51
|
Palkovicsné Pézsa N, Kovács D, Gálfi P, Rácz B, Farkas O. Effect of Enterococcus faecium NCIMB 10415 on Gut Barrier Function, Internal Redox State, Proinflammatory Response and Pathogen Inhibition Properties in Porcine Intestinal Epithelial Cells. Nutrients 2022; 14:nu14071486. [PMID: 35406099 PMCID: PMC9002907 DOI: 10.3390/nu14071486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/14/2023] Open
Abstract
In farm animals, intestinal diseases caused by Salmonella spp. and Escherichia coli may lead to significant economic loss. In the past few decades, the swine industry has largely relied on the prophylactic use of antibiotics to control gastrointestinal diseases. The development of antibiotic resistance has become an important issue both in animal and human health. The use of antibiotics for prophylactic purposes has been banned, moreover the new EU regulations further restrict the application of antibiotics in veterinary use. The swine industry seeks alternatives that are capable of maintaining the health of the gastrointestinal tract. Probiotics offer a promising alternative; however, their mode of action is not fully understood. In our experiments, porcine intestinal epithelial cells (IPEC-J2 cells) were challenged by Salmonella Typhimurium or Escherichia coli and we aimed at determining the effect of pre-, co-, and post-treatment with Enterococcus faecium NCIMB 10415 on the internal redox state, paracellular permeability, IL-6 and IL-8 secretion of IPEC-J2 cells. Moreover, the adhesion inhibition effect was also investigated. Enterococcus faecium was able to reduce oxidative stress and paracellular permeability of IPEC-J2 cells and could inhibit the adhesion of Salmonella Typhimurium and Escherichia coli. Based on our results, Enterococcus faecium is a promising candidate to maintain the health of the gastrointestinal tract.
Collapse
Affiliation(s)
- Nikolett Palkovicsné Pézsa
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (P.G.); (O.F.)
- Correspondence:
| | - Dóra Kovács
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (P.G.); (O.F.)
| | - Péter Gálfi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (P.G.); (O.F.)
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary;
| | - Orsolya Farkas
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (P.G.); (O.F.)
| |
Collapse
|
52
|
Tian S, Wang J, Gao R, Wang J, Zhu W. Galacto-oligosaccharides directly attenuate lipopolysaccharides-induced inflammatory response, oxidative stress and barrier impairment in intestinal epithelium. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
53
|
Wang Q, Wang J, Qi R, Qiu X, Sun Q, Huang J, Wang R. Effect of oral administration of Limosilactobacillus reuteri on intestinal barrier function and mucosal immunity of suckling piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2048977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Qian Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Ruisheng Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| |
Collapse
|
54
|
Protective Mechanism of Leucine and Isoleucine against H2O2-Induced Oxidative Damage in Bovine Mammary Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4013575. [PMID: 35360198 PMCID: PMC8964234 DOI: 10.1155/2022/4013575] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Leucine and isoleucine possess antioxidative and anti-inflammatory properties. However, their underlying protective mechanisms against oxidative damage remain unknown. Therefore, in this study, the protective mechanism of leucine and isoleucine against H2O2-induced oxidative damage in a bovine mammary epithelial cell lines (MAC-T cells) were investigated. Briefly, MAC-T cells exposed or free to H2O2 were incubated with different combinations of leucine and isoleucine. The cellular relative proliferation rate and viability, oxidative stress indicators, and inflammatory factors were determined by specific commercial kits. The genes related to barrier functions was measured by real-time quantitative PCR. The protein expression differences were explored by 4D label-free quantitative proteomic analyses and validated by parallel reaction monitoring. The results revealed that leucine and isoleucine increased cell proliferation, total antioxidant status (TAS), and the relative mRNA expression of occludin, as well as decreased malondialdehyde (MDA), total oxidant status (TOS)/TAS, IL-6, IL-1β, and TOS. When leucine and isoleucine were combined, MDA, TOS/TAS, and the relative mRNA expression levels of claudin-1, occludin, and zonula occludens-1 increased when compared to leucine or isoleucine alone. Proteomics analyses revealed that leucine significantly upregulated the propanoate metabolism; valine, leucine, and isoleucine degradation; and thermogenesis pathways, whereas isoleucine significantly upregulated the peroxisome and propanoate metabolism pathways. In conclusion, leucine protected MAC-T cells from H2O2-induced oxidative stress by generating more ATP to supplement energy demands, and isoleucine improved the deficit in peroxisome transport and promoted acetyl-CoA production. The findings of this study enhance our understanding of the protective mechanisms of leucine and isoleucine against oxidative damage.
Collapse
|
55
|
Shi S, Dong J, Cheng X, Hu J, Liu Y, He G, Zhang J, Yu H, Liu J, Zhou D. Biological characteristics and whole-genome analysis of the potential probiotic, Lactobacillus reuteri S5. Lett Appl Microbiol 2022; 74:593-603. [PMID: 35014712 DOI: 10.1111/lam.13644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
Lactic acid bacteria are microorganisms used for probiotic purposes and form major parts of human and mammalian intestinal microbiota, exerting important health-promoting effects on the host. Here, we evaluated L. reuteri strain S5 isolated from the intestines of healthy white feather broilers. L. reuteri S5 grew best after 20 h of incubation in MRS medium. Lactic acid production was 1.42 mmol L-1 at 24 h, which was well tolerated. Activities of T-AOC, GSH-Px and T-SOD in the cell-free fermentation supernatant of L. reuteri S5 were higher than those in the bacteria, and the strain showed good hydrophobicity in vitro. The dominant carbon and nitrogen sources of L. reuteri S5 were glucose and soybean meal. A high-quality complete genome map of L. reuteri S5 was obtained using a Pacbio nanopore third-generation sequencing platform. The results showed that L. reuteri S5 possesses a complete primary metabolic pathway, encoding the main functional enzymes of the glycolysis pathway and pentose phosphate pathway. The genome contains genes encoding antioxidants and conferring tolerance to inorganic salt ions, acids and bile salts. This study shows that L. reuteri S5 is a probiotic strain with excellent probiotic characteristics and has great potential for the development of feed additives to promote animal health.
Collapse
Affiliation(s)
- Shuiqin Shi
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Jinsheng Dong
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Xu Cheng
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Jie Hu
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Yannan Liu
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Guanyu He
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Jingjing Zhang
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Hao Yu
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Jia Liu
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Duoqi Zhou
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| |
Collapse
|
56
|
Kaur H, Ali SA. Probiotics and gut microbiota: mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct 2022; 13:7423-7447. [DOI: 10.1039/d2fo00911k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Consumption of probiotics as a useful functional food improves the host's wellbeing, and, when paired with prebiotics (indigestible dietary fibre/carbohydrate), often benefits the host through anaerobic fermentation.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, ICAR-NDRI, 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
57
|
Kuang M, Yu H, Qiao S, Huang T, Zhang J, Sun M, Shi X, Chen H. A Novel Nano-Antimicrobial Polymer Engineered with Chitosan Nanoparticles and Bioactive Peptides as Promising Food Biopreservative Effective against Foodborne Pathogen E. coli O157-Caused Epithelial Barrier Dysfunction and Inflammatory Responses. Int J Mol Sci 2021; 22:ijms222413580. [PMID: 34948377 PMCID: PMC8706205 DOI: 10.3390/ijms222413580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
For food quality and safety issues, the emergence of foodborne pathogenic bacteria has further accelerated the spread of antibiotic residues and drug resistance genes. To alleviate the harm caused by bacterial infections, it is necessary to seek novel antimicrobial agents as biopreservatives to prevent microbial spoilage. Nanoantimicrobials have been widely used in the direct treatment of bacterial infections. CNMs, formed by chitosan nanoparticles and peptides, are promising antibiotic alternatives for use as excellent new antibacterial drugs against pathogenic bacteria. Herein, the current study evaluated the function of CNMs in the protection of foodborne pathogen Escherichia coli (E. coli) O157 infection using an intestinal epithelial cell model. Antibacterial activity assays indicated that CNMs exerted excellent bactericidal activity against E. coli O157. Assessment of the cytotoxicity risks toward cells demonstrated that 0.0125–0.02% of CNMs did not cause toxicity, but 0.4% of CNMs caused cytotoxicity. Additionally, CNMs did not induced genotoxicity either. CNMs protected against E. coli O157-induced barrier dysfunction by increasing transepithelial electrical resistance, decreasing lactate dehydrogenase and promoting the protein expression of occludin. CNMs were further found to ameliorate inflammation via modulation of tumor factor α, toll-like receptor 4 and nuclear factor κB (NF-κB) expression via inhibition of mitogen-activated protein kinase and NF-κB activation and improved antioxidant activity. Taken together, CNMs could protect the host against E. coli O157-induced intestinal barrier damage and inflammation, showing that CNMs have great advantages and potential application as novel antimicrobial polymers in the food industry as food biopreservatives, bringing new hope for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Ming Kuang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China;
| | - Haitao Yu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China;
- Correspondence:
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Tao Huang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China;
| | - Jiaqi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.Z.); (M.S.); (X.S.); (H.C.)
| | - Mingchao Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.Z.); (M.S.); (X.S.); (H.C.)
| | - Xiumei Shi
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.Z.); (M.S.); (X.S.); (H.C.)
| | - Han Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.Z.); (M.S.); (X.S.); (H.C.)
| |
Collapse
|
58
|
Tang Q, Yi H, Hong W, Wu Q, Yang X, Hu S, Xiong Y, Wang L, Jiang Z. Comparative Effects of L. plantarum CGMCC 1258 and L. reuteri LR1 on Growth Performance, Antioxidant Function, and Intestinal Immunity in Weaned Pigs. Front Vet Sci 2021; 8:728849. [PMID: 34859082 PMCID: PMC8632148 DOI: 10.3389/fvets.2021.728849] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/12/2021] [Indexed: 12/29/2022] Open
Abstract
Lactobacillus plantarum CGMCC 1258 and Lactobacillus reuteri LR1 are two important strains of probiotics. However, their different advantages in the probiotic effect of weaned pigs are still poorly understood. Therefore, the study was to investigate the comparative effects of dietary supplementation of L. plantarum CGMCC 1258 and L. reuteri LR1 on growth performance, antioxidant function, and intestinal immunity in weaned pigs. Ninety barrows [initial body weight (BW) = 6.10 ± 0.1 kg] 21 days old were randomly divided into 3 treatments with 5 replicates, each replicate containing 6 pigs. Pigs in control (CON) were fed a basal diet, and the basal diets supplemented with 5 × 1010 CFU/kg L. plantarum CGMCC 1258 (LP) or L. reuteri LR1 (LR) for 42 days, respectively. The results showed that LP increased (p < 0.05) serum superoxide dismutase (SOD), and decreased (p < 0.05) serum malondialdehyde (MDA) and the expression and secretion of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) in intestinal mucosa, but has no significant effect on growth performance and diarrheal incidence. However, LR increased (p < 0.05) final BW and average daily gain (ADG), reduced (p < 0.05) 29–42-day diarrheal incidence, decreased (p < 0.05) the expression and secretion of IL-1β, IL-6, TNF-α, and IFN-γ, and increased (p < 0.05) the expression of transforming growth factor-β (TGF-β) in intestinal mucosa. In addition, the serum glutathione peroxidase (GSH-PX), mRNA relative expression of Na+-K+-2Cl– co-transporter 1 (NKCC1) and cystic fibrosis transmembrane conductance regulator (CFTR) and the content of toll-like relative (TLR2) and TLR4 in the jejunum, and secretory immunoglobulin (sIgA) content of ileal mucosa were higher (p < 0.05) than LP. Collectively, dietary L. plantarum CGMCC 1258 improved intestinal morphology, intestinal permeability, intestinal immunity, and antioxidant function in weaned pigs. Dietary L. reuteri LR1 showed better growth performance, a lower incidence of diarrhea, better intestinal morphology, and a higher extent of immune activation in weaned pigs.
