51
|
Dai G, Zhang X, Liu W, Li Z, Wang G, Liu Y, Xiao Q, Duan L, Li J, Song X, Li G, Bai S. Analysis of EPID Transmission Fluence Maps Using Machine Learning Models and CNN for Identifying Position Errors in the Treatment of GO Patients. Front Oncol 2021; 11:721591. [PMID: 34595115 PMCID: PMC8476908 DOI: 10.3389/fonc.2021.721591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose To find a suitable method for analyzing electronic portal imaging device (EPID) transmission fluence maps for the identification of position errors in the in vivo dose monitoring of patients with Graves' ophthalmopathy (GO). Methods Position errors combining 0-, 2-, and 4-mm errors in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions in the delivery of 40 GO patient radiotherapy plans to a human head phantom were simulated and EPID transmission fluence maps were acquired. Dose difference (DD) and structural similarity (SSIM) maps were calculated to quantify changes in the fluence maps. Three types of machine learning (ML) models that utilize radiomics features of the DD maps (ML 1 models), features of the SSIM maps (ML 2 models), and features of both DD and SSIM maps (ML 3 models) as inputs were used to perform three types of position error classification, namely a binary classification of the isocenter error (type 1), three binary classifications of LR, SI, and AP direction errors (type 2), and an eight-element classification of the combined LR, SI, and AP direction errors (type 3). Convolutional neural network (CNN) was also used to classify position errors using the DD and SSIM maps as input. Results The best-performing ML 1 model was XGBoost, which achieved accuracies of 0.889, 0.755, 0.778, 0.833, and 0.532 in the type 1, type 2-LR, type 2-AP, type 2-SI, and type 3 classification, respectively. The best ML 2 model was XGBoost, which achieved accuracies of 0.856, 0.731, 0.736, 0.949, and 0.491, respectively. The best ML 3 model was linear discriminant classifier (LDC), which achieved accuracies of 0.903, 0.792, 0.870, 0.931, and 0.671, respectively. The CNN achieved classification accuracies of 0.925, 0.833, 0.875, 0.949, and 0.689, respectively. Conclusion ML models and CNN using combined DD and SSIM maps can analyze EPID transmission fluence maps to identify position errors in the treatment of GO patients. Further studies with large sample sizes are needed to improve the accuracy of CNN.
Collapse
Affiliation(s)
- Guyu Dai
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangbin Zhang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjie Liu
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, China
| | - Zhibin Li
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guangyu Wang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yaxin Liu
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xiao
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Duan
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Li
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Song
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guangjun Li
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Sen Bai
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
52
|
Zhang RK, Xiao Q, Zhu SL, Lin HY, Tang M. Using different machine learning models to classify patients into mild and severe cases of COVID-19 based on multivariate blood testing. J Med Virol 2021; 94:357-365. [PMID: 34542195 PMCID: PMC8661590 DOI: 10.1002/jmv.27352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 is a serious respiratory disease. The ever-increasing number of cases is causing heavier loads on the health service system. Using 38 blood test indicators on the first day of admission for the 422 patients diagnosed with COVID-19 (from January 2020 to June 2021) to construct different machine learning (ML) models to classify patients into either mild or severe cases of COVID-19. All models show good performance in the classification between COVID-19 patients into mild and severe disease. The area under the curve (AUC) of the random forest model is 0.89, the AUC of the naive Bayes model is 0.90, the AUC of the support vector machine model is 0.86, and the AUC of the KNN model is 0.78, the AUC of the Logistic regression model is 0.84, and the AUC of the artificial neural network model is 0.87, among which the naive Bayes model has the best performance. Different ML models can classify patients into mild and severe cases based on 38 blood test indicators taken on the first day of admission for patients diagnosed with COVID-19.
