51
|
Bressler S, Goldberg H, Shinn-Cunningham B. Sensory coding and cognitive processing of sound in Veterans with blast exposure. Hear Res 2016; 349:98-110. [PMID: 27815131 DOI: 10.1016/j.heares.2016.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/07/2016] [Accepted: 10/26/2016] [Indexed: 11/17/2022]
Abstract
Recent anecdotal reports from VA audiology clinics as well as a few published studies have identified a sub-population of Service Members seeking treatment for problems communicating in everyday, noisy listening environments despite having normal to near-normal hearing thresholds. Because of their increased risk of exposure to dangerous levels of prolonged noise and transient explosive blast events, communication problems in these soldiers could be due to either hearing loss (traditional or "hidden") in the auditory sensory periphery or from blast-induced injury to cortical networks associated with attention. We found that out of the 14 blast-exposed Service Members recruited for this study, 12 had hearing thresholds in the normal to near-normal range. A majority of these participants reported having problems specifically related to failures with selective attention. Envelope following responses (EFRs) measuring neural coding fidelity of the auditory brainstem to suprathreshold sounds were similar between blast-exposed and non-blast controls. Blast-exposed subjects performed substantially worse than non-blast controls in an auditory selective attention task in which listeners classified the melodic contour (rising, falling, or "zig-zagging") of one of three simultaneous, competing tone sequences. Salient pitch and spatial differences made for easy segregation of the three concurrent melodies. Poor performance in the blast-exposed subjects was associated with weaker evoked response potentials (ERPs) in frontal EEG channels, as well as a failure of attention to enhance the neural responses evoked by a sequence when it was the target compared to when it was a distractor. These results suggest that communication problems in these listeners cannot be explained by compromised sensory representations in the auditory periphery, but rather point to lingering blast-induced damage to cortical networks implicated in the control of attention. Because all study participants also suffered from post-traumatic disorder (PTSD), follow-up studies are required to tease apart the contributions of PTSD and blast-induced injury on cognitive performance.
Collapse
Affiliation(s)
- Scott Bressler
- Center for Computational Neuroscience and Neural Technologies (CompNet), Boston University, Boston, MA 02215, USA
| | - Hannah Goldberg
- Center for Computational Neuroscience and Neural Technologies (CompNet), Boston University, Boston, MA 02215, USA
| | - Barbara Shinn-Cunningham
- Center for Computational Neuroscience and Neural Technologies (CompNet), Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
52
|
Perez-Garcia G, Gama Sosa MA, De Gasperi R, Lashof-Sullivan M, Maudlin-Jeronimo E, Stone JR, Haghighi F, Ahlers ST, Elder GA. Exposure to a Predator Scent Induces Chronic Behavioral Changes in Rats Previously Exposed to Low-level Blast: Implications for the Relationship of Blast-Related TBI to PTSD. Front Neurol 2016; 7:176. [PMID: 27803688 PMCID: PMC5067529 DOI: 10.3389/fneur.2016.00176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Blast-related mild traumatic brain injury (mTBI) has been unfortunately common in veterans who served in the recent conflicts in Iraq and Afghanistan. The postconcussion syndrome associated with these mTBIs has frequently appeared in combination with post-traumatic stress disorder (PTSD). The presence of PTSD has complicated diagnosis, since clinically, PTSD and the postconcussion syndrome of mTBI have many overlapping symptoms. In particular, establishing how much of the symptom complex can be attributed to the psychological trauma associated with PTSD in contrast to the physical injury of traumatic brain injury has proven difficult. Indeed, some have suggested that much of what is now being called blast-related postconcussion syndrome is better explained by PTSD. The relationship between the postconcussion syndrome of mTBI and PTSD is complex. Association of the two disorders might be viewed as additive effects of independent psychological and physical traumas suffered in a war zone. However, we previously found that rats exposed to repetitive low-level blast exposure in the absence of a psychological stressor developed a variety of anxiety and PTSD-related behavioral traits that were present months following the last blast exposure. Here, we show that a single predator scent challenge delivered 8 months after the last blast exposure induces chronic anxiety related changes in blast-exposed rats that are still present 45 days later. These observations suggest that in addition to independently inducing PTSD-related traits, blast exposure sensitizes the brain to react abnormally to a subsequent psychological stressor. These studies have implications for conceptualizing the relationship between blast-related mTBI and PTSD and suggest that blast-related mTBI in humans may predispose to the later development of PTSD in reaction to subsequent psychological stressors.