Collapse
Affiliation(s)
- Qingsong Tang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,College of Animal Science, Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weibin Hong
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunxia Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
59
|
Probiotics Treatment of Leg Diseases in Broiler Chickens: a Review. Probiotics Antimicrob Proteins 2021; 14:415-425. [PMID: 34757604 DOI: 10.1007/s12602-021-09869-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Normal development and growth of bones are critical for poultry. With the rapid growth experienced by broiler chickens, higher incidences of leg weakness and lameness are common problems in adolescent meat-type poultry that present huge economic and welfare issues. Leg disorders such as angular bone deformities and tibial dyschondroplasia have become common in broilers and are associated with poor growth, high mortality rates, increased carcass condemnation, and downgrading at slaughter. Probiotics have shown promise for a variety of health purposes, including preventing diarrhea, elevating carcass quality, and promoting growth of the poultry. In addition, recent studies have indicated that probiotics can maintain the homeostasis of the gut microbiota and improve the health of the gastrointestinal tract, which confers a potentially beneficial effect on bone health. This review mainly describes the occurrence of broiler leg disease and the role of probiotics in bone health through regulating the gut microbiota and improving intestinal function, thus providing a relevant theoretical basis for probiotics to hinder the development of skeletal disorders in broiler chickens.
Collapse
|
60
|
Jiang Q, Yin J, Chen J, Ma X, Wu M, Li X, Yao K, Tan B, Yin Y. 4-Phenylbutyric acid accelerates rehabilitation of barrier function in IPEC-J2 cell monolayer model. ACTA ACUST UNITED AC 2021; 7:1061-1069. [PMID: 34738036 PMCID: PMC8546315 DOI: 10.1016/j.aninu.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 11/06/2022]
Abstract
As the first line of defence against pathogens and endotoxins crossing the intestine-blood barrier, the intestinal epithelial barrier plays a determinant role in pigs' health and growth. 4-Phenylbutyric acid (4-PBA), an aromatic fatty acid, was reported to benefit homeostasis of endoplasmic reticulum and protein synthesis. However, whether 4-PBA affects intestinal epithelial barrier function in pigs is unknown. This study aimed to explore the effects of 4-PBA on the intestinal barrier function, using in vitro models of well-differentiated intestinal porcine epithelial cell (IPEC-J2) monolayers in the transwell plates. Cell monolayers with or without 4-PBA (1.0 mmol/L) treatment were challenged with physical scratch, deoxynivalenol (DON, 2.0 μg/mL, 48 h), and lipopolysaccharide (LPS, 5.0 μg/mL, 48 h), respectively. Transepithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran (FD-4) permeability were measured to indicate barrier integrity and permeability. Real-time PCR and Western blot were conducted to determine relative gene and protein expressions of tight junction proteins. As expected, physical scratch, DON, and LPS challenges decreased TEER and increased FD-4 permeability. 4-PBA treatment accelerated cell mitigation and rehabilitation of the physical scratch-damaged intestinal epithelial barrier but did not alleviate DON or LPS induced barrier damage. However, once 48-h DON and LPS challenges were removed, rehabilitation of the epithelial barrier function of IPEC-J2 monolayer was accelerated by the 4-PBA treatment. Also, the relative gene and protein expressions of zonula occludens-1 (ZO-1), occludin, and claudin-1 were further upregulated by the 4-PBA treatment during the barrier rehabilitation. Taken together, 4-PBA accelerated the IPEC-J2 cell monolayer barrier recovering from physical scratch, DON-, and LPS-induced damage, via enhancing cell mitigation and expressions of tight junction proteins.
Collapse
Affiliation(s)
- Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.,Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaokang Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kang Yao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Bie Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| |
Collapse
|
61
|
Xie Y, Wen M, Zhao H, Liu G, Chen X, Tian G, Cai J, Jia G. Effect of zinc supplementation on growth performance, intestinal development, and intestinal barrier function in Pekin ducks with lipopolysaccharide challenge. Poult Sci 2021; 100:101462. [PMID: 34731734 PMCID: PMC8567444 DOI: 10.1016/j.psj.2021.101462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
This study was conducted to investigate the influence of zinc (Zn) supplementation on growth performance, intestinal development and intestinal barrier function in Pekin ducks. A total of 480, one-day-old male Pekin ducks were divided into 6 groups with 8 replicates: 0 mg/kg Zn, 0 mg/kg Zn +0.5 mg/kg lipopolysaccharide (LPS), 30 mg/kg Zn, 30 mg/kg Zn +0.5 mg/kg LPS, 120 mg/kg Zn, 120 mg/kg Zn +0.5 mg/kg LPS. The duck primary intestinal epithelial cells (DIECs) were divided into 6 groups: D-Zn (Zinc deficiency, treated with 2 µmol/L zinc Chelator TPEN), A-Zn (Adequate Zinc, basal medium), H-Zn (High level of Zn, supplemented with 20 µmol/L Zn), D-Zn + 20 µg/mL LPS, A-Zn + 20 µg/mL LPS, H-Zn + 20 µg/mL LPS. The results were as follows: in vivo, with Zn supplementation of 120 mg/kg reduced LPS-induced decrease of growth performance and intestine damage (P < 0.05), and increased intestinal digestive enzyme activity of Pekin ducks (P < 0.05). In addition, Zn supplementation also attenuated LPS-induced intestinal epithelium permeability (P < 0.05), inhibited LPS-induced the expression of proinflammatory cytokines and apoptosis-related genes (P < 0.05), as well as reduced LPS-induced the intestinal stem cells mobilization of Pekin ducks (P < 0.05). In vitro, 20 µmol/L Zn inhibited LPS-induced expression of inflammatory factors and apoptosis-related genes (P < 0.05), promoted the expression of cytoprotection-related genes, and attenuated LPS-induced intestinal epithelium permeability in DIECs (P < 0.05). Mechanistically, 20 µmol/L Zn enhanced tight junction protein markers including CLDN-1, OCLD, and ZO-1 both at protein and mRNA levels (P < 0.05), and also increased the level of phosphorylation of TOR protein (P < 0.05) and activated the TOR signaling pathway. In conclusion, Zn improves growth performance, digestive enzyme activity, and intestinal barrier function of Pekin ducks. Importantly, Zn also reverses LPS-induced intestinal barrier damage via enhancing the expression of tight junction proteins and activating the TOR signaling pathway.
Collapse
Affiliation(s)
- Yueqin Xie
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Min Wen
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, 644000, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
62
|
Zou YF, Zhang YY, Paulsen BS, Rise F, Chen ZL, Jia RY, Li LX, Song X, Feng B, Tang HQ, Huang C, Ye G, Yin ZQ. New pectic polysaccharides from Codonopsis pilosula and Codonopsis tangshen: structural characterization and cellular antioxidant activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6043-6052. [PMID: 33857333 DOI: 10.1002/jsfa.11261] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/17/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Codonopsis pilosula and Codonopsis tangshen are plants widely used in traditional Chinese medicine. Two pectic polysaccharides from the roots of C. pilosula and C. tangshen named as CPP-1 and CTP-1 were obtained by boiling water extraction and column chromatography. RESULTS The core structures of both CPP-1 and CTP-1 comprise the long homogalacturonan region (HG) as the backbone and the rhamnogalacturonan I (RG-I) region as the side chains. CPP-1 has methyl esterified galacturonic acid units and a slightly lower molecular weight than CTP-1. Biological testing suggested that CPP-1 and CTP-1 can protect IPEC-J2 cells against the H2 O2 -induced oxidative stress by up-regulating nuclear factor-erythroid 2-related factor 2 and related genes in IPEC-J2 cells. The different antioxidative activities of polysaccharides from different source of C. pilosula may be result of differences in their structures. CONCLUSION All of the results indicated that pectic polysaccharides CPP-1 and CTP-1 from different species of C. pilosula roots could be used as a potential natural antioxidant source. These findings will be valuable for further studies and new applications of pectin-containing health products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Yun Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Berit S Paulsen
- Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Zheng-Li Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, Oslo, Norway
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
63
|
Tsujikawa Y, Suzuki M, Sakane I. Isolation, identification, and impact on intestinal barrier integrity of Lactiplantibacillus plantarum from fresh tea leaves (Camellia sinensis). BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2021; 40:186-195. [PMID: 34631330 PMCID: PMC8484006 DOI: 10.12938/bmfh.2020-083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/19/2021] [Indexed: 11/05/2022]
Abstract
Lactic acid bacteria (LAB) are safe microorganisms that have been used in the processing of fermented food for centuries. The aim of this study was to isolate Lactobacillus from fresh tea leaves and examine the impact of an isolated strain on intestinal barrier integrity. First, the presence of Lactobacillus strains was investigated in fresh tea leaves from Kagoshima, Japan. Strains were isolated by growing on De Man, Rogosa and Sharpe (MRS) agar medium containing sodium carbonate, followed by the identification of one strain by polymerase chain reaction (PCR) and pheS sequence analysis, with the strain identified as Lactiplantibacillus plantarum and named L. plantarum LOC1. Second, the impact of strain LOC1 in its heat-inactivated form on intestinal barrier integrity was investigated. Strain LOC1, but not L. plantarum ATCC 14917T or L. plantarum ATCC 8014, significantly suppressed dextran sulfate sodium (DSS)-induced decreases in transepithelial electrical resistance values of Caco-2:HT29-MTX 100:0 and 90:10 co-cultures. Moreover, in Caco-2:HT29-MTX co-cultures (90:10 and 75:25), levels of occludin mRNA were significantly increased by strain LOC1 compared with untreated co-cultures, and strain LOC1 had higher mRNA levels of MUC2 and MUC4 mucins than L. plantarum ATCC 14917T and L. plantarum YT9. These results indicate that L. plantarum LOC1 may be used as a safe probiotic with beneficial effects on the intestinal barrier, suggesting that fresh tea leaves could be utilized as a safe source for isolating probiotics.
Collapse
Affiliation(s)
- Yuji Tsujikawa
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 421-0516, Japan
| | - Masahiko Suzuki
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 421-0516, Japan
| | - Iwao Sakane
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 421-0516, Japan
| |
Collapse
|
64
|
Wang N, Wang S, Xu B, Liu F, Huo G, Li B. Alleviation Effects of Bifidobacterium animalis subsp. lactis XLTG11 on Dextran Sulfate Sodium-Induced Colitis in Mice. Microorganisms 2021; 9:microorganisms9102093. [PMID: 34683415 PMCID: PMC8539219 DOI: 10.3390/microorganisms9102093] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/11/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-related disease, which can occur through the dysfunction of the immune system caused by the imbalance of gut microbiota. Previous studies have reported the beneficial effects of Bifidobacterium on colitis, while the related mechanisms behind these effects have not been fully elucidated. The aim of our study is to investigate the alleviation effect of Bifidobacterium animalis subsp. lactis XLTG11 (B. lactis) on dextran sulfate sodium (DSS)-induced colitis and its potential mechanism. The results showed that B. lactis XLTG11 significantly decreased weight loss, disease activity index score, colon shortening, myeloperoxide activity, spleen weight, and colon tissue damage. Additionally, B. lactis XLTG11 significantly decreased the levels of pro-inflammatory cytokines and increased the level of anti-inflammatory cytokine. Meanwhile, high doses of B. lactis XLTG11 significantly up-regulated the expression of tight junction proteins and inhibited activation of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MYD88)/nuclear factor-κB (NF-κB) signaling pathway. Furthermore, B. lactis XLTG11 increased the gut microbiota diversity and modulated gut microbiota composition caused by DSS. Moreover, Spearman’s correlation analysis also found that several specific gut microbiota were significantly correlated with colitis-related indicators. These results demonstrated that B. lactis XLTG11 can alleviate DSS-induced colitis by inhibiting the activation of the TLR4/MYD88/NF-κB signaling pathway, regulating inflammatory cytokines, improving intestinal barrier function, and modulating the gut microbiota.