Collapse
Affiliation(s)
- Rui-Kun Zhang
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Qi Xiao
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Sheng-Lang Zhu
- Department of nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hai-Yan Lin
- Department of nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Ming Tang
- Department of Critical Care Medicine, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
53
|
Amin MS, Wozniak M, Barbaric L, Pickard S, Yerrabelli RS, Christensen A, Coiado OC. Experimental Technologies in the Diagnosis and Treatment of COVID-19 in Patients with Comorbidities. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2021; 6:48-71. [PMID: 34541448 PMCID: PMC8442516 DOI: 10.1007/s41666-021-00106-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has impacted the whole world and raised concerns about its effects on different human organ systems. Early detection of COVID-19 may significantly increase the rate of survival; thus, it is critical that the disease is detected early. Emerging technologies have been used to prevent, diagnose, and manage COVID-19 among the populace in the USA and globally. Numerous studies have revealed the growing implementation of novel engineered systems during the intervention at various points of the disease’s pathogenesis, especially as it relates to comorbidities and complications related to cardiovascular and respiratory organ systems. In this review, we provide a succinct, but extensive, review of the pathogenesis of COVID-19, particularly as it relates to angiotensin-converting enzyme 2 (ACE2) as a viral entry point. This is followed by a comprehensive analysis of cardiovascular and respiratory comorbidities of COVID-19 and novel technologies that are used to diagnose and manage hospitalized patients. Continuous cardiorespiratory monitoring systems, novel machine learning algorithms for rapidly triaging patients, various imaging modalities, wearable immunosensors, hotspot tracking systems, and other emerging technologies are reviewed. COVID-19 effects on the immune system, associated inflammatory biomarkers, and innovative therapies are also assessed. Finally, with emphasis on the impact of wearable and non-wearable systems, this review highlights future technologies that could help diagnose, monitor, and mitigate disease progression. Technologies that account for an individual’s health conditions, comorbidities, and even socioeconomic factors can drastically reduce the high mortality seen among many COVID-19 patients, primarily via disease prevention, early detection, and pertinent management.
Collapse
Affiliation(s)
- Md Shahnoor Amin
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801 USA.,Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Lidija Barbaric
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Shanel Pickard
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Rahul S Yerrabelli
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Anton Christensen
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Olivia C Coiado
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA.,Department of Bioengineering, University of Illinois At Urbana-Champaign, Urbana, IL 61801 USA.,Carle Illinois College of Medicine, 1406 W. Green St, Urbana, IL 61801 USA
| |
Collapse
|
54
|
Shanbehzadeh M, Kazemi-Arpanahi H, Orooji A, Mobarak S, Jelvay S. Performance evaluation of selected machine learning algorithms for COVID-19 prediction using routine clinical data: With versus Without CT scan features. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2021; 10:285. [PMID: 34667785 PMCID: PMC8459865 DOI: 10.4103/jehp.jehp_1424_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/19/2020] [Indexed: 06/13/2023]
Abstract
BACKGROUND Given coronavirus disease (COVID-19's) unknown nature, diagnosis, and treatment is very complex up to the present time. Thus, it is essential to have a framework for an early prediction of the disease. In this regard, machines learning (ML) could be crucial to extract concealed patterns from mining of huge raw datasets then it establishes high-quality predictive models. At this juncture, we aimed to apply different ML techniques to develop clinical predictive models and select the best performance of them. MATERIALS AND METHODS The dataset of Ayatollah Talleghani hospital, COVID-19 focal center affiliated to Abadan University of Medical Sciences have been taken into consideration. The dataset used in this study consists of 501 case records with two classes (COVID-19 and non COVID-19) and 32 columns for the diagnostic features. ML algorithms such as Naïve Bayesian, Bayesian Net, random forest (RF), multilayer perceptron, K-star, C4.5, and support vector machine were developed. Then, the recital of selected ML models was assessed by the comparison of some performance indices such as accuracy, sensitivity, specificity, precision, F-score, and receiver operating characteristic (ROC). RESULTS The experimental results indicate that RF algorithm with the accuracy of 92.42%, specificity of 75.70%, precision of 92.30%, sensitivity of 92.40%, F-measure of 92.00%, and ROC of 97.15% has the best capability for COVID-19 diagnosis and screening. CONCLUSION The empirical results reveal that RF model yielded higher performance as compared to other six classification models. It is promising to the implementation of RF model in the health-care settings to increase the accuracy and speed of disease diagnosis for primary prevention, screening, surveillance, and early treatment.