Collapse
Affiliation(s)
- Georgina Perez-Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel A Gama Sosa
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret Lashof-Sullivan
- Department of Neurotrauma, Operational and Undersea Medicine, Naval Medical Research Center , Silver Spring, MD , USA
| | - Eric Maudlin-Jeronimo
- Department of Neurotrauma, Operational and Undersea Medicine, Naval Medical Research Center , Silver Spring, MD , USA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA; Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Fatemeh Haghighi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine, Naval Medical Research Center , Silver Spring, MD , USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
53
|
Shultz SR, McDonald SJ, Vonder Haar C, Meconi A, Vink R, van Donkelaar P, Taneja C, Iverson GL, Christie BR. The potential for animal models to provide insight into mild traumatic brain injury: Translational challenges and strategies. Neurosci Biobehav Rev 2016; 76:396-414. [PMID: 27659125 DOI: 10.1016/j.neubiorev.2016.09.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI) is a common health problem. There is tremendous variability and heterogeneity in human mTBI, including mechanisms of injury, biomechanical forces, injury severity, spatial and temporal pathophysiology, genetic factors, pre-injury vulnerability and resilience factors, and clinical outcomes. Animal models greatly reduce this variability and heterogeneity, and provide a means to study mTBI in a rigorous, controlled, and efficient manner. Rodent models, in particular, are time- and cost-efficient, and they allow researchers to measure morphological, cellular, molecular, and behavioral variables in a single study. However, inter-species differences in anatomy, morphology, metabolism, neurobiology, and lifespan create translational challenges. Although the term "mild" TBI is used often in the pre-clinical literature, clearly defined criteria for mild, moderate, and severe TBI in animal models have not been agreed upon. In this review, we introduce current issues facing the mTBI field, summarize the available research methodologies and previous studies in mTBI animal models, and discuss how a translational research approach may be useful in advancing our understanding and management of mTBI.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Cole Vonder Haar
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Alicia Meconi
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| | - Robert Vink
- Division of Health Sciences, The University of South Australia, Adelaide, SA, Australia
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Chand Taneja
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, and MassGeneral Hospital for Children™ Sports Concussion Program, Boston, MA, USA
| | - Brian R Christie
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| |
Collapse
|
54
|
Wang H, Mu DZ. [17β‑estradiol suppresses hyperoxia‑induced apoptosis of oligodendrocyte precursor cells through paired‑immunoglobulin‑like receptor B]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:650-655. [PMID: 27412551 PMCID: PMC7388988 DOI: 10.7499/j.issn.1008-8830.2016.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To study the effect of hyperoxia and paired immunoglobin-like receptor B (PirB) on rat oligodendrocyte precursor cells (OPCs) in vivo and the neuroprotective effects of 17β-estradiol (E2) on these cells. METHODS Rat OPCs were treated with different concentrations of E2 and the cells were harvested for RT‑qPCR analysis at different time points. PriB was silenced with small interfering siRNA. The effects of E2 treatment and silencing of PriB on OPCs viability and apoptosis under hyperoxic stimulation were detected using 3‑(4,5‑dimethylthi‑azol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis. RESULTS Hyperoxia induced apoptosis in OPCs and decreased their viability. E2 treatment markedly down-regulated the expression of PirB. E2 treatment or PirB silencing markedly decreased hyperoxia-induced apoptosis and increased cell viability in OPCs. CONCLUSIONS E2 can protect OPCs from hyperoxia-induced apoptosis.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | | |
Collapse
|
55
|
Lucke-Wold BP, Turner RC, Logsdon AF, Nguyen L, Bailes JE, Lee JM, Robson MJ, Omalu BI, Huber JD, Rosen CL. Endoplasmic reticulum stress implicated in chronic traumatic encephalopathy. J Neurosurg 2016; 124:687-702. [PMID: 26381255 DOI: 10.3171/2015.3.jns141802] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Chronic traumatic encephalopathy is a progressive neurodegenerative disease characterized by neurofibrillary tau tangles following repetitive neurotrauma. The underlying mechanism linking traumatic brain injury to chronic traumatic encephalopathy has not been elucidated. The authors investigate the role of endoplasmic reticulum stress as a link between acute neurotrauma and chronic neurodegeneration. METHODS The authors used pharmacological, biochemical, and behavioral tools to assess the role of endoplasmic reticulum stress in linking acute repetitive traumatic brain injury to the development of chronic neurodegeneration. Data from the authors' clinically relevant and validated rodent blast model were compared with those obtained from postmortem human chronic traumatic encephalopathy specimens from a National Football League player and World Wrestling Entertainment wrestler. RESULTS The results demonstrated strong correlation of endoplasmic reticulum stress activation with subsequent tau hyperphosphorylation. Various endoplasmic reticulum stress markers were increased in human chronic traumatic encephalopathy specimens, and the endoplasmic reticulum stress response was associated with an increase in the tau kinase, glycogen synthase kinase-3β. Docosahexaenoic acid, an endoplasmic reticulum stress inhibitor, improved cognitive performance in the rat model 3 weeks after repetitive blast exposure. The data showed that docosahexaenoic acid administration substantially reduced tau hyperphosphorylation (t = 4.111, p < 0.05), improved cognition (t = 6.532, p < 0.001), and inhibited C/EBP homology protein activation (t = 5.631, p < 0.01). Additionally the data showed, for the first time, that endoplasmic reticulum stress is involved in the pathophysiology of chronic traumatic encephalopathy. CONCLUSIONS Docosahexaenoic acid therefore warrants further investigation as a potential therapeutic agent for the prevention of chronic traumatic encephalopathy.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine
- The Center for Neuroscience, West Virginia University School of Medicine
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University School of Medicine
- The Center for Neuroscience, West Virginia University School of Medicine
| | - Aric F Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Linda Nguyen
- The Center for Neuroscience, West Virginia University School of Medicine
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - John M Lee
- Department of Neurosurgery, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Matthew J Robson
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | - Bennet I Omalu
- Department of Medical Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, California
| | - Jason D Huber
- The Center for Neuroscience, West Virginia University School of Medicine
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University School of Medicine
- The Center for Neuroscience, West Virginia University School of Medicine
| |
Collapse
|
56
|
WANG HUA, WU JINLIN. 17β-estradiol suppresses hyperoxia-induced apoptosis of oligodendrocytes through paired-immunoglobulin-like receptor B. Mol Med Rep 2016; 13:2892-8. [DOI: 10.3892/mmr.2016.4808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 01/05/2016] [Indexed: 11/06/2022] Open
|
57
|
Bailey ZS, Hubbard WB, VandeVord PJ. Cellular Mechanisms and Behavioral Outcomes in Blast-Induced Neurotrauma: Comparing Experimental Setups. Methods Mol Biol 2016; 1462:119-138. [PMID: 27604716 DOI: 10.1007/978-1-4939-3816-2_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Blast-induced neurotrauma (BINT) has increased in incidence over the past decades and can result in cognitive issues that have debilitating consequences. The exact primary and secondary mechanisms of injury have not been elucidated and appearance of cellular injury can vary based on many factors, such as blast overpressure magnitude and duration. Many methodologies to study blast neurotrauma have been employed, ranging from open-field explosives to experimental shock tubes for producing free-field blast waves. While there are benefits to the various methods, certain specifications need to be accounted for in order to properly examine BINT. Primary cell injury mechanisms, occurring as a direct result of the blast wave, have been identified in several studies and include cerebral vascular damage, blood-brain barrier disruption, axonal injury, and cytoskeletal damage. Secondary cell injury mechanisms, triggered subsequent to the initial insult, result in the activation of several molecular cascades and can include, but are not limited to, neuroinflammation and oxidative stress. The collective result of these secondary injuries can lead to functional deficits. Behavioral measures examining motor function, anxiety traits, and cognition/memory problems have been utilized to determine the level of injury severity. While cellular injury mechanisms have been identified following blast exposure, the various experimental models present both concurrent and conflicting results. Furthermore, the temporal response and progression of pathology after blast exposure have yet to be detailed and remain unclear due to limited resemblance of methodologies. This chapter summarizes the current state of blast neuropathology and emphasizes the need for a standardized preclinical model of blast neurotrauma.
Collapse
Affiliation(s)
- Zachary S Bailey
- School of Biomedical Engineering and Sciences, Virginia Tech, 447 Kelly Hall, 325 Stanger Street, Blacksburg, VA, 24061, USA
| | - W Brad Hubbard
- School of Biomedical Engineering and Sciences, Virginia Tech, 447 Kelly Hall, 325 Stanger Street, Blacksburg, VA, 24061, USA
| | - Pamela J VandeVord
- School of Biomedical Engineering and Sciences, Virginia Tech, 447 Kelly Hall, 325 Stanger Street, Blacksburg, VA, 24061, USA.
| |
Collapse
|
58
|
Xu L, Nguyen JV, Lehar M, Menon A, Rha E, Arena J, Ryu J, Marsh-Armstrong N, Marmarou CR, Koliatsos VE. Repetitive mild traumatic brain injury with impact acceleration in the mouse: Multifocal axonopathy, neuroinflammation, and neurodegeneration in the visual system. Exp Neurol 2016; 275 Pt 3:436-449. [DOI: 10.1016/j.expneurol.2014.11.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
|
59
|
Xu L, Ryu J, Nguyen JV, Arena J, Rha E, Vranis P, Hitt D, Marsh-Armstrong N, Koliatsos VE. Evidence for accelerated tauopathy in the retina of transgenic P301S tau mice exposed to repetitive mild traumatic brain injury. Exp Neurol 2015; 273:168-76. [DOI: 10.1016/j.expneurol.2015.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/01/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022]
|
60
|
Courtney A, Courtney M. The Complexity of Biomechanics Causing Primary Blast-Induced Traumatic Brain Injury: A Review of Potential Mechanisms. Front Neurol 2015; 6:221. [PMID: 26539158 PMCID: PMC4609847 DOI: 10.3389/fneur.2015.00221] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Primary blast-induced traumatic brain injury (bTBI) is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration) is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs, which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs, which isolate a single injury mechanism.