Collapse
Affiliation(s)
- Nana Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (N.W.); (S.W.); (B.X.); (F.L.); (G.H.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Song Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (N.W.); (S.W.); (B.X.); (F.L.); (G.H.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Baofeng Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (N.W.); (S.W.); (B.X.); (F.L.); (G.H.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (N.W.); (S.W.); (B.X.); (F.L.); (G.H.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (N.W.); (S.W.); (B.X.); (F.L.); (G.H.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (N.W.); (S.W.); (B.X.); (F.L.); (G.H.)
- Food College, Northeast Agricultural University, Harbin 150030, China
- Correspondence: ; Tel.: +86-451-5519-0426
| |
Collapse
|
65
|
Lactobacillus plantarum and Lactobacillus brevis Alleviate Intestinal Inflammation and Microbial Disorder Induced by ETEC in a Murine Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6867962. [PMID: 34594475 PMCID: PMC8478549 DOI: 10.1155/2021/6867962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
The purpose of this research is to explore the positive effects of Lactobacillus plantarum and Lactobacillus brevis on the tissue damage and microbial community in mice challenged by Enterotoxigenic Escherichia coli (ETEC). Twenty-four mice were divided into four groups randomly: the CON group, ETEC group, LP-ETEC group and LB-ETEC group. Our results demonstrated that, compared with the ETEC group, the LP-ETEC and LB-ETEC groups experienced less weight loss and morphological damage of the jejunum. We measured proinflammatory factors of colonic tissue and found that L. plantarum and L. brevis inhibited the expression of proinflammatory factors such as IL-β, TNF-α, and IL-6 and promoted that of the tight junction protein such as claudin-1, occludin, and ZO-1. Additionally, L. plantarum and L. brevis altered the impact of ETEC on the intestinal microbial community of mice, significantly increased the abundance of probiotics such as Lactobacillus, and reduced that of pathogenic bacteria such as Proteobacteria, Clostridia, Epsilonproteobacteria, and Helicobacter. Therefore, we believe that L. plantarum and L. brevis can stabilize the intestinal microbiota and inhibit the growth of pathogenic bacteria, thus protecting mice from the gut inflammation induced by ETEC.
Collapse
|
66
|
Tang X, Liu X, Zhong J, Fang R. Potential Application of Lonicera japonica Extracts in Animal Production: From the Perspective of Intestinal Health. Front Microbiol 2021; 12:719877. [PMID: 34434181 PMCID: PMC8381474 DOI: 10.3389/fmicb.2021.719877] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/16/2021] [Indexed: 01/09/2023] Open
Abstract
Lonicera japonica (L. japonica) extract is rich in active substances, such as phenolic acids, essential oils, flavones, saponins, and iridoids, which have a broad spectrum of antioxidant, anti-inflammatory, and anti-microbial effect. Previous studies have demonstrated that L. japonica has a good regulatory effect on animal intestinal health, which can be used as a potential antibiotic substitute product. However, previous studies about intestinal health regulation mainly focus on experimental animals or cells, like mice, rats, HMC-1 Cells, and RAW 264.7 cells. In this review, the intestinal health benefits including antioxidant, anti-inflammatory, and antimicrobial activity, and its potential application in animal production were summarized. Through this review, we can see that the effects and mechanism of L. japonica extract on intestinal health regulation of farm and aquatic animals are still rare and unclear. Further studies could focus on the regulatory mechanism of L. japonica extract on intestinal health especially the protective effects of L. japonica extract on oxidative injury, inflammation, and regulation of intestinal flora in farm animals and aquatic animals, thereby providing references for the rational utilization and application of L. japonica and its extracts in animal production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Xuguang Liu
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Jinfeng Zhong
- Hunan Polytechnic of Environment and Biology, College of Biotechnology, Hengyang, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
67
|
Piccioni A, Franza L, Vaccaro V, Saviano A, Zanza C, Candelli M, Covino M, Franceschi F, Ojetti V. Microbiota and Probiotics: The Role of Limosilactobacillus Reuteri in Diverticulitis. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:802. [PMID: 34441008 PMCID: PMC8398895 DOI: 10.3390/medicina57080802] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023]
Abstract
The microbiota is the set of commensal microorganisms, residing in the organism, helping proper functioning of organs and systems. The role that the microbiota plays in maintaining the health of vertebrates is widely accepted, particularly in the gastrointestinal system, where it is fundamental for immunity, development, and conversion of nutrients. Dysbiosis is an alteration of the microbiota which refers to a disturbed balance, which can cause a number of pathologies. Probiotics have proven to be effective in modulating the microbiota of the gastrointestinal system and, therefore, in promoting the health of the individual. In particular, Lactobacilli are a group of Gram-positive bacteria, which are able to produce lactic acid through glucose metabolism. They are present in different microenvironments, ranging from the vagina, to the mouth, to different tracts of the small intestine. In the present review, we will discuss the use of Limosilactobacillus in human health in general and more specifically in diverticulitis. In particular we analyze the role of Limosilactobacillus reuteri and its anti-inflammatory action. For this review, articles were identified using the electronic PubMed database through a comprehensive search, conducted by combining key terms such as "diverticulitis", "Limosilactobacillus reuteri", "human health and disease", "probiotics". We selected all the articles published in the last 10 years and screened 1017 papers. Articles referenced in the screened papers were evaluated if considered interesting for our topic. Probiotics have proven to be effective in modulating the microbiota of the gastrointestinal system and, therefore, in promoting the health of the individual. The importance of probiotics in treating diverticular disease and acute diverticulitis can be further understood if taking into consideration some pathophysiological aspects, associated to the microbiota. L. reuteri plays an important role in human health and disease. The effectiveness of L. reuteri in stimulating a correct bowl motility partly explains its effectiveness in treating diverticulitis. The most important action of L. reuteri is probably its immunomodulating activity. Levels of IL-6, IL-8, and Tumor necrosis factor (TNF-alpha) are reduced after supplementation with different strands of Lactobacilli, while T-regulatory cells increase in number and activity. Anyway, new mechanisms of action of probiotics come to light from the many investigations currently taking place in numerous centres around the world and to improve how exactly probiotic administration could make the difference in the management of diverticular disease and acute diverticulitis.
Collapse
Affiliation(s)
- Andrea Piccioni
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy; (M.C.); (M.C.); (F.F.)
| | - Laura Franza
- Emergency Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.F.); (V.V.); (A.S.); (C.Z.); (V.O.)
| | - Vanessa Vaccaro
- Emergency Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.F.); (V.V.); (A.S.); (C.Z.); (V.O.)
| | - Angela Saviano
- Emergency Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.F.); (V.V.); (A.S.); (C.Z.); (V.O.)
| | - Christian Zanza
- Emergency Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.F.); (V.V.); (A.S.); (C.Z.); (V.O.)
| | - Marcello Candelli
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy; (M.C.); (M.C.); (F.F.)
| | - Marcello Covino
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy; (M.C.); (M.C.); (F.F.)
| | - Francesco Franceschi
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy; (M.C.); (M.C.); (F.F.)
- Emergency Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.F.); (V.V.); (A.S.); (C.Z.); (V.O.)
| | - Veronica Ojetti
- Emergency Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.F.); (V.V.); (A.S.); (C.Z.); (V.O.)
| |
Collapse
|
68
|
Lee CS, Kim SH. Anti-inflammatory and Anti-osteoporotic Potential of Lactobacillus plantarum A41 and L. fermentum SRK414 as Probiotics. Probiotics Antimicrob Proteins 2021; 12:623-634. [PMID: 31372901 DOI: 10.1007/s12602-019-09577-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study involves an investigation on the probiotic properties of lactic acid bacteria and their potential applications in an in vitro model of lipopolysaccharide (LPS)-stimulated inflammation and dexamethasone-induced osteoporosis. Nine strains were pre-screened from 485 lactic acid bacteria based on their survival at a low pH and in a solution containing bile salts. All candidates were capable of surviving in an environment with low pH and with bile salts and could successfully colonize the intestine. Furthermore, their functional properties, such as anti-oxidation and anti-inflammation, were evaluated. Of the nine probiotic candidates, Lactobacillus plantarum A41 and L. fermentum SRK414 exhibited the highest anti-oxidative capacity. Moreover, only L. plantarum A41 and L. fermentum SRK414 could increase gut barrier function by upregulating the mRNA expression of tight junction proteins and inhibit the expression of inflammatory mediators induced by LPS-stimulated inflammation. Interestingly, these two strains were also capable of regulating several bone metabolism-related markers playing a role in bone homeostasis and osteoblast differentiation. In brief, L. plantarum A41 and L. fermentum SRK414 exhibited high probiotic potential and potentially impact immune-related bone health by modulating pro-inflammatory cytokines and bone metabolism-related markers.
Collapse
Affiliation(s)
- Chul Sang Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea
| | - Sae Hun Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea. .,Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
69
|
Dell’Anno M, Callegari ML, Reggi S, Caprarulo V, Giromini C, Spalletta A, Coranelli S, Sgoifo Rossi CA, Rossi L. Lactobacillus plantarum and Lactobacillus reuteri as Functional Feed Additives to Prevent Diarrhoea in Weaned Piglets. Animals (Basel) 2021; 11:ani11061766. [PMID: 34204784 PMCID: PMC8231520 DOI: 10.3390/ani11061766] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Antimicrobial resistance is an increasing global concern. Effective alternatives that could replace and reduce antimicrobial treatments in farming have therefore become crucial for animal, human and environmental health. In swine farming, weaning is a stressful phase where piglets can develop multifactorial enteric disorders that require antibiotic treatments. Functional nutrition could thus represent a valuable alternative to reduce and tackle antibiotic resistance. This study assesses the effects of Lactobacillus plantarum and Lactobacillus reuteri on in-feed supplementation in weaned piglets. After weaning, piglets were allotted to four experimental groups fed a basal diet (CTRL) and a basal diet supplemented with 2 × 108 CFU/g of L. plantarum (PLA), L. reuteri and a combination of the two strains (P+R) for 28 days. Zootechnical performance and diarrhoea occurrence were recorded. Microbiological and serum metabolism analyses of faeces and blood samples were performed. Supplemented groups with lactobacilli showed a lower occurrence of diarrhoea and improved faecal consistency compared to the control. The PLA group registered the lowest diarrhoea frequency during the 28-day experimental period. The results suggest that dietary administration of L. plantarum and L. reuteri could prevent the occurrence of diarrhoea in weaned piglets. Abstract The effects of Lactobacillus plantarum and Lactobacillus reuteri and their combination were assessed in weaned piglets. Three hundred and fifty weaned piglets (Landrace × Large White), balanced in terms of weight and sex, were randomly allotted to four experimental groups (25 pens, 14 piglets/pen). Piglets were fed a basal control diet (CTRL, six pens) and a treatment diet supplemented with 2 × 108 CFU/g of L. plantarum (PLA, 6 pens), 2 × 108 CFU/g L. reuteri (REU, six pens) and the combination of both bacterial strains (1 × 108 CFU/g of L. plantarum combined with 1 × 108 CFU/g of L. reuteri, P+R, 7 pens) for 28 days. Body weight and feed intake were recorded weekly. Diarrhoea occurrence was assessed weekly by the faecal score (0–3; considering diarrhoea ≥ 2). At 0 and 28 days, faecal samples were obtained from four piglets per pen for microbiological analyses and serum samples were collected from two piglets per pen for serum metabolic profiling. Treatments significantly reduced diarrhoea occurrence and decreased the average faecal score (0.94 ± 0.08 CTRL, 0.31 ± 0.08 PLA, 0.45 ± 0.08 REU, 0.27 ± 0.08 P+R; p < 0.05). The PLA group registered the lowest number of diarrhoea cases compared to other groups (20 cases CTRL, 5 cases PLA, 8 cases REU, 10 cases P+R; p < 0.01). After 28 days, the globulin serum level increased in PLA compared to the other groups (24.91 ± 1.09 g/L CTRL, 28.89 ± 1.03 g/L PLA, 25.91 ± 1.03 g/L REU, 25.31 ± 1.03 g/L P+R; p < 0.05). L. plantarum and L. reuteri could thus be considered as interesting functional additives to prevent diarrhoea occurrence in weaned piglets.