Collapse
Affiliation(s)
- Mostafa Shanbehzadeh
- Assistant Professor of Health Information Management, Department of Health Information Technology, School of Paramedical, Ilam University of Medical Sciences, Ilam, Iran
| | - Hadi Kazemi-Arpanahi
- Assistant Professor of Health Information Management, Department of Health Information Technology, Abadan University of Medical Sciences, Abadan, Iran
- Assistant Professor of Health Information Management, Student Research Committee, Abadan University of Medical Sciences, Abadan, Iran
| | - Azam Orooji
- Assistant Professor of Medical Informatics, School of Medicine, North Khorasan University of Medical Science, North Khorasan, Iran
| | - Sara Mobarak
- Assistant Professor of Infectious Diseases, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Saeed Jelvay
- MSc of Health Information Technology, Department of Student Research Committee, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
55
|
Shelmerdine SC, Arthurs OJ, Denniston A, Sebire NJ. Review of study reporting guidelines for clinical studies using artificial intelligence in healthcare. BMJ Health Care Inform 2021; 28:bmjhci-2021-100385. [PMID: 34426417 PMCID: PMC8383863 DOI: 10.1136/bmjhci-2021-100385] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
High-quality research is essential in guiding evidence-based care, and should be reported in a way that is reproducible, transparent and where appropriate, provide sufficient detail for inclusion in future meta-analyses. Reporting guidelines for various study designs have been widely used for clinical (and preclinical) studies, consisting of checklists with a minimum set of points for inclusion. With the recent rise in volume of research using artificial intelligence (AI), additional factors need to be evaluated, which do not neatly conform to traditional reporting guidelines (eg, details relating to technical algorithm development). In this review, reporting guidelines are highlighted to promote awareness of essential content required for studies evaluating AI interventions in healthcare. These include published and in progress extensions to well-known reporting guidelines such as Standard Protocol Items: Recommendations for Interventional Trials-AI (study protocols), Consolidated Standards of Reporting Trials-AI (randomised controlled trials), Standards for Reporting of Diagnostic Accuracy Studies-AI (diagnostic accuracy studies) and Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis-AI (prediction model studies). Additionally there are a number of guidelines that consider AI for health interventions more generally (eg, Checklist for Artificial Intelligence in Medical Imaging (CLAIM), minimum information (MI)-CLAIM, MI for Medical AI Reporting) or address a specific element such as the ‘learning curve’ (Developmental and Exploratory Clinical Investigation of Decision-AI). Economic evaluation of AI health interventions is not currently addressed, and may benefit from extension to an existing guideline. In the face of a rapid influx of studies of AI health interventions, reporting guidelines help ensure that investigators and those appraising studies consider both the well-recognised elements of good study design and reporting, while also adequately addressing new challenges posed by AI-specific elements.
Collapse
Affiliation(s)
| | - Owen J Arthurs
- Radiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Alastair Denniston
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Neil J Sebire
- Digital Research, Informatics and Virtual Environments Unit (DRIVE), London, UK
| |
Collapse
|
56
|
Gladding PA, Ayar Z, Smith K, Patel P, Pearce J, Puwakdandawa S, Tarrant D, Atkinson J, McChlery E, Hanna M, Gow N, Bhally H, Read K, Jayathissa P, Wallace J, Norton S, Kasabov N, Calude CS, Steel D, Mckenzie C. A machine learning PROGRAM to identify COVID-19 and other diseases from hematology data. Future Sci OA 2021; 7:FSO733. [PMID: 34254032 PMCID: PMC8204819 DOI: 10.2144/fsoa-2020-0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
AIM We propose a method for screening full blood count metadata for evidence of communicable and noncommunicable diseases using machine learning (ML). MATERIALS & METHODS High dimensional hematology metadata was extracted over an 11-month period from Sysmex hematology analyzers from 43,761 patients. Predictive models for age, sex and individuality were developed to demonstrate the personalized nature of hematology data. Both numeric and raw flow cytometry data were used for both supervised and unsupervised ML to predict the presence of pneumonia, urinary tract infection and COVID-19. Heart failure was used as an objective to prove method generalizability. RESULTS Chronological age was predicted by a deep neural network with R2: 0.59; mean absolute error: 12; sex with AUROC: 0.83, phi: 0.47; individuality with 99.7% accuracy, phi: 0.97; pneumonia with AUROC: 0.74, sensitivity 58%, specificity 79%, 95% CI: 0.73-0.75, p < 0.0001; urinary tract infection AUROC: 0.68, sensitivity 52%, specificity 79%, 95% CI: 0.67-0.68, p < 0.0001; COVID-19 AUROC: 0.8, sensitivity 82%, specificity 75%, 95% CI: 0.79-0.8, p = 0.0006; and heart failure area under the receiver operator curve (AUROC): 0.78, sensitivity 72%, specificity 72%, 95% CI: 0.77-0.78; p < 0.0001. CONCLUSION ML applied to hematology data could predict communicable and noncommunicable diseases, both at local and global levels.