Collapse
Affiliation(s)
- Amy Courtney
- Exponent Engineering and Scientific Consulting, Philadelphia, PA, USA
| | | |
Collapse
|
61
|
Divani AA, Murphy AJ, Meints J, Sadeghi-Bazargani H, Nordberg J, Monga M, Low WC, Bhatia PM, Beilman GJ, SantaCruz KS. A Novel Preclinical Model of Moderate Primary Blast-Induced Traumatic Brain Injury. J Neurotrauma 2015; 32:1109-16. [DOI: 10.1089/neu.2014.3686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Afshin A. Divani
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Amanda J. Murphy
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Joyce Meints
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Homayoun Sadeghi-Bazargani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| | - Jessica Nordberg
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
| | - Manoj Monga
- Department of Urology, Cleveland Clinic, Cleveland, Ohio
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Prerana M. Bhatia
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Greg J. Beilman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Karen S. SantaCruz
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
62
|
Newsome MR, Durgerian S, Mourany L, Scheibel RS, Lowe MJ, Beall EB, Koenig KA, Parsons M, Troyanskaya M, Reece C, Wilde E, Fischer BL, Jones SE, Agarwal R, Levin HS, Rao SM. Disruption of caudate working memory activation in chronic blast-related traumatic brain injury. NEUROIMAGE-CLINICAL 2015; 8:543-53. [PMID: 26110112 PMCID: PMC4477106 DOI: 10.1016/j.nicl.2015.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
Abstract
Mild to moderate traumatic brain injury (TBI) due to blast exposure is frequently diagnosed in veterans returning from the wars in Iraq and Afghanistan. However, it is unclear whether neural damage resulting from blast TBI differs from that found in TBI due to blunt-force trauma (e.g., falls and motor vehicle crashes). Little is also known about the effects of blast TBI on neural networks, particularly over the long term. Because impairment in working memory has been linked to blunt-force TBI, the present functional magnetic resonance imaging (fMRI) study sought to investigate whether brain activation in response to a working memory task would discriminate blunt-force from blast TBI. Twenty-five veterans (mean age = 29.8 years, standard deviation = 6.01 years, 1 female) who incurred TBI due to blast an average of 4.2 years prior to enrollment and 25 civilians (mean age = 27.4 years, standard deviation = 6.68 years, 4 females) with TBI due to blunt-force trauma performed the Sternberg Item Recognition Task while undergoing fMRI. The task involved encoding 1, 3, or 5 items in working memory. A group of 25 veterans (mean age = 29.9 years, standard deviation = 5.53 years, 0 females) and a group of 25 civilians (mean age = 27.3 years, standard deviation = 5.81 years, 0 females) without history of TBI underwent identical imaging procedures and served as controls. Results indicated that the civilian TBI group and both control groups demonstrated a monotonic relationship between working memory set size and activation in the right caudate during encoding, whereas the blast TBI group did not (p < 0.05, corrected for multiple comparisons using False Discovery Rate). Blast TBI was also associated with worse performance on the Sternberg Item Recognition Task relative to the other groups, although no other group differences were found on neuropsychological measures of episodic memory, inhibition, and general processing speed. These results could not be attributed to caudate atrophy or the presence of PTSD symptoms. Our results point to a specific vulnerability of the caudate to blast injury. Changes in activation during the Sternberg Item Recognition Task, and potentially other tasks that recruit the caudate, may serve as biomarkers for blast TBI. We investigated whether fMRI would discriminate blunt-force from blast mTBI. We used a working memory task with varying numbers of letters (set sizes). Blunt-force TBI showed a monotonic relation between set size and caudate activation. This relation was disrupted in the blast TBI group. Results point to a specific vulnerability of the caudate to blast injury
Collapse
Affiliation(s)
- Mary R Newsome
- Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA ; Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Sally Durgerian
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lyla Mourany
- Schey Center for Cognitive Neuroimaging, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Randall S Scheibel
- Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA ; Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Mark J Lowe
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Erik B Beall
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Michael Parsons
- Schey Center for Cognitive Neuroimaging, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Maya Troyanskaya
- Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA ; Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Christine Reece
- Schey Center for Cognitive Neuroimaging, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elisabeth Wilde
- Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA ; Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Barbara L Fischer
- Geriatric Research Education and Clinical Center (GRECC), Wm. S. Middleton Memorial Veterans Affairs Hospital, Madison, WI, USA
| | | | - Rajan Agarwal
- Diagnostic and Therapeutic Care, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA ; Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Harvey S Levin
- Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA ; Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Stephen M Rao
- Schey Center for Cognitive Neuroimaging, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
63
|
Haghighi F, Ge Y, Chen S, Xin Y, Umali MU, De Gasperi R, Gama Sosa MA, Ahlers ST, Elder GA. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury. J Neurotrauma 2015; 32:1200-9. [PMID: 25594545 DOI: 10.1089/neu.2014.3640] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (p<10(-7)). We detected DNA methylation perturbations in blast overpressure-exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (p<0.05). These data provide the first genome-based evidence for changes in DNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep disturbance and depression associated with traumatic brain injury.