Collapse
Affiliation(s)
- Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (C.G.); (C.A.S.R.); (L.R.)
- Correspondence:
| | - Maria Luisa Callegari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Serena Reggi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (C.G.); (C.A.S.R.); (L.R.)
| | - Valentina Caprarulo
- Department of Molecular and Translational Medicine (DMMT), Università degli Studi di Brescia, 25123 Brescia, Italy;
| | - Carlotta Giromini
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (C.G.); (C.A.S.R.); (L.R.)
| | | | | | - Carlo Angelo Sgoifo Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (C.G.); (C.A.S.R.); (L.R.)
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (C.G.); (C.A.S.R.); (L.R.)
| |
Collapse
|
70
|
In-vitro study of Limosilactobacillus fermentum PCC adhesion to and integrity of the Caco-2 cell monolayers as affected by pectins. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
71
|
Qi C, Ding M, Li S, Zhou Q, Li D, Yu R, Sun J. Sex-dependent modulation of immune development in mice by secretory IgA-coated Lactobacillus reuteri isolated from breast milk. J Dairy Sci 2021; 104:3863-3875. [PMID: 33612242 DOI: 10.3168/jds.2020-19437] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Lactobacilli, commonly present in human breast milk, appear to colonize the neonatal gut and provide protection to infants against various infections, thereby promoting immune development. This study examined the potential probiotic role of breast milk-derived Lactobacillus reuteri FN041 in immune development in mice. The FN041 were gavaged either to BALB/c dams (n = 6/group) during the lactation period or to their offspring (n = 6/sex per intervention) after weaning separately (cointervention). All interventions induced increased intestinal barriers in 5-wk-old offspring, especially in the females. Immunoglobulin A plasmocytes in ileal tissue and secretory IgA (sIgA) in ileal contents increased in all 5-wk-old offspring of cointervention. The activation of mRNA expression of 17 genes was sex-dependent, especially in 5-wk-old offspring. Broader genes were regulated in female mice. The effect of cointervention on the Shannon index of total microbiota is sex-related. The Shannon index of sIgA-coated microbiota increased in both sexes. The sIgA-coated microbiota showed intergroup differences according to β diversity, especially in female mice that showed an increase in Bifidobacterium of Actinobacteria. The sIgA-coated Bifidobacterium was positively correlated with mRNA expression of Tlr9. The sIgA-coated Lactobacillus in male offspring was negatively correlated with mRNA expression of Cldn2. In conclusion, L. reuteri FN041 promoted the production of intestinal sIgA and the expression of genes related to antimicrobial peptides in the offspring and enhanced the function of the mucosal barrier, depending on sex and treatment manner.
Collapse
Affiliation(s)
- Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, PR China
| | - Mengfan Ding
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Shuangqi Li
- Guangzhou Fine Nutrition Research Center, Guangzhou, 510700, PR China
| | - Qin Zhou
- Department of Neonatology, The Affiliated Wuxi Maturity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, PR China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, PR China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maturity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, PR China.
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
72
|
Spangler JR, Caruana JC, Medintz IL, Walper SA. Harnessing the potential of Lactobacillus species for therapeutic delivery at the lumenal-mucosal interface. Future Sci OA 2021; 7:FSO671. [PMID: 33815818 PMCID: PMC8015674 DOI: 10.2144/fsoa-2020-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus species have been studied for over 30 years in their role as commensal organisms in the human gut. Recently there has been a surge of interest in their abilities to natively and recombinantly stimulate immune activities, and studies have identified strains and novel molecules that convey particular advantages for applications as both immune adjuvants and immunomodulators. In this review, we discuss the recent advances in Lactobacillus-related activity at the gut/microbiota interface, the efforts to probe the boundaries of the direct and indirect therapeutic potential of these bacteria, and highlight the continued interest in harnessing the native capacity for the production of biogenic compounds shown to influence nervous system activity. Taken together, these aspects underscore Lactobacillus species as versatile therapeutic delivery vehicles capable of effector production at the lumenal-mucosal interface, and further establish a foundation of efficacy upon which future engineered strains can expand.
Collapse
Affiliation(s)
- Joseph R Spangler
- National Research Council Postdoctoral Fellow sited in US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Julie C Caruana
- American Society for Engineering Education Postdoctoral Fellow sited in US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Igor L Medintz
- US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Scott A Walper
- US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| |
Collapse
|
73
|
Arsène MMJ, Davares AKL, Andreevna SL, Vladimirovich EA, Carime BZ, Marouf R, Khelifi I. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet World 2021; 14:319-328. [PMID: 33776297 PMCID: PMC7994123 DOI: 10.14202/vetworld.2021.319-328] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Although the production of safe food for human consumption is the primary purpose for animal rearing, the environment and well-being of the animals must also be taken into consideration. Based on microbiological point of view, the production of healthy food from animals involves considering foodborne pathogens, on the one hand and on the other hand, the methods used to fight against germs during breeding. The conventional method to control or prevent bacterial infections in farming is the use antibiotics. However, the banning of these compounds as growth promoters caused many changes in animal breeding and their use has since been limited to the treatment and prevention of bacterial infections. In this function, their importance no longer needs to be demonstrated, but unfortunately, their excessive and abusive use have led to a double problem which can have harmful consequences on consumer health: Resistance to antibiotics and the presence of antibiotic residues in food. The use of probiotics appears to be a suitable alternative to overcome these problems because of their ability to modulate the immune system and intestinal microflora, and further considering their antagonistic role against certain pathogenic bacteria and their ability to play the role of growth factor (sometimes associated with prebiotics) when used as feed additives. This review aims to highlight some of the negative effects of the use of antibiotics in animal rearing as well as emphasize the current knowledge on the use of probiotics as a feed additive, their influence on animal production and their potential utility as an alternative to conventional antibiotics, particularly in poultry, pig, and fish farming.
Collapse
Affiliation(s)
- Mbarga M. J. Arsène
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Anyutoulou K. L. Davares
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Smolyakova L. Andreevna
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| | | | - Bassa Z. Carime
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Razan Marouf
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - Ibrahim Khelifi
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| |
Collapse
|
74
|
Salimi F, Mohammadipanah F. Nanomaterials Versus The Microbial Compounds With Wound Healing Property. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.584489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Age and diabetes related slow-healing or chronic wounds may result in morbidity and mortality through persistent biofilms infections and prolonged inflammatory phase. Nano-materials [metal/metal oxide NPs (39%), lipid vehicles (21%), polymer NPs (19%), ceramic nanoparticles (NPs) (14%), and carbon nanomaterials (NMs) (7%)] can be introduced as a possible next-generation therapy because of either their intrinsic wound healing activity or via carrying bioactive compounds including, antibiotics, antioxidants, growth factor or stem cell. The nanomaterials have been shown to implicate in all four stages of wound healing including hemostasis (polymer NPs, ceramic NPs, nanoceria-6.1%), inflammation (liposome/vesicles/solid lipid NPs/polymer NPs/ceramic NPs/silver NPs/gold NPs/nanoceria/fullerenes/carbon-based NPs-32.7%), proliferation (vesicles/liposome/solid lipid NPs/gold NPs/silver NPs/iron oxide NPs/ceramic NPs/copper NPs/self-assembling elastin-like NPs/nanoceria/micelle/dendrimers/polymer NPs-57.1%), remodeling (iron oxide NPs/nanoceria-4.1%). Natural compounds from alkaloids, flavonoids, retinoids, volatile oil, terpenes, carotenoids, or polyphenolic compounds with proven antioxidant, anti-inflammatory, immunomodulatory, or antimicrobial characteristics are also well known for their potential to accelerate the wound healing process. In the current paper, we survey the potential and properties of nanomaterials and microbial compounds in improving the process of wound and scar healing. Finally, we review the potential biocompounds for incorporation to nano-material in perspective to designate more effective or multivalent wound healing natural or nano-based drugs.
Collapse
|
75
|
Pediococcus pentosaceus ZJUAF-4 relieves oxidative stress and restores the gut microbiota in diquat-induced intestinal injury. Appl Microbiol Biotechnol 2021; 105:1657-1668. [PMID: 33475796 DOI: 10.1007/s00253-021-11111-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
Lactic acid bacteria (LAB) play a key role in promoting health and preventing diseases because of their beneficial effects, such as antimicrobial activities, modulating immune responses, maintaining the gut epithelial barrier and antioxidant capacity. However, the mechanisms with which LAB relieve oxidative stress and intestinal injury induced by diquat in vivo are poorly understood. In the present study, Pediococcus pentosaceus ZJUAF-4 (LAB, ZJUAF-4), a selected probiotics strain with strong antioxidant capacities, was appointed to evaluate the efficiency against oxidative stress in diquat-induced intestinal injury of mice. Alanine transaminase (ALT) and aspartate aminotransferase (AST) were analyzed to estimate the liver injury. The intestinal permeability was evaluated by 4 kDa fluorescein isothiocyanate (FITC)-dextran (FD4), D-lactate (DLA), and diamine oxidase (DAO) levels. Jejunum reactive oxygen species (ROS) production was examined by dihydroethidium (DHE) staining. Western blotting was used to detect the expression of nuclear factor (erythroid-derived-2)-like 2 (Nrf2) and its downstream genes in jejunum. The gut microbiota was analyzed by high-throughput sequencing method based on the 16S rRNA genes. The results showed that ZJUAF-4 pretreatment was found to protect the intestinal barrier function and maintain intestinal redox homeostasis under diquat stimulation. Moreover, oral administration of ZJUAF-4 increased the expression of Nrf2 and its downstream genes. High-throughput sequencing analysis indicated that ZJUAF-4 contributed to restoring the gut microbiota influenced by diquat. Our results suggested that ZJUAF-4 protected the intestinal barrier from oxidative stress-induced damage by modulating the Nrf2 pathway and gut microbiota, indicating that ZJUAF-4 may have potential applications in preventing and treating oxidative stress-related intestinal diseases. KEY POINTS: • ZJUAF-4 exerted protective effects against diquat-induced intestinal injury. • Activation of Nrf2 and its downstream targets towards oxidative stress. • ZJUAF-4 administration restoring gut microbiota.
