hospitalization period in the NICU after birth until discharge. Clinical and dietary information was collected, including mode of delivery, pregnancy complications, mechanical ventilation, use of antibiotics, weight, and type and amount of milk consumed. To characterize the gut microbiota composition, weekly stool samples were collected from study participants. The V3-V4 region of the 16S rRNA bacterial gene was Sequenced using Illumina MiSeq technology. Results: After birth, black maternal race, corrected gestational age (GA) and exposure to pregnancy complications, had a significant effect on gut microbial diversity and the abundance of Enterococcus, Veillonella, Bifidobacterium, Enterobacter, and Bacteroides. Over the course of hospitalization, corrected GA and exposure to chorioamnionitis remained to have an effect on gut microbial composition. Two different enterotypes were found in the gut microbiota of preterm infants. One enriched in Escherichia-Shigella, and another enriched in uncharacterized Enterobacteriaceae, Klebsiella and Clostridium sensu stricto 1. Overall, HM and fortification with HMF were the most common feeding strategies. When consuming BMF, PT infants had higher growth rates than those consuming HMF. Milk and type of fortification were significantly associated with the abundance of Clostridium sensu stricto 1, Bifidobacterium and Lactobacillus. Conclusions: This observational study shows the significant association between milk consumption and the exposure to HMF or BMF fortification in the fecal microbiota composition of preterm infants. Additionally, these results show the effect of other perinatal factors in the establishment and development of PT infant's gut microbiota.
Collapse
Affiliation(s)
- Miriam Aguilar-Lopez
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | | | | | - Thao T B Ho
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sharon M Donovan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
83
|
Yang M, Du J, Yang Q, Dou W, Jiang M, Hei M. Influence of Family Integrated Care on the Intestinal Microbiome of Preterm Infants With Necrotizing Enterocolitis and Enterostomy: A Preliminary Study. Front Pediatr 2021; 9:678254. [PMID: 34900854 PMCID: PMC8662560 DOI: 10.3389/fped.2021.678254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the influence of family integrated care (FICare) on the intestinal microbiome of preterm infants with necrotizing enterocolitis and enterostomy. This was a prospective pilot study at Beijing Children's Hospital. Premature infants with an enterostomy who met the enrollment criteria were divided into the 2-week FICare and non-FICare groups (non-randomly). We collected their fecal samples and subjected the intestinal microbiomes to 16S rRNA gene sequencing. Operational taxonomic units (OTU) were analyzed to assess the intestinal microbiome richness, and we then carried out α-diversity, β-diversity, and species clustering analyses and a linear discriminant analysis (LDA) effect size (LEfSe) analysis to identify the differences in the microbial communities between the two groups. There were 12 patients enrolled in the study (FICare, n = 7; non-FICare, n = 5). There were no significant between-group differences in demographic characteristics, or in the relative abundances of phyla and genera. The major bacterial phyla were Proteobacteria, Firmicutes, and Actinobacteria, and Serratia, Enterococcus, Cronobacter, and Bifidobacterium dominated at the genus level. The α-diversity analysis indicated that the intestinal flora was more diverse in the non-FICare group than the FICare group (p < 0.05). However, most of the other indicators did not suggest a difference between the two groups. There was a high proportion of shared OTUs between the two groups, and the PCoA and clustering analyses indicated that the two groups were difficult to distinguish, indicating that the intestinal microbiomes were relatively similar between the groups. In summary, short-term FICare had no significant positive effect on the establishment of intestinal flora diversity in premature infants with necrotizing enterocolitis and enterostomy. The trial was registered in the Chinese Clinical Trial Registry (ChiCTR-OPN-17011801).
Collapse
Affiliation(s)
- Mengyang Yang
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center of Children's Health, Beijing, China
| | - Juan Du
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center of Children's Health, Beijing, China
| | - Qin Yang
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center of Children's Health, Beijing, China
| | - Wenyan Dou
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center of Children's Health, Beijing, China
| | - Min Jiang
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center of Children's Health, Beijing, China
| | - Mingyan Hei
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center of Children's Health, Beijing, China
| |
Collapse
|
84
|
Bajorek S, Duar RM, Corrigan M, Matrone C, Winn KA, Norman S, Mitchell RD, Cagney O, Aksenov AA, Melnik AV, Kopylova E, Perez J. B. infantis EVC001 Is Well-Tolerated and Improves Human Milk Oligosaccharide Utilization in Preterm Infants in the Neonatal Intensive Care Unit. Front Pediatr 2021; 9:795970. [PMID: 35071138 PMCID: PMC8767116 DOI: 10.3389/fped.2021.795970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022] Open
Abstract
Not all infants carry specialized gut microbes, meaning they cannot digest human milk oligosaccharides and therefore do not receive complete benefits from human milk. B. infantis EVC001 is equipped to convert the full array of complex oligosaccharides into compounds usable by the infant, making it an ideal candidate to stabilize gut function and improve nutrition in preterm infants. A prospective, open-label study design was used to evaluate the tolerability of B. infantis EVC001 and its effects on the fecal microbiota in preterm infants in a Neonatal Intensive Care Unit. Thirty preterm infants <1,500 g and/or <33 weeks gestation at birth were divided into two matched groups, and control infants were enrolled and discharged prior to enrolling EVC001 infants to prevent cross-colonization of B. infantis: (1) fifteen control infants received no EVC001, and (2) fifteen infants received once-daily feedings of B. infantis EVC001 (8.0 x 109 CFU) in MCT oil. Clinical information regarding medications, growth, nutrition, gastrointestinal events, diagnoses, and procedures was collected throughout admission. Infant stool samples were collected at baseline, Study Days 14 and 28, and 34-, 36-, and 38-weeks of gestation. Taxonomic composition of the fecal microbiota, functional microbiota analysis, B. infantis, and human milk oligosaccharides (HMOs) in the stool were determined or quantified using 16S rRNA gene sequencing, metagenomic sequencing, qPCR, and mass spectrometry, respectively. No adverse events or tolerability issues related to EVC001 were reported. Control infants had no detectable levels of B. infantis. EVC001 infants achieved high levels of B. infantis (mean = 9.7 Log10 CFU/μg fecal DNA) by Study Day 14, correlating with less fecal HMOs (ρ = -0.83, P < 0.0001), indicating better HMO utilization in the gut. In this study, B. infantis EVC001 was shown to be safe, well-tolerated, and efficient in colonizing the preterm infant gut and able to increase the abundance of bifidobacteria capable of metabolizing HMOs, resulting in significantly improved utilization of human milk. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT03939546, identifier: NCT03939546.