Collapse
Affiliation(s)
- Patrick A Gladding
- Department of Cardiology, Waitematā District Health Board, Auckland, New Zealand
| | - Zina Ayar
- Clinical Information Services, Waitematā District Health Board, Auckland, New Zealand
| | - Kevin Smith
- Clinical laboratory, Waitematā District Health Board, Auckland, New Zealand
| | - Prashant Patel
- Clinical laboratory, Waitematā District Health Board, Auckland, New Zealand
| | - Julia Pearce
- Clinical laboratory, Waitematā District Health Board, Auckland, New Zealand
| | | | - Dianne Tarrant
- Clinical laboratory, Waitematā District Health Board, Auckland, New Zealand
| | - Jon Atkinson
- Clinical laboratory, Waitematā District Health Board, Auckland, New Zealand
| | - Elizabeth McChlery
- Clinical laboratory, Waitematā District Health Board, Auckland, New Zealand
| | - Merit Hanna
- Department of Hematology, Waitematā District Health Board, Auckland, New Zealand
| | - Nick Gow
- Department of Infectious diseases, Waitematā District Health Board, Auckland, New Zealand
| | - Hasan Bhally
- Department of Infectious diseases, Waitematā District Health Board, Auckland, New Zealand
| | - Kerry Read
- Department of Infectious diseases, Waitematā District Health Board, Auckland, New Zealand
| | - Prageeth Jayathissa
- Institute for Innovation & Improvement (i3), Waitematā District Health Board, Auckland, New Zealand
| | - Jonathan Wallace
- Institute for Innovation & Improvement (i3), Waitematā District Health Board, Auckland, New Zealand
| | | | - Nick Kasabov
- Knowledge Engineering & Discovery Research Institute (KEDRI), Auckland University of Technology, Auckland, New Zealand
| | - Cristian S Calude
- School of Computer Science, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
57
|
Luo J, Zhang Z, Fu Y, Rao F. Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms. RESULTS IN PHYSICS 2021; 27:104462. [PMID: 34178594 PMCID: PMC8216863 DOI: 10.1016/j.rinp.2021.104462] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 05/07/2023]
Abstract
In this paper, we establish daily confirmed infected cases prediction models for the time series data of America by applying both the long short-term memory (LSTM) and extreme gradient boosting (XGBoost) algorithms, and employ four performance parameters as MAE, MSE, RMSE, and MAPE to evaluate the effect of model fitting. LSTM is applied to reliably estimate accuracy due to the long-term attribute and diversity of COVID-19 epidemic data. Using XGBoost model, we conduct a sensitivity analysis to determine the robustness of predictive model to parameter features. Our results reveal that achieving a reduction in the contact rate between susceptible and infected individuals by isolated the uninfected individuals, can effectively reduce the number of daily confirmed cases. By combining the restrictive social distancing and contact tracing, the elimination of ongoing COVID-19 pandemic is possible. Our predictions are based on real time series data with reasonable assumptions, whereas the accurate course of epidemic heavily depends on how and when quarantine, isolation and precautionary measures are enforced.
Collapse
Affiliation(s)
- Junling Luo
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zhongliang Zhang
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yao Fu
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Feng Rao
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| |
Collapse
|
58
|
Suma LS, Anand HS, Vinod chandra SS. Nature inspired optimization model for classification and severity prediction in COVID-19 clinical dataset. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2021; 14:1699-1711. [PMID: 34367354 PMCID: PMC8325049 DOI: 10.1007/s12652-021-03389-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The spread rate of COVID-19 is expected to be high in the wake of the virus's mutated strain found recently in a few countries. Fast diagnosis of the disease and knowing its severity are the two significant concerns of all physicians. Even though positive or negative diagnosis can be obtained through the RT-PCR test, an automatic model that predicts severity and the diagnosis will help medical practitioners to a great extend for affirming medication. Machine learning is an efficient tool that can process vast volume of data deposited in various formats, including clinical symptoms. In this work, we have developed machine learning models for analysing a clinical data set comprising 65000 records of patients, consisting of 26 features. An optimum set of features was derived from this data set by the proposed variant of artificial bee colony optimization algorithm. By making use of these features, a binary classifier is modelled with support vector machine for the screening of COVID-19 patients. Different models were tested for this purpose and the support vector machine has showcased the highest accuracy of 96%. Successively, severity prediction in COVID positive patients was also performed successfully by the logistic regression model. The model managed to predict three severity status viz mild, moderate, and severe. The confusion matrix and the precision-recall values (0.96 and 0.97) of the binary classifier indicate the classifier's efficiency in predicting positive cases correctly. The receiver operating curve generated for the severity predicting model shows the highest accuracy, 96.0% for class 1 and 85.0% for class 2 patients. Doctors can infer these results to finalize the type of treatment/care/facilities that need to be given to the patients from time to time.