Collapse
|
76
|
Sun Z, Li H, Li Y, Qiao J. Lactobacillus salivarius, a Potential Probiotic to Improve the Health of LPS-Challenged Piglet Intestine by Alleviating Inflammation as Well as Oxidative Stress in a Dose-Dependent Manner During Weaning Transition. Front Vet Sci 2020; 7:547425. [PMID: 33392276 PMCID: PMC7772421 DOI: 10.3389/fvets.2020.547425] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Intestinal health is a critical issue for piglets during their weaning transition period. Previous reports have emphasized the promise of distinct probiotics in improving the enteric health. Here in this research, a newly isolated Lactobacillus salivarius strain was pretreated to Lipopolysaccharide (LPS)-challenged piglets and its association with integrity of the intestinal barrier coupled with effective dosage were expected to be signified. In the present study, 72 piglets (Landrace × Yorkshiere × Duroc) were randomly allotted to four groups, each group with six replicates. The subjects in the control group were provided with basal diet while those in other tested groups with extra 0.05, 0.1, and 0.2% L. salivarius, respectively. Fourteen days later, LPS was intraperitoneally injected and sodium pentobarbital was then delivered to euthanize those LPS-challenged piglets. An increase of average daily gain and body weight along with an apparent decline of diarrhea rate were observed in L. salivarius-treated groups. Both 0.1 and 0.2% L. salivarius supplement in total diet had the capability to markedly elevate levels of CAT, GSH-Px, SOD, anti-inflammatory cytokine from the serum as well as tight junction proteins (Claudin-1, Occludin, and ZO-1) extracted from intestine in LPS-challenged piglets. These changes were accompanied by the obvious downregulation of D-lactic acid, DAO, MDA and pro-inflammatory mediators in the serum, including IL-1β, IL-6, IFN-γ, and TNF-α. Meanwhile, the expression levels of TLR2 and TLR4 in spleen and mesenteric lymph nodes were significantly lower whereas the oxidation-related gene, ho-1 was up-regulated with L. salivarius administration. Our findings suggested that relatively high dose L. salivarius (0.1–0.2%) could regulate the progression of inflammatory response and oxidative stress when individuals were exposed to LPS, thus probably offering valuable assistance in restoring barrier function and improving overall performance.
Collapse
Affiliation(s)
- Zeyang Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Haihua Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yupeng Li
- College of Life Sciences, Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin, China
| | - Jiayun Qiao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
77
|
Supplementation of postbiotic RI11 improves antioxidant enzyme activity, upregulated gut barrier genes, and reduced cytokine, acute phase protein, and heat shock protein 70 gene expression levels in heat-stressed broilers. Poult Sci 2020; 100:100908. [PMID: 33518339 PMCID: PMC7936158 DOI: 10.1016/j.psj.2020.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of this work was to evaluate the impacts of feeding different levels of postbiotic RI11 on antioxidant enzyme activity, physiological stress indicators, and cytokine and gut barrier gene expression in broilers under heat stress. A total of 252 male broilers Cobb 500 were allocated in cages in environmentally controlled chambers. All the broilers received the same basal diet from 1 to 21 d. On day 22, the broilers were weighed and grouped into 7 treatment groups and exhibited to cyclic high temperature at 36 ± 1°C for 3 h per day until the end of the experiment. From day 22 to 42, broilers were fed with one of the 7 following diets: negative control, basal diet (0.0% RI11) (NC group); positive control, NC diet + 0.02% (w/w) oxytetracycline (OTC group); antioxidant control, NC diet + 0.02% (w/w) ascorbic acid. The other 4 other groups were as follows: NC diet + 0.2% cell-free supernatant (postbiotic RI11) (v/w), NC diet + 0.4% cell-free supernatant (postbiotic RI11) (v/w), NC diet + 0.6% cell-free supernatant (postbiotic RI11) (v/w), and NC diet + 0.8% cell-free supernatant (postbiotic RI11) (v/w). Supplementation of different levels (0.4, 0.6, and 0.8%) of postbiotic RI11 increased plasma glutathione peroxidase, catalase, and glutathione enzyme activity. Postbiotic RI11 groups particularly at levels of 0.4 and 0.6% upregulated the mRNA expression of IL-10 and downregulated the IL-8, tumor necrosis factor alpha, heat shock protein 70, and alpha-1-acid glycoprotein levels compared with the NC and OTC groups. Feeding postbiotic RI11, particularly at the level of 0.6%, upregulated ileum zonula occludens-1 and mucin 2 mRNA expressions. However, no difference was observed in ileum claudin 1, ceruloplasmin, IL-6, IL-2, and interferon expression, but downregulation of occludin expression was observed as compared with the NC group. Supplementation of postbiotic RI11 at different levels quadratically increased plasma glutathione peroxidase, catalase and glutathione, IL-10, mucin 2, and zonula occludens-1 mRNA expression and reduced plasma IL-8, tumor necrosis factor alpha, alpha-1-acid glycoprotein, and heat shock protein 70 mRNA expression. The results suggested that postbiotics produced from Lactiplantibacillus plantarum RI11 especially at the level of 0.6% (v/w) could be used as an alternative to antibiotics and natural sources of antioxidants in poultry feeding.
Collapse
|
78
|
Zhou Y, Ni X, Duan L, Niu L, Liu Q, Zeng Y, Wang Q, Wang J, Khalique A, Pan K, Jing B, Zeng D. Lactobacillus plantarum BSGP201683 Improves the Intestinal Barrier of Giant Panda Microbiota-Associated Mouse Infected by Enterotoxigenic Escherichia coli K88. Probiotics Antimicrob Proteins 2020; 13:664-676. [PMID: 33190214 DOI: 10.1007/s12602-020-09722-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 01/10/2023]
Abstract
Giant pandas often suffered from gastrointestinal disease, especially the captive sub-adult one. Our study aims to investigate whether L. plantarum G83, a good panda-derived probiotic, can improve the intestinal barrier against the enterotoxigenic Escherichia coli K88 (E. coli K88) infection in giant panda microbiota-associated mice (GPAM). We treated SPF mice with antibiotics cocktail and transplanted the giant panda intestinal microbiota to set up a GPAM. Our results demonstrated that the microbiota of GPAM changed over time and was relatively stable in the short-term experiment (2-4 weeks). Whereafter, the GPAM pretreated with L. plantarum G83 for 15 days and infected with enterotoxigenic E. coli K88. The result indicated that the number of Bifidobacteria spp. increased in GPAM-G and GPAM-GE groups; the Lactobacillus spp. only increased in the GPAM-G group. Although the abundance of Enterobacteriaceae spp. only decreased in the GPAM-G group, the copy number of Escherichia coli in the GPAM-E group was significantly lower than that in the other groups. Meanwhile, the L. plantarum G83-induced alteration of microbiota could increase the mRNA expression of Claudin-1, Zo-1, and Occludin-1 in the GPAM-G group in the ileum; only Occludin-1 was increased in the GPAM-GE group. The sIgA in the ileum showed a positive response, also the result of body weight and histology in both the GPAM-G and GPAM-GE group. These results indicated that the L. plantarum G83 could improve the intestinal barrier to defense the enterotoxigenic E. coli K88 invasion.
Collapse
Affiliation(s)
- Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Duan
- Qu Country Extension Station for Animal Husbandry Technology, Dazhou, 635299, Sichuan, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Qian Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiang Wang
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Jie Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
79
|
Wu Y, Zhao J, Xu C, Ma N, He T, Zhao J, Ma X, Thacker PA. Progress towards pig nutrition in the last 27 years. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5102-5110. [PMID: 29691867 DOI: 10.1002/jsfa.9095] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Over the last 27 years (1990-2017), based on the revolutionary progresses of basic nutrition research, novel methods and techniques have been developed which bring a profound technological revolution to pig production from free-range system to intensive farming all over the world. Basic theoretical innovations and feed production studies have provided vital advancements in pig nutrition by developing formula feed, utilizing balanced diets, determining feed energy value, dividing pig physiological stages, enhancing gut health, and improving feed processing technique. Formula feed is the primary contributor of the rise of the mechanized farming industry, and meets comprehensive nutritional needs of the pig. The focuses of the development of a balanced diet by optimizing nutrient levels are the amino acids balance, the balance between amino acids and energy, the balance between calcium and phosphorus. Multiple-site-production and targeted feeding program have been applied extensively. Early weaning of piglets improves production efficiency, but piglets that have not yet fully developed their intestine are prone to diarrhea. Therefore, intestinal health has received special attention in recent years. Feed processing technologies, such as granulation, puffing, fermentation and enzymatic hydrolysis, can improve the utilization of feed nutrients and reduce production cost. However, increasing a sow's potential for production, seeking alternatives to antibiotics, reducing drug treatment in piglets, developing functional additives and improving meat quality remain future challenges. Herein, we outline the important progresses of pig nutrition in the past 27 years, which will shed light on the basic nutrition rules of pig production, and help to push forward its future development. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianfei Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chenchen Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Phil A Thacker
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
80
|
Gao X, Yang Q, Huang X, Yan Z, Zhang S, Luo R, Wang P, Wang W, Xie K, Jiang T, Gun S. Effects of Clostridium perfringens beta2 toxin on apoptosis, inflammation, and barrier function of intestinal porcine epithelial cells. Microb Pathog 2020; 147:104379. [DOI: 10.1016/j.micpath.2020.104379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022]
|
81
|
Proszkowiec-Weglarz M, Schreier LL, Kahl S, Miska KB, Russell B, Elsasser TH. Effect of delayed feeding post-hatch on expression of tight junction- and gut barrier-related genes in the small intestine of broiler chickens during neonatal development. Poult Sci 2020; 99:4714-4729. [PMID: 32988506 PMCID: PMC7598124 DOI: 10.1016/j.psj.2020.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/03/2020] [Accepted: 06/16/2020] [Indexed: 01/04/2023] Open
Abstract
The gut not only plays a key role in digestion and absorption of nutrients but also forms a physical barrier and first line of defense between the host and the luminal environment. A functional gut barrier (mucus and epithelial cells with tight junctions [TJ]) is essential for optimal health and efficient production in poultry. In current broiler system, chicks are deprived of food and water up to 72 h due to uneven hatching, hatchery procedures, and transportation. Post-hatch feed delay results in lower BW, higher FCR and mortality, and delayed post-hatch gut development. Little is known about the effects of early neonatal development and delayed feeding immediately post-hatch on gut barrier function in chickens. Therefore, the aim of the present study was to characterize the expression pattern of gut barrier-related and TJ-related genes in the small intestine of broiler chickens during early development and delay in access to feed. Newly hatched chicks received feed and water immediately after hatch or were subjected to 48 h delayed access to feed to mimic commercial hatchery setting and operations. Birds were sampled (n = 6) at -48, 0, 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h post-hatch. Jejunum and ileum were collected, cleaned of digesta, and snap-frozen in liquid nitrogen or fixed in paraformaldehyde. The relative mRNA levels of gut barrier- and TJ-related protein genes were measured by quantitative PCR and analyzed by 2-way ANOVA. In both tissues, changes (P < 0.05) in gene expression pattern of gut barrier-related and TJ-related genes were detected due to delayed access to feed post-hatch and/or development. In general, expression of TJ-related genes was downregulated while mRNA levels of gut barrier-related genes were upregulated during development. Histological differences and changes in mucin staining due to age and treatment were observed. These results suggest that delayed access to feed post-hatch may affect TJ structure and/or function and therefore gut barrier function and overall health of the chicken small intestine.
Collapse
Affiliation(s)
- Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Lori L Schreier
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Stanislaw Kahl
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Katarzyna B Miska
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Beverly Russell
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Theodore H Elsasser
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
82
|
Wang Q, Sun Q, Wang J, Qiu X, Qi R, Huang J. Identification of differentially expressed miRNAs after Lactobacillus reuteri treatment in the ileum mucosa of piglets. Genes Genomics 2020; 42:1327-1338. [PMID: 32980994 DOI: 10.1007/s13258-020-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Lactobacillus reuteri I5007 possesses many excellent probiotic characteristics in piglets. miRNA plays important role in host-microbiota interactions, but the mechanism by which L. reuteri I5007 regulates intestinal function through its influence on miRNA expression is unknown. OBJECTIVE This study analyzed the miRNA expression patterns in the ileum mucosa tissue of piglets by L. reuteri I5007 treatment, aim to clarify its molecular mechanism for regulating intestinal function through miRNA. METHODS Neonatal piglets were orally administered L. reuteri I5007 or a placebo daily starting on day 1, and differential expression of ileal miRNAs was analyzed at 10 and 20 days of age by small RNA sequencing. RESULTS 361 known porcine miRNAs were identified, and ten miRNAs were highly expressed in the ileum mucosa in both treatments. Nineteen differentially expressed (DE) miRNAs were identified in response to L. reuteri treatment, and four DE miRNAs (ssc-miR-196a, -196b-5p, -1285 and -10386) were differentially expressed at both time points. The KEGG pathway analyses showed the targets of 19 DE miRNAs were involved in 63 significantly enriched pathways, including the PI3K-Akt and MAPK pathways, which were confirmed to play important roles in probiotic-host communication. L. reuteri I5007 exerted anti-inflammatory effects by influencing the levels of inflammatory cytokines. Suppressor of cytokine signalling 4 gene was the target gene of ssc-miR-196a/-196b-5p, overexpression of ssc-miR-196a/-196b-5p downregulated the mRNA expression of IL-1β and TNFα in IPEC-J2 cells. CONCLUSION Our study provides new insight into the role of miRNAs in the intestinal function of piglets after L. reuteri I5007 treatment.