Collapse
Affiliation(s)
- Sarah Bajorek
- St. Mary's Hospital, Grand Junction, CO, United States.,Orlando Health Winnie Palmer Hospital for Women and Babies, Orlando, FL, United States
| | | | - Maxwell Corrigan
- Orlando Health Winnie Palmer Hospital for Women and Babies, Orlando, FL, United States
| | - Christa Matrone
- Orlando Health Winnie Palmer Hospital for Women and Babies, Orlando, FL, United States
| | - Kathryn A Winn
- Orlando Health Winnie Palmer Hospital for Women and Babies, Orlando, FL, United States
| | - Susan Norman
- Orlando Health Winnie Palmer Hospital for Women and Babies, Orlando, FL, United States
| | | | - Orla Cagney
- Evolve BioSystems Inc., Davis, CA, United States
| | - Alexander A Aksenov
- Department of Chemistry, University of Connecticut, Storrs, CT, United States.,Arome Science Inc., Farmington, CT, United States.,Clarity Genomics Inc., San Diego, CA, United States
| | - Alexey V Melnik
- Department of Chemistry, University of Connecticut, Storrs, CT, United States.,Arome Science Inc., Farmington, CT, United States.,Clarity Genomics Inc., San Diego, CA, United States
| | - Evguenia Kopylova
- Arome Science Inc., Farmington, CT, United States.,Clarity Genomics Inc., San Diego, CA, United States
| | - Jose Perez
- Orlando Health Winnie Palmer Hospital for Women and Babies, Orlando, FL, United States.,Seattle Children's Hospital, University of Washington, Seattle, WA, United States
| |
Collapse
|
85
|
James SA, Phillips S, Telatin A, Baker D, Ansorge R, Clarke P, Hall LJ, Carding SR. Preterm Infants Harbour a Rapidly Changing Mycobiota That Includes Candida Pathobionts. J Fungi (Basel) 2020; 6:E273. [PMID: 33182444 PMCID: PMC7712117 DOI: 10.3390/jof6040273] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Fungi and the mycobiome are a fundamental part of the human microbiome that contributes to human health and development. Despite this, relatively little is known about the mycobiome of the preterm infant gut. Here, we have characterised faecal fungal communities present in 11 premature infants born with differing degrees of prematurity and mapped how the mycobiome develops during early infancy. Using an ITS1 sequencing-based approach, the preterm infant gut mycobiome was found to be often dominated by a single species, typically a yeast. Candida was the most abundant genus, with the pathobionts C.albicans and C.parapsilosis highly prevalent and persistent in these infants. Gestational maturity at birth affected the distribution and abundance of these Candida, with hospital-associated C.parapsilosis more prevalent and abundant in infants born at less than 31 weeks. Fungal diversity was lowest at 6 months, but increased with age and change of diet, with food-associated Saccharomycescerevisiae most abundant in infants post weaning. This study provides a first insight into the fungal communities present within the preterm infant gut, identifying distinctive features including the prominence of pathobiont species, and the influence age and environmental factors play in shaping the development of the mycobiome.
Collapse
Affiliation(s)
- Stephen A. James
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.A.J.); (S.P.); (A.T.); (D.B.); (R.A.)
| | - Sarah Phillips
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.A.J.); (S.P.); (A.T.); (D.B.); (R.A.)
| | - Andrea Telatin
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.A.J.); (S.P.); (A.T.); (D.B.); (R.A.)
| | - David Baker
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.A.J.); (S.P.); (A.T.); (D.B.); (R.A.)
| | - Rebecca Ansorge
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.A.J.); (S.P.); (A.T.); (D.B.); (R.A.)
| | - Paul Clarke
- Neonatal Intensive Care Unit, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich NR4 7UY, UK;
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Lindsay J. Hall
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.A.J.); (S.P.); (A.T.); (D.B.); (R.A.)