Collapse
Affiliation(s)
- L. S. Suma
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, India
| | - H. S. Anand
- Department of Computer Science and Engineering, Muthoot Institute of Technology and Science, Kochi, India
| | | |
Collapse
|
59
|
Ozdemir MA, Ozdemir GD, Guren O. Classification of COVID-19 electrocardiograms by using hexaxial feature mapping and deep learning. BMC Med Inform Decis Mak 2021; 21:170. [PMID: 34034715 PMCID: PMC8146190 DOI: 10.1186/s12911-021-01521-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has become a pandemic since its first appearance in late 2019. Deaths caused by COVID-19 are still increasing day by day and early diagnosis has become crucial. Since current diagnostic methods have many disadvantages, new investigations are needed to improve the performance of diagnosis. METHODS A novel method is proposed to automatically diagnose COVID-19 by using Electrocardiogram (ECG) data with deep learning for the first time. Moreover, a new and effective method called hexaxial feature mapping is proposed to represent 12-lead ECG to 2D colorful images. Gray-Level Co-Occurrence Matrix (GLCM) method is used to extract features and generate hexaxial mapping images. These generated images are then fed into a new Convolutional Neural Network (CNN) architecture to diagnose COVID-19. RESULTS Two different classification scenarios are conducted on a publicly available paper-based ECG image dataset to reveal the diagnostic capability and performance of the proposed approach. In the first scenario, ECG data labeled as COVID-19 and No-Findings (normal) are classified to evaluate COVID-19 classification ability. According to results, the proposed approach provides encouraging COVID-19 detection performance with an accuracy of 96.20% and F1-Score of 96.30%. In the second scenario, ECG data labeled as Negative (normal, abnormal, and myocardial infarction) and Positive (COVID-19) are classified to evaluate COVID-19 diagnostic ability. The experimental results demonstrated that the proposed approach provides satisfactory COVID-19 prediction performance with an accuracy of 93.00% and F1-Score of 93.20%. Furthermore, different experimental studies are conducted to evaluate the robustness of the proposed approach. CONCLUSION Automatic detection of cardiovascular changes caused by COVID-19 can be possible with a deep learning framework through ECG data. This not only proves the presence of cardiovascular changes caused by COVID-19 but also reveals that ECG can potentially be used in the diagnosis of COVID-19. We believe the proposed study may provide a crucial decision-making system for healthcare professionals. SOURCE CODE All source codes are made publicly available at: https://github.com/mkfzdmr/COVID-19-ECG-Classification.