Collapse
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China
| | - Qian Sun
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China.
| |
Collapse
|
83
|
Huang L, Cui K, Mao W, Du Y, Yao N, Li Z, Zhao H, Ma W. Weissella cibaria Attenuated LPS-Induced Dysfunction of Intestinal Epithelial Barrier in a Caco-2 Cell Monolayer Model. Front Microbiol 2020; 11:2039. [PMID: 33013748 PMCID: PMC7509449 DOI: 10.3389/fmicb.2020.02039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
The dysfunction of the intestinal epithelial barrier contributes to local or systemic infection and inflammation. Some lactic acid bacteria (LAB) strains had been shown to improve the conditions of barrier function and, for this reason, are recognized as probiotics. Weissella cibaria, a species belonging to the LAB group, is known to promote several health benefits. However, the role of W. cibaria in regulating the integrity of the intestinal epithelial barrier has not yet been investigated. In this study, W. cibaria MW01 was isolated from Chinese sauerkraut and was selected based on its functional features, such as gastric juice and bile salt tolerance, besides antagonistic activity against pathogenic bacteria. In a cellular model of the intestinal barrier, it was observed that W. cibaria was able to adhere more efficiently than Lactobacillus rhamnosus GG in Caco-2 cells. Moreover, the LPS-induced inflammation in Caco-2 cells was attenuated by the treatment with W. cibaria MW01, which reduced the synthesis of TNF-α, IL-6, and IL-8. In addition, it was noted that the treatment with W. cibaria MW01 recovered the integrity of the Caco-2 cell monolayer exposed to LPS. Furthermore, W. cibaria MW01 significantly alleviated LPS-induced downregulation of tight junction proteins (TJP) (claudin, occludin, and tight junction protein-1). Mechanistically, W. cibaria MW01 inhibited the translocation of NF-κB to the nucleus and deactivated the MLCK-pMLC pathway during LPS exposure. Thus, W. cibaria MW01, as a potential probiotic, can protect intestinal epithelial barrier function by regulating inflammation and expression of TJP via the NF-κB-mediated MLCK-pMLC pathway.
Collapse
Affiliation(s)
- Liping Huang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhao Mao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yurong Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Yao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Microbiome Laboratory, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
84
|
Yue B, Yu ZL, Lv C, Geng XL, Wang ZT, Dou W. Regulation of the intestinal microbiota: An emerging therapeutic strategy for inflammatory bowel disease. World J Gastroenterol 2020; 26:4378-4393. [PMID: 32874052 PMCID: PMC7438192 DOI: 10.3748/wjg.v26.i30.4378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023] Open
Abstract
The rapid development of metagenomics, metabolomics, and metatranscriptomics provides novel insights into the intestinal microbiota factors linked to inflammatory bowel disease (IBD). Multiple microorganisms play a role in intestinal health; these include bacteria, fungi, and viruses that exist in a dynamic balance to maintain mucosal homeostasis. Perturbations in the intestinal microbiota disrupt mucosal homeostasis and are closely related to IBD in humans and colitis in mice. Therefore, preventing or correcting the imbalance of microbiota may serve as a novel prevention or treatment strategy for IBD. We review the most recent evidence for direct or indirect interventions targeting intestinal microbiota for treatment of IBD in order to overcome the current limitations of IBD therapies and shed light on personalized treatment options.
Collapse
Affiliation(s)
- Bei Yue
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Lun Yu
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Lv
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Long Geng
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zheng-Tao Wang
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Dou
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
85
|
Qiao J, Sun Z, Liang D, Li H. Lactobacillus salivarius alleviates inflammation via NF-κB signaling in ETEC K88-induced IPEC-J2 cells. J Anim Sci Biotechnol 2020; 11:76. [PMID: 32774852 PMCID: PMC7398071 DOI: 10.1186/s40104-020-00488-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) K88 commonly colonize in the small intestine and keep releasing enterotoxins to impair the intestinal barrier function and trigger inflammatory reaction. Although Lactobacillus salivarius (L. salivarius) has been reported to enhance intestinal health, it remains to be seen whether there is a functional role of L. salivarius in intestinal inflammatory response in intestinal porcine epithelial cell line (IPEC-J2) when stimulated with ETEC K88. In the present study, IPEC-J2 cells were first treated with L. salivarius followed by the stimulation of ETEC K88 for distinct time period. ETEC K88 adherent status, pattern recognition receptors (PRRs) mRNA, mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) activation, the release of pro-inflammation cytokines and cell integrity were examined. Results Aside from an inhibited adhesion of ETEC K88 to IPEC-J2 cells, L. salivarius was capable of remarkably attenuating the expression levels of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-8, Toll-like receptor (TLR) 4, nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing protein (NLRP) 3 and NLRP6. This alternation was accompanied by a significantly decreased phosphorylation of p38 MAPK and p65 NF-κB during ETEC K88 infection with L. salivarius pretreatment. Western blot analysis revealed that L. salivarius increased the expression levels of zona occludens 1 (ZO-1) and occludin (P < 0.05) in ETEC K88-infected IPEC-J2 cells. Compared with ETEC K88-infected groups, the addition of L. salivarius as well as extra inhibitors for MAPKs and NF-κB to ETEC K88-infected IPEC-J2 cells had the capability to reduce pro-inflammatory cytokines. Conclusions Collectively, our results suggest that L. salivarius might reduce inflammation-related cytokines through attenuating phosphorylation of p38 MAPK and blocking the NF-κB signaling pathways. Besides, L. salivarius displayed a potency in the enhancement of IPEC-J2 cell integrity.
Collapse
Affiliation(s)
- Jiayun Qiao
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People's Republic of China
| | - Zeyang Sun
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People's Republic of China
| | - Dongmei Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People's Republic of China
| | - Haihua Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, 22 Jinjing Road, Tianjin, 300384 People's Republic of China
| |
Collapse
|
86
|
Zou YF, Zhang YY, Paulsen BS, Rise F, Chen ZL, Jia RY, Li LX, Song X, Feng B, Tang HQ, Huang C, Yin ZQ. Structural features of pectic polysaccharides from stems of two species of Radix Codonopsis and their antioxidant activities. Int J Biol Macromol 2020; 159:704-713. [PMID: 32422266 DOI: 10.1016/j.ijbiomac.2020.05.083] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023]
Abstract
In this study, two pectic polysaccharides from stems of Codonopsis pilosula (CPSP-1) and C. tangshen (CTSP-1) were obtained by ion exchange chromatography and gel filtration. The molecular weight of CPSP-1 and CTSP-1 were 13.1 and 23.0 kDa, respectively. The results of structure elucidation indicated that both CPSP-1 and CTSP-1 are pectic polysaccharides with long homogalacturonan regions (HG) (some of galacturonic acid units were methyl esterified) and rhamnogalacturonan I (RG-I) regions. Side chains for CTSP-1 are both arabinogalactan type I (AG-I) and type II (AG-II), while CPSP-1 only has AG-II. The biological test demonstrated that CPSP-1 and CTSP-1 displayed an antioxidant property through mediating the intestinal cellular antioxidant defense system, which could protect cultured intestinal cells from oxidative stress induced oxidative damages and cell viability suppression. CPSP-1 and CTSP-I showed different bioactivities and mechanisms, which may be due to the difference in their structures.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Yan-Yun Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Berit Smestad Paulsen
- Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Zheng-Li Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
87
|
El-Mahdy NA, El-Sayad MES, El-Kadem AH, Abu-Risha SES. Targeting IL-10, ZO-1 gene expression and IL-6/STAT-3 trans-signaling by a combination of atorvastatin and mesalazine to enhance anti-inflammatory effects and attenuates progression of oxazolone-induced colitis. Fundam Clin Pharmacol 2020; 35:143-155. [PMID: 32383169 DOI: 10.1111/fcp.12563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease characterized by diffused inflammation of the colon and rectum mucosa. The pathogenesis of UC is multifactorial, and the exact underlying mechanisms remain poorly understood. This study aims to investigate the effect of mesalazine and atorvastatin combination in enhancing anti-inflammatory effects and attenuates progression of oxazolone colitis in rats. In the present study, male albino rats (N = 60) were divided into six groups (10 rats each), the first two groups served as normal control and a control saline group. Colitis was induced by intra-rectal administration of oxazolone in the 5th and 7th days after pre-sensitization. Then, rats were divided into untreated group, groups treated with mesalazine or atorvastatin or their combination. Colitis was assessed by colon length, body weight, and incidence of diarrhea, rectal bleeding, and histopathology of colon tissue. Colon tissues were used for measuring interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), IL-13, signal transducer and activator of transcription-3 (STAT-3), myeloperoxidase activity (MPO), reduced glutathione(GSH), and tissue expression of IL-10, tight junction protein zonula occludens (ZO-1), and caspase-3 genes. The combination therapy significantly attenuated progression of UC by decreasing incidence of diarrhea, rectal bleeding, weight loss, IL-13, IL-6, TNF-α, STAT-3, caspase-3, and MPO activity and significantly increased IL-10, ZO-1, colon length, and GSH content, and these effects were more superior to single drugs. These findings showed that combination therapy was able to ameliorate progression of UC and enhance anti-inflammatory effects possibly by restoring IL-10 and ZO-1 levels and limiting IL-6/STAT-3 trans-signaling.
Collapse
Affiliation(s)
- Nageh Ahmed El-Mahdy
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tanta University, Tanta, 31527, Egypt
| | - Magda El-Sayed El-Sayad
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tanta University, Tanta, 31527, Egypt
| | - Aya Hassan El-Kadem
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tanta University, Tanta, 31527, Egypt
| | - Sally El-Sayed Abu-Risha
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
88
|
Lactobacillus delbrueckii Ameliorates Intestinal Integrity and Antioxidant Ability in Weaned Piglets after a Lipopolysaccharide Challenge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6028606. [PMID: 32104535 PMCID: PMC7035547 DOI: 10.1155/2020/6028606] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022]
Abstract
This study was conducted to evaluate the effect of dietary supplementation with Lactobacillus delbrueckii (LAB) on intestinal morphology, barrier function, immune response, and antioxidant capacity in weaned piglets challenged with lipopolysaccharide (LPS). A total of 36 two-line crossbred (Landrace × large Yorkshire) weaned piglets (28 days old) were divided into three groups: (1) nonchallenged control (CON); (2) LPS-challenged control (LPS); and (3) LAB+LPS treatment (0.2% LAB+LPS). Compared to the LPS piglets, the LAB+LPS piglets improved intestinal morphology, indicated by greater (P < 0.05) villus height in the duodenum and ileum; villus height : crypt depth ratio in the duodenum, jejunum, and ileum, as well as decreased (P < 0.05) crypt depth in the jejunum and ileum; and better intestinal barrier function, indicated by upregulated (P < 0.05) mRNA expression of tight junction proteins in the intestinal mucosa. Moreover, compared to the LPS piglets, LAB significantly decreased (P < 0.05) concentrations of TNF-α and IL-1β in the small intestine and increased (P < 0.05) IL-10 levels in the jejunum and ileum. Additionally, LAB increased (P < 0.05) T-AOC activities of the colon, GSH concentrations of the jejunum, and mRNA expression of CAT and Cu/Zn-SOD, while reduced (P < 0.05) MDA concentrations in the jejunum and ileum in LPS-changed piglets. Collectively, our results indicate that supplementation of LAB improved intestinal integrity and immune response and alleviated intestinal oxidative damage in LPS-challenged piglets.