- Ziel—Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Simon R. Carding
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.A.J.); (S.P.); (A.T.); (D.B.); (R.A.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
86
|
Jones RB, Berger PK, Plows JF, Alderete TL, Millstein J, Fogel J, Iablokov SN, Rodionov DA, Osterman AL, Bode L, Goran MI. Lactose-reduced infant formula with added corn syrup solids is associated with a distinct gut microbiota in Hispanic infants. Gut Microbes 2020; 12:1813534. [PMID: 32887539 PMCID: PMC7524300 DOI: 10.1080/19490976.2020.1813534] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 02/03/2023] Open
Abstract
Infant formula feeding, compared with human milk, has been associated with development of a distinct infant gut microbiome, but no previous study has examined effects of formula with added sugars. This work examined differences in gut microbiota among 91 Hispanic infants who consumed human milk [at breast (BB) vs. pumped in bottle (BP)] and 2 kinds of infant formula [(traditional lactose-based (TF) vs. lactose-reduced with added sugar (ASF)]. At 1 and 6 months, infant stool was collected to characterize gut microbiota. At 6 months, mothers completed 24-hour dietary recalls and questionnaires to determine infant consumption of human milk (BB vs. BP) or formula (TF vs. ASF). Linear regression models were used to determine associations of milk consumption type and microbial features at 6 months. Infants in the formula groups exhibited a significantly more 'mature' microbiome than infants in the human milk groups with the most pronounced differences observed between the ASF vs. BB groups. In the ASF group, we observed reduced log-normalized abundance of Bifidobacteriaceae (TF-BB Mean Difference = -0.71, ASF-BB Mean Difference = -1.10), and increased abundance of Lachnospiraceae (TF-BB Mean Difference = +0.89, ASF-BB Mean Difference = +1.20). We also observed a higher Community Phenotype Index of propionate, most likely produced by Lachnospiraceae, in the ASF group (TF-BB Mean Difference = +0.27, ASF-BB Mean Difference = +0.36). This study provides the first evidence that consumption of infant formula with added sugar may have a stronger association than birth delivery mode, infant caloric intake, and maternal BMI on the infant's microbiome at 6 months of age.
Collapse
Affiliation(s)
- Roshonda B. Jones
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Paige K. Berger
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Jasmine F. Plows
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Joshua Millstein
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jennifer Fogel
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Stanislav N. Iablokov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- P.G. Demidov Yaroslavl State University, Yaroslavl, Russia
| | - Dmitry A. Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, CA, USA
| | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
87
|
Lactoferrin Metal Saturation-Which Form Is the Best for Neonatal Nutrition? Nutrients 2020; 12:nu12113340. [PMID: 33143055 PMCID: PMC7692973 DOI: 10.3390/nu12113340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023] Open
Abstract
We evaluated the impact of metal saturation of lactoferrin (with iron and manganese) on population numbers of pathogenic species relevant for neonatal sepsis that commonly originates from the gut due to bacterial translocation. Little attention has been paid to how metal ions bound to the protein affect its activity. Several reference and clinical strains as well as probiotic strains were incubated with different forms of lactoferrin: metal-depleted (apolactoferrin), iron-saturated (hololactoferrin) and manganese-saturated lactoferrin. We also attempted to confirm the observed effects of lactoferrin forms in vivo using rat pups. The observed decrease in population numbers of Gram-negative rods could not be confirmed by quantitative plating—lactoferrin may regulate these populations diversely (e.g., by anti-biofilm activity) and contribute to the inhibition of inflammatory response. We did not see any effect of lactoferrin forms on staphylococci and bifidobacteria. However, we have noted a significant increase of population numbers of Lactobacillus strains upon incubation with manganese-saturated lactoferrin. These results were confirmed in vivo in a rat model. Metal saturation is an underestimated factor regulating lactoferrin activity. Some forms are more potent in the inhibition of pathogenic species while others, such as manganese-saturated lactoferrin, could contribute to the restoration of gut homeostasis.
Collapse
|
88
|
Yousuf EI, Carvalho M, Dizzell SE, Kim S, Gunn E, Twiss J, Giglia L, Stuart C, Hutton EK, Morrison KM, Stearns JC. Persistence of Suspected Probiotic Organisms in Preterm Infant Gut Microbiota Weeks After Probiotic Supplementation in the NICU. Front Microbiol 2020; 11:574137. [PMID: 33117319 PMCID: PMC7552907 DOI: 10.3389/fmicb.2020.574137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are becoming a prevalent supplement to prevent necrotizing enterocolitis in infants born preterm. However, little is known about the ability of these live bacterial supplements to colonize the gut or how they affect endogenous bacterial strains and the overall gut community. We capitalized on a natural experiment resulting from a policy change that introduced the use of probiotics to preterm infants in a single Neonatal Intensive Care Unit. We used amplicon sequence variants (ASVs) derived from the v3 region of the 16S rRNA gene to compare the prevalence and abundance of Bifidobacterium and Lactobacillus in the gut of preterm infants who were and were not exposed to a probiotic supplement in-hospital. Infants were followed to 5 months corrected age. In the probiotic-exposed infants, ASVs belonging to species of Bifidobacterium appeared at high relative abundance during probiotic supplementation and persisted for up to 5 months. In regression models that controlled for the confounding effects of age and antibiotic exposure, probiotic-exposed infants had a higher abundance of the suspected probiotic bifidobacteria than unexposed infants. Conversely, the relative abundance of Lactobacillus was similar between preterm groups over time. Lactobacillus abundance was inversely related to antibiotic exposure. Furthermore, the overall gut microbial community of the probiotic-exposed preterm infants at term corrected age clustered more closely to samples collected from 10-day old full-term infants than to samples from unexposed preterm infants at term age. In conclusion, routine in-hospital administration of probiotics to preterm infants resulted in the potential for colonization of the gut with probiotic organisms post-discharge and effects on the gut microbiome as a whole. Further research is needed to fully discriminate probiotic bacterial strains from endogenous strains and to explore their functional role in the gut microbiome and in infant health.