Collapse
Affiliation(s)
- Mehmet Akif Ozdemir
- Department of Biomedical Engineering, Faculty of Enigneering and Architecture, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| | - Gizem Dilara Ozdemir
- Department of Biomedical Engineering, Faculty of Enigneering and Architecture, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| | - Onan Guren
- Department of Biomedical Engineering, Faculty of Enigneering and Architecture, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| |
Collapse
|
60
|
Moezzi M, Shirbandi K, Shahvandi HK, Arjmand B, Rahim F. The diagnostic accuracy of Artificial Intelligence-Assisted CT imaging in COVID-19 disease: A systematic review and meta-analysis. INFORMATICS IN MEDICINE UNLOCKED 2021; 24:100591. [PMID: 33977119 PMCID: PMC8099790 DOI: 10.1016/j.imu.2021.100591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/17/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
Artificial intelligence (AI) systems have become critical in support of decision-making. This systematic review summarizes all the data currently available on the AI-assisted CT-Scan prediction accuracy for COVID-19. The ISI Web of Science, Cochrane Library, PubMed, Scopus, CINAHL, Science Direct, PROSPERO, and EMBASE were systematically searched. We used the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool to assess all included studies' quality and potential bias. A hierarchical receiver-operating characteristic summary (HSROC) curve and a summary receiver operating characteristic (SROC) curve have been implemented. The area under the curve (AUC) was computed to determine the diagnostic accuracy. Finally, 36 studies (a total of 39,246 image data) were selected for inclusion into the final meta-analysis. The pooled sensitivity for AI was 0.90 (95% CI, 0.90–0.91), specificity was 0.91 (95% CI, 0.90–0.92) and the AUC was 0.96 (95% CI, 0.91–0.98). For deep learning (DL) method, the pooled sensitivity was 0.90 (95% CI, 0.90–0.91), specificity was 0.88 (95% CI, 0.87–0.88) and the AUC was 0.96 (95% CI, 0.93–0.97). In case of machine learning (ML), the pooled sensitivity was 0.90 (95% CI, 0.90–0.91), specificity was 0.95 (95% CI, 0.94–0.95) and the AUC was 0.97 (95% CI, 0.96–0.99). AI in COVID-19 patients is useful in identifying symptoms of lung involvement. More prospective real-time trials are required to confirm AI's role for high and quick COVID-19 diagnosis due to the possible selection bias and retrospective existence of currently available studies.
Collapse
Affiliation(s)
- Meisam Moezzi
- Department of Emergency Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kiarash Shirbandi
- International Affairs Department (IAD), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Kiani Shahvandi
- Allied Health Science, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Babak Arjmand
- Research Assistant Professor of Applied Cellular Sciences (By Research), Cellular and Molecular Institute, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
61
|
Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in the diagnosis of COVID-19: challenges and perspectives. Int J Biol Sci 2021; 17:1581-1587. [PMID: 33907522 PMCID: PMC8071762 DOI: 10.7150/ijbs.58855] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
Artificial intelligence (AI) is being used to aid in various aspects of the COVID-19 crisis, including epidemiology, molecular research and drug development, medical diagnosis and treatment, and socioeconomics. The association of AI and COVID-19 can accelerate to rapidly diagnose positive patients. To learn the dynamics of a pandemic with relevance to AI, we search the literature using the different academic databases (PubMed, PubMed Central, Scopus, Google Scholar) and preprint servers (bioRxiv, medRxiv, arXiv). In the present review, we address the clinical applications of machine learning and deep learning, including clinical characteristics, electronic medical records, medical images (CT, X-ray, ultrasound images, etc.) in the COVID-19 diagnosis. The current challenges and future perspectives provided in this review can be used to direct an ideal deployment of AI technology in a pandemic.
Collapse
Affiliation(s)
- Shigao Huang
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau 999078, Macau SAR, China
| | - Jie Yang
- Department of Computer and Information Science, University of Macau 999078, Macau SAR, China
- Chongqing Industry & Trade Polytechnic 408000, Chongqing, China
| | - Simon Fong
- Department of Computer and Information Science, University of Macau 999078, Macau SAR, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau 999078, Macau SAR, China
| |
Collapse
|
62
|
Alballa N, Al-Turaiki I. Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: A review. INFORMATICS IN MEDICINE UNLOCKED 2021; 24:100564. [PMID: 33842685 PMCID: PMC8018906 DOI: 10.1016/j.imu.2021.100564] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
The existence of widespread COVID-19 infections has prompted worldwide efforts to control and manage the virus, and hopefully curb it completely. One important line of research is the use of machine learning (ML) to understand and fight COVID-19. This is currently an active research field. Although there are already many surveys in the literature, there is a need to keep up with the rapidly growing number of publications on COVID-19-related applications of ML. This paper presents a review of recent reports on ML algorithms used in relation to COVID-19. We focus on the potential of ML for two main applications: diagnosis of COVID-19 and prediction of mortality risk and severity, using readily available clinical and laboratory data. Aspects related to algorithm types, training data sets, and feature selection are discussed. As we cover work published between January 2020 and January 2021, a few key points have come to light. The bulk of the machine learning algorithms used in these two applications are supervised learning algorithms. The established models are yet to be used in real-world implementations, and much of the associated research is experimental. The diagnostic and prognostic features discovered by ML models are consistent with results presented in the medical literature. A limitation of the existing applications is the use of imbalanced data sets that are prone to selection bias.