Collapse
Affiliation(s)
- Fatemeh Haghighi
- 1 Department of Psychiatry, James J. Peters Department of Veterans Affairs Medical Center , Bronx, New York
- 2 Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, New York
- 3 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Yongchao Ge
- 4 Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Sean Chen
- 2 Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Yurong Xin
- 2 Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Michelle U Umali
- 2 Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Rita De Gasperi
- 3 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, New York
- 5 Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, New York
- 6 Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center , Bronx, New York
| | - Miguel A Gama Sosa
- 3 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, New York
- 5 Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, New York
- 6 Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center , Bronx, New York
| | - Stephen T Ahlers
- 7 Department of Neurotrauma, Operational and Undersea Medicine Directorate Naval Medical Research Center , Silver Spring, Maryland
| | - Gregory A Elder
- 3 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, New York
- 4 Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York
- 5 Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, New York
- 8 Neurology Service, James J. Peters Department of Veterans Affairs Medical Center , Bronx, New York
| |
Collapse
|
64
|
Elder GA, Gama Sosa MA, De Gasperi R, Stone JR, Dickstein DL, Haghighi F, Hof PR, Ahlers ST. Vascular and inflammatory factors in the pathophysiology of blast-induced brain injury. Front Neurol 2015; 6:48. [PMID: 25852632 PMCID: PMC4360816 DOI: 10.3389/fneur.2015.00048] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/23/2015] [Indexed: 11/13/2022] Open
Abstract
Blast-related traumatic brain injury (TBI) has received much recent attention because of its frequency in the conflicts in Iraq and Afghanistan. This renewed interest has led to a rapid expansion of clinical and animal studies related to blast. In humans, high-level blast exposure is associated with a prominent hemorrhagic component. In animal models, blast exerts a variety of effects on the nervous system including vascular and inflammatory effects that can be seen with even low-level blast exposures which produce minimal or no neuronal pathology. Acutely, blast exposure in animals causes prominent vasospasm and decreased cerebral blood flow along with blood-brain barrier breakdown and increased vascular permeability. Besides direct effects on the central nervous system, evidence supports a role for a thoracically mediated effect of blast; whereby, pressure waves transmitted through the systemic circulation damage the brain. Chronically, a vascular pathology has been observed that is associated with alterations of the vascular extracellular matrix. Sustained microglial and astroglial reactions occur after blast exposure. Markers of a central and peripheral inflammatory response are found for sustained periods after blast injury and include elevation of inflammatory cytokines and other inflammatory mediators. At low levels of blast exposure, a microvascular pathology has been observed in the presence of an otherwise normal brain parenchyma, suggesting that the vasculature may be selectively vulnerable to blast injury. Chronic immune activation in brain following vascular injury may lead to neurobehavioral changes in the absence of direct neuronal pathology. Strategies aimed at preventing or reversing vascular damage or modulating the immune response may improve the chronic neuropsychiatric symptoms associated with blast-related TBI.
Collapse
Affiliation(s)
- Gregory A Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center , Bronx, NY , USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center , Bronx, NY , USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center , Bronx, NY , USA
| | - James Radford Stone
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, VA , USA ; Department of Neurosurgery, University of Virginia , Charlottesville, VA , USA
| | - Dara L Dickstein
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Fatemeh Haghighi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center , Bronx, NY , USA ; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center , Silver Spring, MD , USA
| |
Collapse
|
65
|
Miller AP, Shah AS, Aperi BV, Budde MD, Pintar FA, Tarima S, Kurpad SN, Stemper BD, Glavaski-Joksimovic A. Effects of blast overpressure on neurons and glial cells in rat organotypic hippocampal slice cultures. Front Neurol 2015; 6:20. [PMID: 25729377 PMCID: PMC4325926 DOI: 10.3389/fneur.2015.00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/25/2015] [Indexed: 11/13/2022] Open
Abstract
Due to recent involvement in military conflicts, and an increase in the use of explosives, there has been an escalation in the incidence of blast-induced traumatic brain injury (bTBI) among US military personnel. Having a better understanding of the cellular and molecular cascade of events in bTBI is prerequisite for the development of an effective therapy that currently is unavailable. The present study utilized organotypic hippocampal slice cultures (OHCs) exposed to blast overpressures of 150 kPa (low) and 280 kPa (high) as an in vitro bTBI model. Using this model, we further characterized the cellular effects of the blast injury. Blast-evoked cell death was visualized by a propidium iodide (PI) uptake assay as early as 2 h post-injury. Quantification of PI staining in the cornu Ammonis 1 and 3 (CA1 and CA3) and the dentate gyrus regions of the hippocampus at 2, 24, 48, and 72 h following blast exposure revealed significant time dependent effects. OHCs exposed to 150 kPa demonstrated a slow increase in cell death plateauing between 24 and 48 h, while OHCs from the high-blast group exhibited a rapid increase in cell death already at 2 h, peaking at ~24 h post-injury. Measurements of lactate dehydrogenase release into the culture medium also revealed a significant increase in cell lysis in both low- and high-blast groups compared to sham controls. OHCs were fixed at 72 h post-injury and immunostained for markers against neurons, astrocytes, and microglia. Labeling OHCs with PI, neuronal, and glial markers revealed that the blast-evoked extensive neuronal death and to a lesser extent loss of glial cells. Furthermore, our data demonstrated activation of astrocytes and microglial cells in low- and high-blasted OHCs, which reached a statistically significant difference in the high-blast group. These data confirmed that our in vitro bTBI model is a useful tool for studying cellular and molecular changes after blast exposure.