Collapse
Affiliation(s)
- Efrah I Yousuf
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Marilia Carvalho
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, ON, Canada
| | - Sara E Dizzell
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, ON, Canada
| | - Stephanie Kim
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Elizabeth Gunn
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Jennifer Twiss
- Department of Pediatrics, Division of Neonatology, McMaster University, Hamilton, ON, Canada
| | - Lucy Giglia
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Connie Stuart
- Neonatal Follow Up Clinic, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Eileen K Hutton
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.,Department of Obstetrics & Gynecology, McMaster University, Hamilton, ON, Canada
| | - Katherine M Morrison
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Jennifer C Stearns
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.,Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
89
|
Lee JKF, Hern Tan LT, Ramadas A, Ab Mutalib NS, Lee LH. Exploring the Role of Gut Bacteria in Health and Disease in Preterm Neonates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6963. [PMID: 32977611 PMCID: PMC7579082 DOI: 10.3390/ijerph17196963] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/06/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023]
Abstract
The mortality rate of very preterm infants with birth weight <1500 g is as high as 15%. The survivors till discharge have a high incidence of significant morbidity, which includes necrotising enterocolitis (NEC), early-onset neonatal sepsis (EONS) and late-onset neonatal sepsis (LONS). More than 25% of preterm births are associated with microbial invasion of amniotic cavity. The preterm gut microbiome subsequently undergoes an early disruption before achieving bacterial maturation. It is postulated that bacterial gut colonisation at birth and postnatal intestinal dysbacteriosis precede the development of NEC and LONS in very preterm infants. In fact, bacterial colonization patterns in preterm infants greatly differ from term infants due to maternal chorioamnionitis, gestational age, delivery method, feeding type, antibiotic exposure and the environment factor in neonatal intensive care unit (NICU). In this regard, this review provides an overview on the gut bacteria in preterm neonates' meconium and stool. More than 50% of preterm meconium contains bacteria and the proportion increases with lower gestational age. Researchers revealed that the gut bacterial diversity is reduced in preterm infants at risk for LONS and NEC. Nevertheless, the association between gut dysbacteriosis and NEC is inconclusive with regards to relative bacteria abundance and between-sample beta diversity indices. With most studies show a disruption of the Proteobacteria and Firmicutes preceding the NEC. Hence, this review sheds light on whether gut bacteria at birth either alone or in combination with postnatal gut dysbacteriosis are associated with mortality and the morbidity of LONS and NEC in very preterm infants.
Collapse
Affiliation(s)
- Jimmy Kok-Foo Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.K.-F.L.); (L.T.H.T.); (A.R.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| | - Loh Teng Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.K.-F.L.); (L.T.H.T.); (A.R.)
| | - Amutha Ramadas
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.K.-F.L.); (L.T.H.T.); (A.R.)
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.K.-F.L.); (L.T.H.T.); (A.R.)
| |
Collapse
|
90
|
Götting T, Reuter S, Jonas D, Hentschel R, Henneke P, Klotz D, Hock S, Wolkewitz M, Blümel B, Häcker G, Grundmann H, Mutters N. Protocol for a prospective cohort study: Prevention of Transmissions by Effective Colonisation Tracking in Neonates (PROTECT-Neo). BMJ Open 2020; 10:e034068. [PMID: 32958479 PMCID: PMC7507848 DOI: 10.1136/bmjopen-2019-034068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Transmissions of opportunistic bacterial pathogens between neonates increase the risk of infections with negative repercussions, including higher mortality, morbidity and permanent disabilities. The probability of transmissions between patients is contingent on a set of intrinsic (patient-related) and extrinsic (ward-related) risk factors that are not clearly quantified. It is the dual objective of the Prevention of Transmissions by Effective Colonisation Tracking-Neo study to determine the density of transmission events in a level III neonatal intensive care unit (NICU) and to identify risk factors that may be causally associated with transmission events. METHODS AND ANALYSIS A full cohort of patients treated in a 17-bed level III NICU will be prospectively followed and transmission events between two or more patients will be documented. A transmission event occurs when isogenic isolates from two different patients can be identified. Isolates will be obtained by routine weekly screening. Isogenicity will be determined by whole-genome sequencing. During the study, relevant intrinsic and extrinsic risk factors will be recorded. Specimen and data will be collected for 1 year. We postulate that transmission density increases during episodes when demand for intensive care cannot be met by existing staff, and that threshold dynamics have a bearing on cohorting and hand hygiene performance. Poisson logistic regression, proportional hazard and multilevel competing risk models will be used to estimate the effect of explanatory variables. ETHICS AND DISSEMINATION This study has been approved by the local ethics committee (study ID 287/18). The results will be published in peer-reviewed medical journals, communicated to participants, the general public and all relevant stakeholders. TRIAL REGISTRATION NUMBER The German Clinical Trials Registry (DRKS00017733); Pre-results.