Collapse
Affiliation(s)
- Norah Alballa
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Saudi Arabia
| | - Isra Al-Turaiki
- Information Technology Department, College of Computer and Information Sciences, King Saud University, Saudi Arabia
| |
Collapse
|
63
|
Feki I, Ammar S, Kessentini Y, Muhammad K. Federated learning for COVID-19 screening from Chest X-ray images. Appl Soft Comput 2021; 106:107330. [PMID: 33776607 PMCID: PMC7979273 DOI: 10.1016/j.asoc.2021.107330] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is an effective means to assist radiologists to analyze the vast amount of chest X-ray images, which can potentially have a substantial role in streamlining and accelerating the diagnosis of COVID-19. Such techniques involve large datasets for training and all such data must be centralized in order to be processed. Due to medical data privacy regulations, it is often not possible to collect and share patient data in a centralized data server. In this work, we present a collaborative federated learning framework allowing multiple medical institutions screening COVID-19 from Chest X-ray images using deep learning without sharing patient data. We investigate several key properties and specificities of federated learning setting including the not independent and identically distributed (non-IID) and unbalanced data distributions that naturally arise. We experimentally demonstrate that the proposed federated learning framework provides competitive results to that of models trained by sharing data, considering two different model architectures. These findings would encourage medical institutions to adopt collaborative process and reap benefits of the rich private data in order to rapidly build a powerful model for COVID-19 screening.
Collapse
Affiliation(s)
- Ines Feki
- Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia
| | - Sourour Ammar
- Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia.,SM@RTS : Laboratory of Signals, systeMs, aRtificial Intelligence and neTworkS, Sfax, Tunisia
| | - Yousri Kessentini
- Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia.,SM@RTS : Laboratory of Signals, systeMs, aRtificial Intelligence and neTworkS, Sfax, Tunisia
| | - Khan Muhammad
- Department of Software, Sejong University, Seoul 143-747, Republic of Korea
| |
Collapse
|
64
|
Awal MA, Masud M, Hossain MS, Bulbul AAM, Mahmud SMH, Bairagi AK. A Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection From Inpatient Facility Data. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:10263-10281. [PMID: 34786301 PMCID: PMC8545233 DOI: 10.1109/access.2021.3050852] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 05/04/2023]
Abstract
The whole world faces a pandemic situation due to the deadly virus, namely COVID-19. It takes considerable time to get the virus well-matured to be traced, and during this time, it may be transmitted among other people. To get rid of this unexpected situation, quick identification of COVID-19 patients is required. We have designed and optimized a machine learning-based framework using inpatient's facility data that will give a user-friendly, cost-effective, and time-efficient solution to this pandemic. The proposed framework uses Bayesian optimization to optimize the hyperparameters of the classifier and ADAptive SYNthetic (ADASYN) algorithm to balance the COVID and non-COVID classes of the dataset. Although the proposed technique has been applied to nine state-of-the-art classifiers to show the efficacy, it can be used to many classifiers and classification problems. It is evident from this study that eXtreme Gradient Boosting (XGB) provides the highest Kappa index of 97.00%. Compared to without ADASYN, our proposed approach yields an improvement in the kappa index of 96.94%. Besides, Bayesian optimization has been compared to grid search, random search to show efficiency. Furthermore, the most dominating features have been identified using SHapely Adaptive exPlanations (SHAP) analysis. A comparison has also been made among other related works. The proposed method is capable enough of tracing COVID patients spending less time than that of the conventional techniques. Finally, two potential applications, namely, clinically operable decision tree and decision support system, have been demonstrated to support clinical staff and build a recommender system.