Collapse
Affiliation(s)
- Anna P Miller
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Alok S Shah
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Brandy V Aperi
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Frank A Pintar
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Sergey Tarima
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Brian D Stemper
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Aleksandra Glavaski-Joksimovic
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| |
Collapse
|
66
|
Griesbach GS, Hovda DA. Cellular and molecular neuronal plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2015; 128:681-90. [DOI: 10.1016/b978-0-444-63521-1.00042-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
67
|
Elder GA, Stone JR, Ahlers ST. Effects of low-level blast exposure on the nervous system: is there really a controversy? Front Neurol 2014; 5:269. [PMID: 25566175 PMCID: PMC4271615 DOI: 10.3389/fneur.2014.00269] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/29/2014] [Indexed: 12/20/2022] Open
Abstract
High-pressure blast waves can cause extensive CNS injury in human beings. However, in combat settings, such as Iraq and Afghanistan, lower level exposures associated with mild traumatic brain injury (mTBI) or subclinical exposure have been much more common. Yet controversy exists concerning what traits can be attributed to low-level blast, in large part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress disorder (PTSD). We describe how TBI is defined in human beings and the problems posed in using current definitions to recognize blast-related mTBI. We next consider the problem of applying definitions of human mTBI to animal models, in particular that TBI severity in human beings is defined in relation to alteration of consciousness at the time of injury, which typically cannot be assessed in animals. However, based on outcome assessments, a condition of "low-level" blast exposure can be defined in animals that likely approximates human mTBI or subclinical exposure. We review blast injury modeling in animals noting that inconsistencies in experimental approach have contributed to uncertainty over the effects of low-level blast. Yet, animal studies show that low-level blast pressure waves are transmitted to the brain. In brain, low-level blast exposures cause behavioral, biochemical, pathological, and physiological effects on the nervous system including the induction of PTSD-related behavioral traits in the absence of a psychological stressor. We review the relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical lowering of Abeta by blast, which along with other observations suggest that blast-related TBI is pathophysiologically distinct from non-blast TBI. Human neuroimaging studies show that blast-related mTBI is associated with a variety of chronic effects that are unlikely to be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level blast as having long-term effects on the nervous system.
Collapse
Affiliation(s)
- Gregory A. Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James R. Stone
- Department of Radiology, University of Virginia, Charlottesville, VA, USA
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| |
Collapse
|
68
|
Logsdon AF, Turner RC, Lucke-Wold BP, Robson MJ, Naser ZJ, Smith KE, Matsumoto RR, Huber JD, Rosen CL. Altering endoplasmic reticulum stress in a model of blast-induced traumatic brain injury controls cellular fate and ameliorates neuropsychiatric symptoms. Front Cell Neurosci 2014; 8:421. [PMID: 25540611 PMCID: PMC4261829 DOI: 10.3389/fncel.2014.00421] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/20/2014] [Indexed: 02/05/2023] Open
Abstract
Neuronal injury following blast-induced traumatic brain injury (bTBI) increases the risk for neuropsychiatric disorders, yet the pathophysiology remains poorly understood. Blood-brain-barrier (BBB) disruption, endoplasmic reticulum (ER) stress, and apoptosis have all been implicated in bTBI. Microvessel compromise is a primary effect of bTBI and is postulated to cause subcellular secondary effects such as ER stress. What remains unclear is how these secondary effects progress to personality disorders in humans exposed to head trauma. To investigate this we exposed male rats to a clinically relevant bTBI model we have recently developed. The study examined initial BBB disruption using Evan's blue (EB), ER stress mechanisms, apoptosis and impulsive-like behavior measured with elevated plus maze (EPM). Large BBB openings were observed immediately following bTBI, and persisted for at least 6 h. Data showed increased mRNA abundance of stress response genes at 3 h, with subsequent increases in the ER stress markers C/EBP homologous protein (CHOP) and growth arrest and DNA damage-inducible protein 34 (GADD34) at 24 h. Caspase-12 and Caspase-3 were both cleaved at 24 h following bTBI. The ER stress inhibitor, salubrinal (SAL), was administered (1 mg/kg i.p.) to investigate its effects on neuronal injury and impulsive-like behavior associated with bTBI. SAL reduced CHOP protein expression, and diminished Caspase-3 cleavage, suggesting apoptosis attenuation. Interestingly, SAL also ameliorated impulsive-like behavior indicative of head trauma. These results suggest SAL plays a role in apoptosis regulation and the pathology of chronic disease. These observations provide evidence that bTBI involves ER stress and that the unfolded protein response (UPR) is a promising molecular target for the attenuation of neuronal injury.