Collapse
Affiliation(s)
- Tim Götting
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Reuter
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Jonas
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roland Hentschel
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Klotz
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simone Hock
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Wolkewitz
- Institute of Medical Biometry and Statistics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benjamin Blümel
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hajo Grundmann
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nico Mutters
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
91
|
Rozé JC, Ancel PY, Marchand-Martin L, Rousseau C, Montassier E, Monot C, Le Roux K, Butin M, Resche-Rigon M, Aires J, Neu J, Lepage P, Butel MJ. Assessment of Neonatal Intensive Care Unit Practices and Preterm Newborn Gut Microbiota and 2-Year Neurodevelopmental Outcomes. JAMA Netw Open 2020; 3:e2018119. [PMID: 32965499 PMCID: PMC7512059 DOI: 10.1001/jamanetworkopen.2020.18119] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPORTANCE In very preterm newborns, gut microbiota is highly variable with major dysbiosis. Its association with short-term health is widely studied, but the association with long-term outcomes remains unknown. OBJECTIVE To investigate in preterm newborns the associations among practice strategies in neonatal intensive care units (NICUs), gut microbiota, and outcomes at 2 years. DESIGN, SETTING, AND PARTICIPANTS EPIFLORE is a prospective observational cohort study that includes a stool sample collection during the fourth week after birth. Preterm newborns of less than 32 weeks of gestational age (GA) born in 2011 were included from 24 NICUs as part of the French nationwide population-based cohort, EPIPAGE 2. Data were collected from May 2011 to December 2011 and analyzed from September 2016 to December 2018. EXPOSURES Eight NICU strategies concerning sedation, ventilation, skin-to-skin practice, antibiotherapy, ductus arteriosus, and breastfeeding were assessed. A NICU was considered favorable to a practice if the percentage of that practice in the NICU was more than the expected percentage. MAIN OUTCOMES AND MEASURES Gut microbiota was analyzed by 16S ribosomal RNA gene sequencing and characterized by a clustering-based method. The 2-year outcome was defined by death or neurodevelopmental delay using a Global Ages and Stages questionnaire score. RESULTS Of 577 newborns included in the study, the mean (SD) GA was 28.3 (2.0) weeks, and 303 (52.5%) were male. Collected gut microbiota was grouped into 5 discrete clusters. A sixth cluster included nonamplifiable samples owing to low bacterial load. Cluster 4 (driven by Enterococcus [n = 63]), cluster 5 (driven by Staphylococcus [n = 52]), and cluster 6 (n = 93) were significantly associated with lower mean (SD) GA (26.7 [1.8] weeks and 26.8 [1.9] weeks, respectively) and cluster 3 (driven by Escherichia/Shigella [n = 61]) with higher mean (SD) GA (29.4 [1.6] weeks; P = .001). Cluster 3 was considered the reference. After adjustment for confounders, no assisted ventilation at day 1 was associated with a decreased risk of belonging to cluster 5 or cluster 6 (adjusted odds ratio [AOR], 0.21 [95% CI, 0.06-0.78] and 0.19 [95% CI, 0.06-0.62], respectively) when sedation (AOR, 10.55 [95% CI, 2.28-48.87] and 4.62 [1.32-16.18], respectively) and low volume of enteral nutrition (AOR, 10.48 [95% CI, 2.48-44.29] and 7.28 [95% CI, 2.03-26.18], respectively) was associated with an increased risk. Skin-to-skin practice was associated with a decreased risk of being in cluster 5 (AOR, 0.14 [95% CI, 0.04-0.48]). Moreover, clusters 4, 5, 6 were significantly associated with 2-year nonoptimal outcome (AOR, 6.17 [95% CI, 1.46-26.0]; AOR, 4.53 [95% CI, 1.02-20.1]; and AOR, 5.42 [95% CI, 1.36-21.6], respectively). CONCLUSIONS AND RELEVANCE Gut microbiota of very preterm newborns at week 4 is associated with NICU practices and 2-year outcomes. Microbiota could be a noninvasive biomarker of immaturity.
Collapse
Affiliation(s)
- Jean-Christophe Rozé
- Neonatal Department, INSERM-CHU Clinical Investigation Center 1413, et UMR- INRA 1280, Physiologie des Adaptations Nutritionnelles, Nantes University Hospital, Nantes, France
| | - Pierre-Yves Ancel
- Université de Paris, Center for Epidemiology and Statistics/CRESS U1153/EPOPé Team, Paris, France
- Clinical Investigation Center P1419, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laetitia Marchand-Martin
- Université de Paris, Center for Epidemiology and Statistics/CRESS U1153/EPOPé Team, Paris, France
| | - Clotilde Rousseau
- UMR-S INSERM U1139, Faculté de Pharmacie, Université de Paris, Paris, France
- PremUp Foundation, Paris, France
- Microbiology Department, AP-HP Hôpital Saint-Louis, Paris, France
| | | | - Céline Monot
- Micalis Institute, INRA, AgroParisTech, University Paris-Saclay, Paris, France
| | - Karine Le Roux
- Micalis Institute, INRA, AgroParisTech, University Paris-Saclay, Paris, France
| | - Marine Butin
- Neonatal Department, Hospices Civils de Lyon, Lyon, France
| | - Matthieu Resche-Rigon
- Biostatistics and Medical Information Department, AP-HP Hôpital Saint-Louis, Paris, France
| | - Julio Aires
- UMR-S INSERM U1139, Faculté de Pharmacie, Université de Paris, Paris, France
- PremUp Foundation, Paris, France
| | - Josef Neu
- College of Medicine, University of Florida, Gainesville, Florida
| | - Patricia Lepage
- Micalis Institute, INRA, AgroParisTech, University Paris-Saclay, Paris, France
| | - Marie-José Butel
- UMR-S INSERM U1139, Faculté de Pharmacie, Université de Paris, Paris, France
- PremUp Foundation, Paris, France
| |
Collapse
|
92
|
Hajela N, Chattopadhyay S, Nair GB, Ganguly NK. Intestinal microbiota and vaccine efficacy in children from resource poor settings - potential impact for the usefulness of probiotics? Benef Microbes 2020; 11:319-328. [PMID: 32720834 DOI: 10.3920/bm2019.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Developing countries continue to contribute significantly to the global burden of childhood mortality due to infectious diseases. Infections leading to diseases like diarrhoea, pneumonia and meningitis account for millions of deaths annually. Most of these diseases are preventable by vaccination and therefore global vaccination rates have risen substantially with clear benefits. But paradoxically, the vaccines have demonstrated lower immunogenicity in developing countries as compared to their industrialised counterparts. Malnutrition in resource poor settings along with repeated polymicrobial infections at early age are some of the reasons for the differences in vaccine efficacy in different settings. Recent studies indicate that the gastrointestinal microbiota possibly influences maturation of immune system as well as vaccine efficacy. In this review we discuss evidences from in vitro, animal and human studies showing that probiotics can positively modulate gut microbiota composition and exert immunomodulatory effects on the host. We also discuss how they should be evaluated for their ability to improve vaccine performance especially in low resource settings.