Collapse
|
89
|
Ho SW, El-Nezami H, Shah NP. The protective effects of enriched citrulline fermented milk with Lactobacillus helveticus on the intestinal epithelium integrity against Escherichia coli infection. Sci Rep 2020; 10:499. [PMID: 31949265 PMCID: PMC6965087 DOI: 10.1038/s41598-020-57478-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
This study examined the protective effects of citrulline enriched-fermented milk with live Lactobacillus helveticus ASCC 511 (LH511) on intestinal epithelial barrier function and inflammatory response in IPEC-J2 cells caused by pathogenic Escherichia coli. Five percent (v/v) of fermented milk with live LH511 and 4 mM citrulline (5%LHFM_Cit-4mM) significantly stimulated the population of IPEC-J2 cells by 36% as determined by MTT assay. Adhesion level of LH511 was significantly increased by 9.2% when incubated with 5%LHFM_Cit-4mM and 5%LHFM_Cit-4mM reduced the adhesion of enterohemorrhagic (EHEC) and entero-invasive (EIEC) E. coli in IPEC-J2 cells by 35.79% and 42.74%, respectively. Treatment with 5%LHFM_Cit-4mM ameliorated lipopolysaccharide (LPS) from E. coli O55:B5 induced activated inflammatory cytokines expression (TNF-α, IL-6 and IL-8) and concentration (IL-6 and IL-8) and early apoptosis. It restored the transepithelial electrical resistance (TEER) and regulated the expression and distribution of tight junction (TJ) proteins (zonula occluden-1 (ZO-1), occludin and claudin-1), toll-like receptors (TLRs) (TLR2 and TLR4) and negative regulators of TLRs signalling pathway (A20 and IRAK-M). In conclusion, our findings suggested that 5%LHFM_Cit-4mM might have the positive effects on improving and maintaining the intestinal epithelial cell integrity and inflammatory response under both normal and pathogenic LPS-stimulated conditions.
Collapse
Affiliation(s)
- Sze Wing Ho
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Hani El-Nezami
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
90
|
Wang J, Ji H. Tight Junction Proteins in the Weaned Piglet Intestine: Roles and Regulation. Curr Protein Pept Sci 2019; 20:652-660. [PMID: 30678619 DOI: 10.2174/1389203720666190125095122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 12/24/2022]
Abstract
The intestinal epithelial barrier plays a crucial role in the health and growth of weaned piglets. Proper epithelial function mainly depends on tight junctions (TJs), which act as both ion channels and a barrier against noxious molecules. TJs are multiprotein complexes consisting of transmembrane and membrane-associated proteins. Because the intestine in piglets is immature and incomplete, its structure and function are easily impaired by various stresses, infections, and food-related factors. Certain nutrients have been demonstrated to participate in intestinal TJ regulation. Probiotics, amino acids, fibers, oligosaccharide, and certain micronutrients can enhance barrier integrity and counteract infections through elevated TJ protein expression and distribution. In this review, the distribution and classification of intestinal TJs is described, the factors influencing TJs after weaning are summarized, and the regulation of weaning piglet intestinal TJs by nutrients is discussed.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
91
|
Chitosan Ameliorates DSS-Induced Ulcerative Colitis Mice by Enhancing Intestinal Barrier Function and Improving Microflora. Int J Mol Sci 2019; 20:ijms20225751. [PMID: 31731793 PMCID: PMC6888260 DOI: 10.3390/ijms20225751] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis (UC) has been identified as one of the inflammatory diseases. Intestinal mucosal barrier function and microflora play major roles in UC. Modified-chitosan products have been consumed as effective and safe drugs to treat UC. The present work aimed to investigate the effect of chitosan (CS) on intestinal microflora and intestinal barrier function in dextran sulfate sodium (DSS)-induced UC mice and to explore the underlying mechanisms. KM (Kunming) mice received water/CS (250, 150 mg/kg) for 5 days, and then received 3% DSS for 5 days to induce UC. Subsequently, CS (250, 150 mg/kg) was administered daily for 5 days. Clinical signs, body weight, colon length, and histological changes were recorded. Alterations of intestinal microflora were analyzed by PCR-DGGE, expressions of TNF-α and tight junction proteins were detected by Western blotting. CS showed a significant effect against UC by the increased body weight and colon length, decreased DAI (disease activity index) and histological injury scores, and alleviated histopathological changes. CS reduced the expression of TNF-α, promoted the expressions of tight junction proteins such as claudin-1, occludin, and ZO-1 to maintain the intestinal mucosal barrier function for attenuating UC in mice. Furthermore, Parabacteroides, Blautia, Lactobacillus, and Prevotella were dominant organisms in the intestinal tract. Blautia and Lactobacillus decreased with DSS treatment, but increased obviously with CS treatment. This is the first time that the effect of original CS against UC in mice has been reported and it is through promoting dominant intestinal microflora such as Blautia, mitigating intestinal microflora dysbiosis, and regulating the expressions of TNF-α, claudin-1, occludin, and ZO-1. CS can be developed as an effective food and health care product for the prevention and treatment of UC.
Collapse
|
92
|
Zhao L, Li M, Sun K, Su S, Geng T, Sun H. Hippophae rhamnoides polysaccharides protect IPEC-J2 cells from LPS-induced inflammation, apoptosis and barrier dysfunction in vitro via inhibiting TLR4/NF-κB signaling pathway. Int J Biol Macromol 2019; 155:1202-1215. [PMID: 31730993 DOI: 10.1016/j.ijbiomac.2019.11.088] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/16/2022]
Abstract
Inflammatory response caused by early weaning stress in piglets is associated with various diseases. The Hippophae rhamnoides polysaccharide (HRP) exhibits anti-inflammatory activity and immunomodulatory properties. The mechanisms for the protective effects of HRP on barrier function, inflammatory damage and apoptosis in intestinal porcine epithelial cells (IPEC-J2) induced by the lipopolysaccharide (LPS) are unknown. In this study, we first demonstrated the cytotoxicity of HRP-induced IPEC-J2 cells by reducing cell viability. IPEC-J2 cells were treated with 0-800 μg/mL doses of HRP, and 0-600 μg/mL doses were used in further experiments. Upon exposure to LPS, the viability of IPEC-J2 cells, ROS production, immunoglobulin levels (immunoglobulin M (IgM), immunoglobulin A (IgA) and immunoglobulin G (IgG)) and tight junction protein level (zonula occludens-1 (ZO-1), occluding, claudin-1) decreased. Inflammatory factors (interleukin-1beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α)) and apoptosis (Bcl-2, Bax, caspase-3, caspase-8 and caspase-9) were increased. Cell morphology and internal structure were damaged in the LPS treatment. Pre-treating cells with HRP (0-600 μg/mL) reduced inflammatory factors levels, apoptosis rate, increased immunoglobulins, tight junction protein levels and relieved cell surface morphology damage. Pre-treatment with HRP also reduced the levels of the Toll-like receptor 4 (TLR4) and Myeloid differentiation factor 88 (MyD88) and inhibited the phosphorylated NF-κB factor-kappa B (NF-κB) in cells induced by LPS. These results show that pre-treatment with HRP protected against LPS-induced IPEC-J2 cell damage through its anti-inflammatory activity.
Collapse
Affiliation(s)
- Lei Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Muyang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Kecheng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shuai Su
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Tingting Geng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
93
|
Xia Y, Chen S, Zhao Y, Chen S, Huang R, Zhu G, Yin Y, Ren W, Deng J. GABA attenuates ETEC-induced intestinal epithelial cell apoptosis involving GABA AR signaling and the AMPK-autophagy pathway. Food Funct 2019; 10:7509-7522. [PMID: 31670355 DOI: 10.1039/c9fo01863h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) triggers diarrhea in humans and livestock. We have previously showed that ETEC promotes intestinal epithelial cell apoptosis and increases gamma-aminobutyric acid (GABA) concentration in the jejunum, suggesting that GABA might mediate ETEC-induced apoptosis. Here, we found that GABA alleviates ETEC-induced intestinal barrier dysfunctions, including ETEC-induced apoptosis both in vivo and in vitro. Interestingly, the alleviation of GABA on ETEC-induced apoptosis largely depends on autophagy. Mechanistically, GABA attenuates ETEC-induced apoptosis via activating GABAAR signaling and the AMPK-autophagy pathway. These findings highlight that maintaining intestinal GABA concentration could alleviate intestinal ETEC infection.
Collapse
Affiliation(s)
- Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Yuanyuan Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Shuai Chen
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China and University of Chinese Academy of Sciences, Beijing, China
| | - Ruilin Huang
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China. and Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China. and Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
94
|
Kim SW, Holanda DM, Gao X, Park I, Yiannikouris A. Efficacy of a Yeast Cell Wall Extract to Mitigate the Effect of Naturally Co-Occurring Mycotoxins Contaminating Feed Ingredients Fed to Young Pigs: Impact on Gut Health, Microbiome, and Growth. Toxins (Basel) 2019; 11:toxins11110633. [PMID: 31683617 PMCID: PMC6891535 DOI: 10.3390/toxins11110633] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 11/20/2022] Open
Abstract
Mycotoxins are produced by fungi and are potentially toxic to pigs. Yeast cell wall extract (YCWE) is known to adsorb mycotoxins and improve gut health in pigs. One hundred and twenty growing (56 kg; experiment 1) and 48 nursery piglets (6 kg; experiment 2) were assigned to four dietary treatments in a 2 × 2 factorial design for 35 and 48 days, respectively. Factors were mycotoxins (no addition versus experiment 1: 180 μg/kg aflatoxins and 14 mg/kg fumonisins; or experiment 2: 180 μg/kg aflatoxins and 9 mg/kg fumonisins, and 1 mg/kg deoxynivalenol) and YCWE (0% versus 0.2%). Growth performance, blood, gut health and microbiome, and apparent ileal digestibility (AID) data were evaluated. In experiment 1, mycotoxins reduced ADG and G:F, and duodenal IgG, whereas in jejunum, YCWE increased IgG and reduced villus width. In experiment 2, mycotoxins reduced BW, ADG, and ADFI. Mycotoxins reduced ADG, which was recovered by YCWE. Mycotoxins reduced the AID of nutrients evaluated and increased protein carbonyl, whereas mycotoxins and YCWE increased the AID of the nutrients and reduced protein carbonyl. Mycotoxins reduced villus height, proportion of Ki-67-positive cells, and increased IgA and the proportion of bacteria with mycotoxin-degrading ability, whereas YCWE tended to increase villus height and reduced IgA and the proportion of pathogenic bacteria in jejunum. The YCWE effects were more evident in promoting gut health and growth in nursery pigs, which showed higher susceptibility to mycotoxin effects.
Collapse
Affiliation(s)
- Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| | | | - Xin Gao
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Inkyung Park
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Alexandros Yiannikouris
- Alltech Inc, Center for Animal Nutrigenomics and Applied Animal Nutrition, 3031 Catnip Hill Road, Nicholasville, KY 40356, USA.
| |
Collapse
|
95
|
Li YT, Xu H, Ye JZ, Wu WR, Shi D, Fang DQ, Liu Y, Li LJ. Efficacy of Lactobacillus rhamnosus GG in treatment of acute pediatric diarrhea: A systematic review with meta-analysis. World J Gastroenterol 2019; 25:4999-5016. [PMID: 31543689 PMCID: PMC6737314 DOI: 10.3748/wjg.v25.i33.4999] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/04/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diarrhea is a major infectious cause of childhood morbidity and mortality worldwide. In clinical trials, Lactobacillus rhamnosus GG ATCC 53013 (LGG) has been used to treat diarrhea. However, recent randomized controlled trials (RCTs) found no evidence of a beneficial effect of LGG treatment.