Collapse
Affiliation(s)
- Aric Flint Logsdon
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia UniversityMorgantown, WV, USA
- Center for Neuroscience, Health Sciences Center, West Virginia University, MorgantownWV, USA
- Department of Neurosurgery, School of Medicine, West Virginia University, MorgantownWV, USA
| | - Ryan Coddington Turner
- Center for Neuroscience, Health Sciences Center, West Virginia University, MorgantownWV, USA
- Department of Neurosurgery, School of Medicine, West Virginia University, MorgantownWV, USA
| | - Brandon Peter Lucke-Wold
- Center for Neuroscience, Health Sciences Center, West Virginia University, MorgantownWV, USA
- Department of Neurosurgery, School of Medicine, West Virginia University, MorgantownWV, USA
| | - Matthew James Robson
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia UniversityMorgantown, WV, USA
- Department of Pharmacology, School of Medicine, Vanderbilt UniversityNashville, TN, USA
| | - Zachary James Naser
- Department of Neurosurgery, School of Medicine, West Virginia University, MorgantownWV, USA
| | - Kelly Elizabeth Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia UniversityMorgantown, WV, USA
| | - Rae Reiko Matsumoto
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia UniversityMorgantown, WV, USA
- Dean’s Office, College of Pharmacy, Touro University CaliforniaVallejo, CA, USA
| | - Jason Delwyn Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia UniversityMorgantown, WV, USA
- Center for Neuroscience, Health Sciences Center, West Virginia University, MorgantownWV, USA
- Department of Neurosurgery, School of Medicine, West Virginia University, MorgantownWV, USA
| | - Charles Lee Rosen
- Center for Neuroscience, Health Sciences Center, West Virginia University, MorgantownWV, USA
- Department of Neurosurgery, School of Medicine, West Virginia University, MorgantownWV, USA
| |
Collapse
|
69
|
Bhat DI, Shukla D, Mahadevan A, Sharath N, Reddy K. Validation of a blast induced neurotrauma model using modified Reddy tube in rats: A pilot study. INDIAN JOURNAL OF NEUROTRAUMA 2014. [DOI: 10.1016/j.ijnt.2014.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
70
|
Ryu J, Horkayne-Szakaly I, Xu L, Pletnikova O, Leri F, Eberhart C, Troncoso JC, Koliatsos VE. The problem of axonal injury in the brains of veterans with histories of blast exposure. Acta Neuropathol Commun 2014; 2:153. [PMID: 25422066 PMCID: PMC4260204 DOI: 10.1186/s40478-014-0153-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 10/11/2014] [Indexed: 11/18/2022] Open
Abstract
Introduction Blast injury to brain, a hundred-year old problem with poorly characterized neuropathology, has resurfaced as health concern in recent deployments in Iraq and Afghanistan. To characterize the neuropathology of blast injury, we examined the brains of veterans for the presence of amyloid precursor protein (APP)-positive axonal swellings typical of diffuse axonal injury (DAI) and compared them to healthy controls as well as controls with opiate overdose, anoxic-ischemic encephalopathy, and non-blast TBI (falls and motor vehicle crashes). Results In cases with blast history, we found APP (+) axonal abnormalities in several brain sites, especially the medial dorsal frontal white matter. In white matter, these abnormalities were featured primarily by clusters of axonal spheroids or varicosities in a honeycomb pattern with perivascular distribution. Axonal abnormalities colocalized with IBA1 (+) reactive microglia and had an appearance that was distinct from classical DAI encountered in TBI due to motor vehicle crashes. Opiate overdose cases also showed APP (+) axonal abnormalities, but the intensity of these lesions was lower compared to cases with blast histories and there was no clear association of such lesions with microglial activation. Conclusions Our findings demonstrate that many cases with history of blast exposure are featured by APP (+) axonopathy that may be related to blast exposure, but an important role for opiate overdose, antemortem anoxia, and concurrent blunt TBI events in war theater or elsewhere cannot be discounted. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0153-3) contains supplementary material, which is available to authorized users.
Collapse
|
71
|
Choi JH, Greene WA, Johnson AJ, Chavko M, Cleland JM, McCarron RM, Wang HC. Pathophysiology of blast-induced ocular trauma in rats after repeated exposure to low-level blast overpressure. Clin Exp Ophthalmol 2014; 43:239-46. [PMID: 25112787 DOI: 10.1111/ceo.12407] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/31/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND The incidence of blast-induced ocular injury has dramatically increased due to advances in weaponry and military tactics. A single exposure to blast overpressure (BOP) has been shown to cause damage to the eye in animal models; however, on the battlefield, military personnel are exposed to BOP multiple times. The effects of repeated exposures to BOP on ocular tissues have not been investigated. The purpose of this study is to characterize the effects of single or repeated exposure on ocular tissues. METHODS A compressed air shock tube was used to deliver 70 ± 7 KPa BOP to rats, once (single blast overpressure [SBOP]) or once daily for 5 days (repeated blast overpressure [RBOP]). Immunohistochemistry was performed to characterize the pathophysiology of ocular injuries induced by SBOP and RBOP. Apoptosis was determined by quantification activated caspase 3. Gliosis was examined by detection of glial fibrillary acidic protein (GFAP). Inflammation was examined by detection of CD68. RESULTS Activated caspase 3 was detected in ocular tissues from all animals subjected to BOP, while those exposed to RBOP had more activated caspase 3 in the optic nerve than those exposed to SBOP. GFAP was detected in the retinas from all animals subjected to BOP. CD68 was detected in optic nerves from all animals exposed to BOP. CONCLUSION SBOP and RBOP induced retinal damage. RBOP caused more apoptosis in the optic nerve than SBOP, suggesting that RBOP causes more severe optic neuropathy than SBOP. SBOP and RBOP caused gliosis in the retina and increased inflammation in the optic nerve.