Collapse
Affiliation(s)
- N Hajela
- Gut Microbiota and Probiotic Science Foundation (India), M-4, Level one, South Extension Part - Ii, New Delhi 110049, India
| | - S Chattopadhyay
- Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Trivandrum, 695014 Kerala, India
| | - G B Nair
- Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Trivandrum, 695014 Kerala, India
| | - N K Ganguly
- Institute of Liver and Biliary Science, New Delhi, India
| |
Collapse
|
93
|
Similar Strains of Coagulase-Negative Staphylococci Found in the Gastrointestinal Tract and Bloodstream of Bacteremic Neonates. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2020; 2020:3509676. [PMID: 32774563 PMCID: PMC7391093 DOI: 10.1155/2020/3509676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/24/2020] [Accepted: 05/05/2020] [Indexed: 11/18/2022]
Abstract
Objectives Premature neonates are susceptible to opportunistic and nosocomial infections. Efforts have been made to determine whether the neonatal gut microbiome possesses potential for causing bloodstream infections in newborns via microbial translocation from the gastrointestinal tract. We aimed to examine similarities in coagulase-negative staphylococci (CoNS) strains found in the gastrointestinal tract and bloodstream in bacteremic neonates. Methods CoNS strains isolated from blood cultures and perianal and pharyngeal swab samples of neonates from two neonatal intensive care units were investigated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and pulsed-field gel electrophoresis. Molecular mass and genetic similarities of CoNS strains were compared. Results Marked similarity was found in the molecular mass and genetic profile of examined CoNS isolates from blood cultures and perianal/pharyngeal samples. The percentage of neonates developing bacteremia following perianal and pharyngeal colonization by CoNS was significantly higher when compared to those colonized by Enterobacteriales species (p < 0.0002). Conclusions CoNS colonizing the gut may be a source of bacteremia in neonates. Enterobacteriales species do not contribute as significantly to bacteremia when compared to CoNS, and may be protective against gut mucosa-originated systemic infection.
Collapse
|
94
|
Gao W, Baumgartel KL, Alexander SA. The Gut Microbiome as a Component of the Gut-Brain Axis in Cognitive Health. Biol Res Nurs 2020; 22:485-494. [PMID: 32677447 DOI: 10.1177/1099800420941923] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The human microbiome, the microorganisms living in and on the body, plays a vital role in brain physiology and pathophysiology. The gut microbiome (GMB) has been identified as a link in the gut-brain axis moderating cognitive development and health. OBJECTIVES The objectives of this scoping review are to discuss mechanisms of the microbiome-gut-brain axis in cognition, review the existing literature on the GMB and cognition, and discuss implications for nursing research. METHODS We searched Pubmed using the terms "gut microbiome," "brain," and "cognition" and the terms "gut brain axis," "microbiome," and "cognition"; removed duplicates, studies not published in English, and unrelated publications; and added additional articles identified through references. We retained the 85 most relevant publications for this review. RESULTS Common themes in the current literature include GMB components; interactions on cognitive development; effects of GMB-gut-brain interactions on cognition, mild cognitive impairment and Alzheimer's disease; effects of GMB interactions with physiologic stress on cognition in critical care; and GMB modification for improved cognition. Review of the literature on each of these topics reveals multiple theoretical mechanisms of action for GMB-gut-brain interaction that modify cognitive development and function across the lifespan. DISCUSSION GMB components and dysbiosis have been implicated in many cognitive states, and specific microbiota constituents contribute to cognitive development, stability, and impairment. The study of these interactions is relevant to nursing research as it addresses the holistic human experience and microbiome constituents are modifiable, facilitating translation into the clinical setting.
Collapse
Affiliation(s)
- Wen Gao
- The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.,Nursing Department, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,China Scholarship Council Program for Joint Training, China.,School of Nursing, University of Pittsburgh, PA, USA
| | - Kelley L Baumgartel
- Targeted Research and Academic Training Program for Nurses in Genomics (T32 NR009759 11), Health Promotion & Development, School of Nursing, 16144University of Pittsburgh, PA, USA
| | | |
Collapse
|
95
|
Evolution of Gut Microbiome and Metabolome in Suspected Necrotizing Enterocolitis: A Case-Control Study. J Clin Med 2020; 9:jcm9072278. [PMID: 32709038 PMCID: PMC7408695 DOI: 10.3390/jcm9072278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Necrotizing enterocolitis (NEC) is a devastating condition in preterm infants due to multiple factors, including gut microbiota dysbiosis. NEC development is poorly understood, due to the focus on severe NEC (NEC-2/3). Methods: We studied the gut microbiota, microbiome and metabolome of children with suspected NEC (NEC-1). Results: NEC-1 gut microbiota had a higher abundance of the Streptococcus (second 10-days of life) and Staphylococcus (third 10-days of life) species. NEC-1 children showed a microbiome evolution in the third 10-days of life being the most divergent, and were associated with a different metabolomic signature than in healthy children. The NEC-1 microbiome had increased glycosaminoglycan degradation and lysosome activity by the first 10-days of life, and was more sensitive to childbirth, low birth weight and gestational age, than healthy microbiome. NEC-1 fecal metabolome was more divergent by the second month of life. Conclusions: NEC-1 gut microbiota and microbiome modifications appear more distinguishable by the third 10-days of life, compared to healthy children. These data identify a precise window of time (i.e., the third 10-days of life) and provide microbial targets to fight/blunt NEC-1 progression.