AIM To evaluate the efficacy of LGG in treating acute diarrhea in children.
METHODS The EMBASE, MEDLINE, PubMed, Web of Science databases, and the Cochrane Central Register of Controlled Trials were searched up to April 2019 for meta-analyses and RCTs. The Cochrane Review Manager was used to analyze the relevant data.
RESULTS Nineteen RCTs met the inclusion criteria and showed that compared with the control group, LGG administration notably reduced the diarrhea duration [mean difference (MD) -24.02 h, 95% confidence interval (CI) (-36.58, -11.45)]. More effective results were detected at a high dose ≥ 1010 CFU per day [MD -22.56 h, 95%CI (-36.41, -8.72)] vs a lower dose. A similar reduction was found in Asian and European patients [MD -24.42 h, 95%CI (-47.01, -1.82); MD -32.02 h, 95%CI (-49.26, -14.79), respectively]. A reduced duration of diarrhea was confirmed in LGG participants with diarrhea for less than 3 d at enrollment [MD -15.83 h, 95%CI (-20.68, -10.98)]. High-dose LGG effectively reduced the duration of rotavirus-induced diarrhea [MD -31.05 h, 95%CI (-50.31, -11.80)] and the stool number per day [MD -1.08, 95%CI (-1.87, -0.28)].
CONCLUSION High-dose LGG therapy reduces the duration of diarrhea and the stool number per day. Intervention at the early stage is recommended. Future trials are expected to verify the effectiveness of LGG treatment.
Collapse
Affiliation(s)
- Ya-Ting Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hong Xu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Zhong Ye
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Rui Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ding Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Dai-Qiong Fang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yang Liu
- Department of Orthopedics, Clinical Sciences, Lund, Lund University, Lund 22185, Sweden
| | - Lan-Juan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
96
|
Liu X, Xia B, He T, Li D, Su JH, Guo L, Wang JF, Zhu YH. Oral Administration of a Select Mixture of Lactobacillus and Bacillus Alleviates Inflammation and Maintains Mucosal Barrier Integrity in the Ileum of Pigs Challenged with Salmonella Infantis. Microorganisms 2019; 7:E135. [PMID: 31096680 PMCID: PMC6560431 DOI: 10.3390/microorganisms7050135] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/11/2019] [Accepted: 05/12/2019] [Indexed: 12/23/2022] Open
Abstract
Salmonella is important as both a cause of clinical disease in swine and as a source of food-borne transmission of disease to humans. Lactobacillus and Bacillus are often used as antibiotic substitutes to prevent Salmonella infection. In this study, we evaluated the effects of a select mixture of Lactobacillus johnsonii L531, Bacillus licheniformis BL1721 and Bacillus subtilis BS1715 (LBB-mix) in prevention of Salmonella enterica serovar Infantis infection in a pig model. LBB-mix was orally administered to newly weaned piglets for seven days before S. Infantis challenge. LBB-mix pretreatment ameliorated S. Infantis-induced fever, leukocytosis, growth performance loss, and ileal inflammation. Pre-administration of LBB-mix reduced the number of Salmonella in the feces but increased the number of goblet cells in the ileum. S. Infantis infection resulted in an increase in cell death in the ileum, this increase was attenuated by LBB-mix consumption. Claudin 1 and cleaved caspase-1 expression was decreased in the ileum of pigs challenged with S. Infantis, but not in pigs pretreated with LBB-mix. In conclusion, our data indicate that a select LBB-mix has positive effects on controlling S. Infantis infection via alleviating inflammation and maintaining the intestinal mucosal barrier integrity in pigs.
Collapse
Affiliation(s)
- Xiao Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Bing Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Ting He
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Dan Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jin-Hui Su
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Liang Guo
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jiu-Feng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yao-Hong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
97
|
Shi L, Fang B, Yong Y, Li X, Gong D, Li J, Yu T, Gooneratne R, Gao Z, Li S, Ju X. Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-κB signaling pathway. Carbohydr Polym 2019; 219:269-279. [PMID: 31151525 DOI: 10.1016/j.carbpol.2019.05.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 04/16/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
The protective mechanism of chitosan oligosaccharide (COS) against lipopolysaccharides (LPS) -induced inflammatory responses in IPEC-J2 and in mice with DSS dextran sulfate sodium (DSS) -induced colitis is reported. Upon exposure to LPS, the proliferation rate of IPEC-J2 cells markedly decreased, and epithelial cell integrity was compromised. However, COS pretreatment significantly reduced these changes. Low-concentration (200 μg/mL) COS up-regulated Toll-like receptor 4 (TLR4) and nuclear p65 expression, but inhibited LPS-induced expression of nuclear p65, IL-6, and IL-8. Addition of the TLR4 inhibitor reduced nuclear p65, IL-6, and IL-8 expression in IPEC-J2 cells exposed to COS or LPS alone, and a slight up-regulation in nuclear p65 was observed in COS and LPS co-treated cells. Medium-dose COS (600 mg/kg/d) protected against DSS-induced colitis, in which TLR4 and nuclear p65 expression levels were decreased. We postulate that the prevention of both LPS- and DSS -induced inflammatory responses in IPEC-J2 cells and mice by COS are related to the inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lin Shi
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China
| | - Biao Fang
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xuewen Li
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Dongliang Gong
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Junyu Li
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Tianyue Yu
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Zhenhua Gao
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| | - Sidong Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China.
| |
Collapse
|
98
|
Ateya AI, Arafat N, Saleh RM, Ghanem HM, Naguib D, Radwan HA, Elseady YY. Intestinal gene expressions in broiler chickens infected with Escherichia coli and dietary supplemented with probiotic, acidifier and synbiotic. Vet Res Commun 2019; 43:131-142. [PMID: 31055768 DOI: 10.1007/s11259-019-09753-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
In this study, we investigated the effects of probiotic, acidifier and synbiotic supplementation on growth performance, mortality rate, intestinal gene expressions, fecal shedding, and organs colonization induced by Escherichia coli in broiler chickens. Six experimental groups were included; negative control group (NC), positive control group (PC), probiotic group (PR), acidifier group (AC), synbiotic group (SY) and colistin sulfate group (CS). Chickens in groups NC and PC were fed a basal diet, while chickens in groups PR, AC, SY, and CS were fed a basal diet containing probiotic, acidifier, synbiotic and colistin sulfate, respectively from the 1st day to the 28th day of age. At 7 days of age, all groups (not NC) were orally challenged with 0.5 ml (1.0 × 109 CFU/ml) E. coli O78. The dietary supplementation of acidifier and synbiotic were sufficient to quell the devastating effects of E. coli infection in broilers. Growth performances represented by body weight gain, feed intake and feed conversion ratio were significantly improved as well as, mortalities were prevented whilst the ileal pro-inflammatory gene expressions (IL-6, IL-8, IL-13, TLR-4, IFN-γ, LITAF, AvBD-2, and AvBD-9) were significantly downregulated and the anti-inflammatory cytokine (IL-10) was significantly increased. In addition, E. coli fecal shedding and organs colonization was significantly diminished. It was concluded that the addition of both acidifier and synbiotic to the diet of broilers infected with E. coli could modulate the intestinal inflammatory responses induced by E. coli infection and minimized the inflammation-induced damage which resulted in improvement in growth performance, prevention of mortalities and reduction of E. coli environmental contamination.
Collapse
Affiliation(s)
- Ahmed I Ateya
- Department of Animal Husbandry and Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hanaa M Ghanem
- Department of Animal Husbandry and Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Doaa Naguib
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hend A Radwan
- Department of Animal Husbandry and Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Y Y Elseady
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
99
|
Che D, Zhao B, Fan Y, Han R, Zhang C, Qin G, Adams S, Jiang H. Eleutheroside B increase tight junction proteins and anti-inflammatory cytokines expression in intestinal porcine jejunum epithelial cells (IPEC-J2). J Anim Physiol Anim Nutr (Berl) 2019; 103:1174-1184. [PMID: 30990939 DOI: 10.1111/jpn.13087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/11/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022]
Abstract
Eleutheroside B (EB) is a phenylpropanoid glycoside with anti-inflammatory properties, neuroprotective abilities, immunomodulatory effects, antinociceptive effects, and regulation of blood glucose. The aim of this study was to investigate the effects of EB on the barrier function in the intestinal porcine epithelial cells J2 (IPEC-J2). The IPEC-J2 cells were inoculated into 96-well plates at a density of 5 × 103 cells per well for 100% confluence. The cells were cultured in the presence of EB at concentrations of 0, 0.05, 0.10, and 0.20 mg/ml for 48 hr. Then, 0.10 mg/ml was selected as the suitable concentration for the estimation of transepithelial electric resistance (TEER) value, alkaline phosphatase activity, proinflammatory cytokines mRNA expression, tight junction mRNA and protein expression. The results of this study indicated that the supplementation of EB in IPEC-J2 cells decreased cellular membrane permeability and mRNA expression of proinflammatory cytokines, including interleukin-6 (IL-6), interferon-γ (INF-γ), and tumour necrosis factor-α (TNF-α). The supplementation of EB in IPEC-J2 cells increased tight junction protein expression and anti-inflammatory cytokines, interleukin 10 (IL-10) and transforming growth factor beta (TGF-β). In addition, the western blotting and real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that EB significantly (p < 0.05) increased the mRNA and protein expression of intestinal tight junction proteins, Claudin-3, Occludin, and Zonula Occludins protein-1 (ZO-1). Therefore, dietary supplementation of EB may increase intestinal barrier function, tight junction protein expression, anti-inflammatory cytokines, and decrease proinflammatory cytokines synthesis in IPEC-J2 cells.
Collapse
Affiliation(s)
- Dongsheng Che
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Bao Zhao
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yueli Fan
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chun Zhang
- College of Animal Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Guixin Qin
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Seidu Adams
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hailong Jiang
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
100
|
Food Supplements to Mitigate Detrimental Effects of Pelvic Radiotherapy. Microorganisms 2019; 7:microorganisms7040097. [PMID: 30987157 PMCID: PMC6518429 DOI: 10.3390/microorganisms7040097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022] Open
Abstract
Pelvic radiotherapy has been frequently reported to cause acute and late onset gastrointestinal (GI) toxicities associated with significant morbidity and mortality. Although the underlying mechanisms of pelvic radiation-induced GI toxicity are poorly understood, they are known to involve a complex interplay between all cell types comprising the intestinal wall. Furthermore, increasing evidence states that the human gut microbiome plays a role in the development of radiation-induced health damaging effects. Gut microbial dysbiosis leads to diarrhea and fatigue in half of the patients. As a result, reinforcement of the microbiome has become a hot topic in various medical disciplines. To counteract GI radiotoxicities, apart from traditional pharmacological compounds, adjuvant therapies are being developed including food supplements like vitamins, prebiotics, and probiotics. Despite the easy, cheap, safe, and feasible approach to protect patients against acute radiation-induced toxicity, clinical trials have yielded contradictory results. In this review, a detailed overview is given of the various clinical, intestinal manifestations after pelvic irradiation as well as the role of the gut microbiome herein. Furthermore, whilst discussing possible strategies to prevent these symptoms, food supplements are presented as auspicious, prophylactic, and therapeutic options to mitigate acute pelvic radiation-induced GI injury by exploring their molecular mechanisms of action.
Collapse
|