Collapse
Affiliation(s)
- Jae Hyek Choi
- Ocular Trauma Task Area, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Gama Sosa MA, De Gasperi R, Janssen PL, Yuk FJ, Anazodo PC, Pricop PE, Paulino AJ, Wicinski B, Shaughness MC, Maudlin-Jeronimo E, Hall AA, Dickstein DL, McCarron RM, Chavko M, Hof PR, Ahlers ST, Elder GA. Selective vulnerability of the cerebral vasculature to blast injury in a rat model of mild traumatic brain injury. Acta Neuropathol Commun 2014; 2:67. [PMID: 24938728 PMCID: PMC4229875 DOI: 10.1186/2051-5960-2-67] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/03/2014] [Indexed: 12/23/2022] Open
Abstract
Background Blast-related traumatic brain injury (TBI) is a common cause of injury in the military operations in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. The aim of the present study was to examine whether blast exposure affects the cerebral vasculature in a rodent model. We analyzed the brains of rats exposed to single or multiple (three) 74.5 kPa blast exposures, conditions that mimic a mild TBI. Rats were sacrificed 24 hours or between 6 and 10 months after exposure. Blast-induced cerebral vascular pathology was examined by a combination of light microscopy, immunohistochemistry, and electron microscopy. Results We describe a selective vascular pathology that is present acutely at 24 hours after injury. The vascular pathology is found at the margins of focal shear-related injuries that, as we previously showed, typically follow the patterns of penetrating cortical vessels. However, changes in the microvasculature extend beyond the margins of such lesions. Electron microscopy revealed that microvascular pathology is found in regions of the brain with an otherwise normal neuropil. This initial injury leads to chronic changes in the microvasculature that are still evident many months after the initial blast exposure. Conclusions These studies suggest that vascular pathology may be a central mechanism in the induction of chronic blast-related injury.
Collapse
|
73
|
Ng TS, Lin AP, Koerte IK, Pasternak O, Liao H, Merugumala S, Bouix S, Shenton ME. Neuroimaging in repetitive brain trauma. ALZHEIMERS RESEARCH & THERAPY 2014; 6:10. [PMID: 25031630 PMCID: PMC3978843 DOI: 10.1186/alzrt239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sports-related concussions are one of the major causes of mild traumatic brain injury. Although most patients recover completely within days to weeks, those who experience repetitive brain trauma (RBT) may be at risk for developing a condition known as chronic traumatic encephalopathy (CTE). While this condition is most commonly observed in athletes who experience repetitive concussive and/or subconcussive blows to the head, such as boxers, football players, or hockey players, CTE may also affect soldiers on active duty. Currently, the only means by which to diagnose CTE is by the presence of phosphorylated tau aggregations post-mortem. Non-invasive neuroimaging, however, may allow early diagnosis as well as improve our understanding of the underlying pathophysiology of RBT. The purpose of this article is to review advanced neuroimaging methods used to investigate RBT, including diffusion tensor imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, susceptibility weighted imaging, and positron emission tomography. While there is a considerable literature using these methods in brain injury in general, the focus of this review is on RBT and those subject populations currently known to be susceptible to RBT, namely athletes and soldiers. Further, while direct detection of CTE in vivo has not yet been achieved, all of the methods described in this review provide insight into RBT and will likely lead to a better characterization (diagnosis), in vivo, of CTE than measures of self-report.
Collapse
Affiliation(s)
- Thomas Sc Ng
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA ; Keck School of Medicine of the University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA ; Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | - Inga K Koerte
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA ; Institute for Clinical Radiology, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377 Munich, Germany
| | - Ofer Pasternak
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | - Huijun Liao
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Sai Merugumala
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Sylvain Bouix
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | - Martha E Shenton
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA ; Research and Development, VA Boston Healthcare System, 850 Belmont Street, Brockton, MA 02130, USA
| |
Collapse
|
74
|
Mouzon BC, Bachmeier C, Ferro A, Ojo JO, Crynen G, Acker CM, Davies P, Mullan M, Stewart W, Crawford F. Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann Neurol 2014; 75:241-54. [DOI: 10.1002/ana.24064] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/11/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Benoit C. Mouzon
- Roskamp Institute; Sarasota FL
- James A. Haley Veterans Administration Medical Center; Tampa FL
- Department of Life Sciences; Open University; Milton Keynes United Kingdom
| | - Corbin Bachmeier
- Roskamp Institute; Sarasota FL
- Department of Life Sciences; Open University; Milton Keynes United Kingdom
| | | | | | - Gogce Crynen
- Roskamp Institute; Sarasota FL
- Department of Life Sciences; Open University; Milton Keynes United Kingdom
| | - Christopher M. Acker
- Litwin-Zucker Center for Research in Alzheimer's Disease; Feinstein Institute for Medical Research, North Shore/LIJ Health System; Manhasset NY
| | - Peter Davies
- Litwin-Zucker Center for Research in Alzheimer's Disease; Feinstein Institute for Medical Research, North Shore/LIJ Health System; Manhasset NY
| | - Michael Mullan
- Roskamp Institute; Sarasota FL
- James A. Haley Veterans Administration Medical Center; Tampa FL
- Department of Life Sciences; Open University; Milton Keynes United Kingdom
| | - William Stewart
- Department of Neuropathology; Southern General Hospital; Glasgow United Kingdom
- University of Glasgow; Glasgow United Kingdom
| | - Fiona Crawford
- Roskamp Institute; Sarasota FL
- James A. Haley Veterans Administration Medical Center; Tampa FL
- Department of Life Sciences; Open University; Milton Keynes United Kingdom
| |
Collapse
|