Collapse
|
96
|
Maternal weight change between successive pregnancies: an opportunity for lifecourse obesity prevention. Proc Nutr Soc 2020; 79:272-282. [PMID: 32624015 DOI: 10.1017/s0029665120007065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Maternal obesity is a major risk factor for adverse health outcomes for both the mother and the child, including the serious public health problem of childhood obesity which is globally on the rise. Given the relatively intensive contact with health/care professionals following birth, the interpregnancy period provides a golden opportunity to focus on preconception and family health, and to introduce interventions that support mothers to achieve or maintain a healthy weight in preparation for their next pregnancy. In this review, we summarise the evidence on the association between interpregnancy weight gain with birth and obesity outcomes in the offspring. Gaining weight between pregnancies is associated with an increased risk of large-for-gestational age (LGA) birth, a predictor of childhood obesity, and weight loss between pregnancies in women with overweight or obesity seems protective against recurrent LGA. Interpregnancy weight loss seems to be negatively associated with birthweight. There is some suggestion that interpregnancy weight change may be associated with preterm birth, but the mechanisms are unclear and the direction depends if it is spontaneous or indicated. There is limited evidence on the direct positive link between maternal interpregnancy weight gain with gestational diabetes, pre-eclampsia, gestational hypertension and obesity or overweight in childhood, with no studies using adult offspring adiposity outcomes. Improving preconception health and optimising weight before pregnancy could contribute to tackling the rise in childhood obesity. Research testing the feasibility, acceptability and effectiveness of interventions to optimise maternal weight and health during this period is needed, particularly in high-risk and disadvantaged groups.
Collapse
|
97
|
Jayasinghe TN, Vatanen T, Chiavaroli V, Jayan S, McKenzie EJ, Adriaenssens E, Derraik JGB, Ekblad C, Schierding W, Battin MR, Thorstensen EB, Cameron-Smith D, Forbes-Blom E, Hofman PL, Roy NC, Tannock GW, Vickers MH, Cutfield WS, O'Sullivan JM. Differences in Compositions of Gut Bacterial Populations and Bacteriophages in 5-11 Year-Olds Born Preterm Compared to Full Term. Front Cell Infect Microbiol 2020; 10:276. [PMID: 32612960 PMCID: PMC7309444 DOI: 10.3389/fcimb.2020.00276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Preterm infants are exposed to major perinatal, post-natal, and early infancy events that could impact on the gut microbiome. These events include infection, steroid and antibiotic exposure, parenteral nutrition, necrotizing enterocolitis, and stress. Studies have shown that there are differences in the gut microbiome during the early months of life in preterm infants. We hypothesized that differences in the gut microbial composition and metabolites in children born very preterm persist into mid-childhood. Participants were healthy prepubertal children aged 5-11 years who were born very preterm (≤32 weeks of gestation; n = 51) or at term (37-41 weeks; n = 50). We recorded the gestational age, birth weight, mode of feeding, mode of birth, age, sex, and the current height and weight of our cohort. We performed a multi'omics [i.e., 16S rRNA amplicon and shotgun metagenomic sequencing, SPME-GCMS (solid-phase microextraction followed by gas chromatography-mass spectrometry)] analysis to investigate the structure and function of the fecal microbiome (as a proxy of the gut microbiota) in our cross-sectional cohort. Children born very preterm were younger (7.8 vs. 8.3 years; p = 0.034), shorter [height-standard deviation score (SDS) 0.31 vs. 0.92; p = 0.0006) and leaner [BMI (body mass index) SDS -0.20 vs. 0.29; p < 0.0001] than the term group. Children born very preterm had higher fecal calprotectin levels, decreased fecal phage richness, lower plasma arginine, lower fecal branched-chain amino acids and higher fecal volatile (i.e., 3-methyl-butanoic acid, butyrolactone, butanoic acid and pentanoic acid) profiles. The bacterial microbiomes did not differ between preterm and term groups. We speculate that the observed very preterm-specific changes were established in early infancy and may impact on the capacity of the very preterm children to respond to environmental changes.
Collapse
Affiliation(s)
| | - Tommi Vatanen
- Liggins Institute, University of Auckland, Auckland, New Zealand
- The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | | | - Sachin Jayan
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | - José G. B. Derraik
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start—National Science Challenge, University of Auckland, Auckland, New Zealand
| | - Cameron Ekblad
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | - Paul L. Hofman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Nicole C. Roy
- AgResearch, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- The High-Value Nutrition Challenge, Auckland, New Zealand
| | - Gerald W. Tannock
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Wayne S. Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | |
Collapse
|
98
|
Villamor-Martinez E, Lubach GA, Rahim OM, Degraeuwe P, Zimmermann LJ, Kramer BW, Villamor E. Association of Histological and Clinical Chorioamnionitis With Neonatal Sepsis Among Preterm Infants: A Systematic Review, Meta-Analysis, and Meta-Regression. Front Immunol 2020; 11:972. [PMID: 32582153 PMCID: PMC7289970 DOI: 10.3389/fimmu.2020.00972] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Chorioamnionitis (CA) is considered a key risk factor for very preterm birth and for developing early onset sepsis (EOS) in preterm infants, but recent data suggest that CA might be protective against late onset sepsis (LOS). We performed a systematic review and meta-analysis of studies exploring the association between CA and sepsis. A comprehensive literature search was performed in PubMed/MEDLINE and EMBASE, from their inception to December 1, 2018. A random-effects model was used to calculate odds ratios (OR) and 95% confidence intervals (CI). Sources of heterogeneity were analyzed by subgroup and meta-regression analyses. The following categories of sepsis were analyzed: EOS, LOS, unspecified onset sepsis (UOS), culture-proven, and clinical sepsis. CA was subdivided into clinical and histological chorioamnionitis. Funisitis was also analyzed. We found 3,768 potentially relevant studies, of which 107 met the inclusion criteria (387,321 infants; 44,414 cases of CA). Meta-analysis showed an association between any CA and any EOS (OR 4.29, CI 3.63-5.06), any LOS (OR 1.29, CI 1.11-1.54), and any UOS (OR 1.59, CI 1.11-1.54). Subgroup analysis showed that CA was associated with culture-proven EOS (OR 4.69, CI 3.91-5.56), clinical EOS (OR 3.58, CI 1.90-6.76), and culture-proven LOS (OR 1.31, CI 1.12-1.53), but not with clinical LOS (OR 1.52, CI 0.78-2.96). The presence of funisitis did not increase the risk of either EOS or LOS when compared with CA without funisitis. CA-exposed infants had lower gestational age (-1.11 weeks, CI -1.37 to -0.84) than the infants not exposed to CA. Meta-regression analysis showed that the lower gestational age of the CA group correlated with the association between CA and LOS but not with the association between CA and EOS. In conclusion, our data suggest that the positive association between chorioamnionitis and LOS may be modulated by the effect of chorioamnionitis on gestational age.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, Netherlands
| |
Collapse
|
99
|
Kurath-Koller S, Neumann C, Moissl-Eichinger C, Kraschl R, Kanduth C, Hopfer B, Pausan MR, Urlesberger B, Resch B. Hospital Regimens Including Probiotics Guide the Individual Development of the Gut Microbiome of Very Low Birth Weight Infants in the First Two Weeks of Life. Nutrients 2020; 12:1256. [PMID: 32354144 PMCID: PMC7281991 DOI: 10.3390/nu12051256] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is unknown to what extent the microbiome of preterm infants is influenced by hospital regimens including the use of different probiotics when it comes to the prevention of necrotizing enterocolitis (NEC). METHODS Prospective controlled multicenter cohort study including very low birth weight infants from three neonatal intensive care units (NICUs) between October 2015 and March 2017. During this time span, stool was sampled every other day during the first two weeks and samples were subjected to amplicon-based microbiome analyses. Out of these, seventeen negative controls were processed (German Registry of Clinical Trials (No.: DRKS00009290)). RESULTS The groups (3 × 18 infants) showed no statistically significant difference regarding gestational age, birth weight, APGAR scores and oxygen demand. 2029 different taxa were detected, including Enterococcus and Staphylococcus, as well as the probiotic genera Lactobacillus and Bifidobacterium predominating. The bacterial load was found to increase earlier on when probiotics were used. Without probiotics administration, Lactobacillus and Bifidobacterium contributed only marginally to the fecal microbiome. Some infants did not respond to probiotic administration. The samples from all centers participating reached a very similar diversity after two weeks while the microbiome samples from all three centers clustered significantly yet varied from each other. CONCLUSION Probiotics proved to be safe and initiated an earlier increase of bacterial load (with marked individual divergences), which might play a crucial role in the prevention of neonatal morbidities. Meconium was found not to be free of bacterial DNA, and oral antibiotics did not influence the fecal microbiome development negatively, and hospital regimes led to a center-specific, distinct cluster formation.
Collapse
Affiliation(s)
- Stefan Kurath-Koller
- Division of Neonatology, Department of Pediatrics, Medical University of Graz, Austria Auenbruggerplatz 34/2, 8036 Graz, Austria
- Division of Pediatric Cardiology, Department of Pediatrics, Medical University of Graz, 8036 Graz, Austria
| | - Charlotte Neumann
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, 8010 Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, 8010 Graz, Austria
- Biotechmed Graz, 8010 Graz, Austria
| | - Raimund Kraschl
- Department of Pediatrics, General Hospital Klagenfurt am Wörthersee, 9020 Klagenfurt, Austria
| | - Claudia Kanduth
- Department of Pediatrics, General Hospital Klagenfurt am Wörthersee, 9020 Klagenfurt, Austria
| | - Barbara Hopfer
- Department of Pediatrics, General Hospital Hochsteiermark, 8700 Leoben, Austria
| | - Manuela-Raluca Pausan
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, 8010 Graz, Austria
| | - Berndt Urlesberger
- Division of Neonatology, Department of Pediatrics, Medical University of Graz, Austria Auenbruggerplatz 34/2, 8036 Graz, Austria
| | - Bernhard Resch
- Division of Neonatology, Department of Pediatrics, Medical University of Graz, Austria Auenbruggerplatz 34/2, 8036 Graz, Austria
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
100
|
Groer MW, Miller EM, D'Agata A, Ho TTB, Dutra SV, Yoo JY, Yee AL, Gilbert JA, Dishaw LJ. Contributors to Dysbiosis in Very-Low-Birth-Weight Infants. J Obstet Gynecol Neonatal Nurs 2020; 49:232-242. [PMID: 32247727 DOI: 10.1016/j.jogn.2020.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2020] [Indexed: 02/08/2023] Open
Abstract
The objective of this commentary was to analyze the causes and outcomes of gut microbiome dysbiosis in preterm infants who are born at very low birth weight (VLBW). The intrauterine development of VLBW infants is interrupted abruptly with preterm birth and followed by extrauterine, health-threatening conditions and sequelae. These infants develop intestinal microbial dysbiosis characterized by low diversity, an overall reduction in beneficial and/or commensal bacteria, and enrichment of opportunistic pathogens of the Gammaproteobacteria class. The origin of VLBW infant dysbiosis is not well understood and is likely the result of a combination of immaturity and medical care. We propose that these factors interact to produce inflammation in the gut, which further perpetuates dysbiosis. Understanding the sources of dysbiosis could result in interventions to reduce gut inflammation, decrease enteric pathology, and improve health outcomes for these vulnerable infants.
Collapse
|