Collapse
Affiliation(s)
- Md. Abdul Awal
- Electronics and Communication Engineering DisciplineKhulna UniversityKhulna9208Bangladesh
| | - Mehedi Masud
- Department of Computer ScienceCollege of Computers and Information TechnologyTaif UniversityTaif21944Saudi Arabia
| | - Md. Shahadat Hossain
- Department of Quantitative SciencesInternational University of Business Agriculture and TechnologyDhaka1230Bangladesh
| | | | - S. M. Hasan Mahmud
- School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Anupam Kumar Bairagi
- Computer Science and Engineering DisciplineKhulna UniversityKhulna9208Bangladesh
| |
Collapse
|
65
|
Tayarani N MH. Applications of artificial intelligence in battling against covid-19: A literature review. CHAOS, SOLITONS, AND FRACTALS 2021; 142:110338. [PMID: 33041533 PMCID: PMC7532790 DOI: 10.1016/j.chaos.2020.110338] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Colloquially known as coronavirus, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), that causes CoronaVirus Disease 2019 (COVID-19), has become a matter of grave concern for every country around the world. The rapid growth of the pandemic has wreaked havoc and prompted the need for immediate reactions to curb the effects. To manage the problems, many research in a variety of area of science have started studying the issue. Artificial Intelligence is among the area of science that has found great applications in tackling the problem in many aspects. Here, we perform an overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc. The aim of this paper is to perform a comprehensive survey on the applications of AI in battling against the difficulties the outbreak has caused. Thus we cover every way that AI approaches have been employed and to cover all the research until the writing of this paper. We try organize the works in a way that overall picture is comprehensible. Such a picture, although full of details, is very helpful in understand where AI sits in current pandemonium. We also tried to conclude the paper with ideas on how the problems can be tackled in a better way and provide some suggestions for future works.
Collapse
Affiliation(s)
- Mohammad-H Tayarani N
- Biocomputation Group, School of Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| |
Collapse
|
66
|
AlJame M, Ahmad I, Imtiaz A, Mohammed A. Ensemble learning model for diagnosing COVID-19 from routine blood tests. INFORMATICS IN MEDICINE UNLOCKED 2020; 21:100449. [PMID: 33102686 PMCID: PMC7572278 DOI: 10.1016/j.imu.2020.100449] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The pandemic of novel coronavirus disease 2019 (COVID-19) has severely impacted human society with a massive death toll worldwide. There is an urgent need for early and reliable screening of COVID-19 patients to provide better and timely patient care and to combat the spread of the disease. In this context, recent studies have reported some key advantages of using routine blood tests for initial screening of COVID-19 patients. In this article, first we present a review of the emerging techniques for COVID-19 diagnosis using routine laboratory and/or clinical data. Then, we propose ERLX which is an ensemble learning model for COVID-19 diagnosis from routine blood tests. METHOD The proposed model uses three well-known diverse classifiers, extra trees, random forest and logistic regression, which have different architectures and learning characteristics at the first level, and then combines their predictions by using a second level extreme gradient boosting (XGBoost) classifier to achieve a better performance. For data preparation, the proposed methodology employs a KNNImputer algorithm to handle null values in the dataset, isolation forest (iForest) to remove outlier data, and a synthetic minority oversampling technique (SMOTE) to balance data distribution. For model interpretability, features importance are reported by using the SHapley Additive exPlanations (SHAP) technique. RESULTS The proposed model was trained and evaluated by using a publicly available data set from Albert Einstein Hospital in Brazil, which consisted of 5644 data samples with 559 confirmed COVID-19 cases. The ensemble model achieved outstanding performance with an overall accuracy of 99.88% [95% CI: 99.6-100], AUC of 99.38% [95% CI: 97.5-100], a sensitivity of 98.72% [95% CI: 94.6-100] and a specificity of 99.99% [95% CI: 99.99-100]. DISCUSSION The proposed model revealed better performance when compared against existing state-of-the-art studies (Banerjee et al., 2020; de Freitas Barbosa et al., 2020; de Moraes Batista et al., 2020; Soares et al., 2020) [3,22,56,71] for the same set of features employed by them. As compared to the best performing Bayes Net model (de Freitas Barbosa et al., 2020) [22] average accuracy of 95.159%, ERLX achieved an average accuracy of 99.94%. In comparison with AUC of 85% reported by the SVM model (de Moraes Batista et al., 2020) [56], ERLX obtained AUC of 99.77% in addition to improvements in sensitivity, and specificity. As compared with ER-COV model (Soares et al., 2020) [71] average sensitivity of 70.25% and specificity of 85.98%, ERLX model achieved sensitivity of 99.47% and specificity of 99.99%. The ERLX model obtained a considerably higher score as compared with ANN model (Banerjee et al., 2020) [3] in all performance metrics. Therefore, the model presented is robust and can be deployed for reliable early and rapid screening of COVID-19 patients.
Collapse
Affiliation(s)
- Maryam AlJame
- Computer Engineering Department, Kuwait University, Kuwait
| | - Imtiaz Ahmad
- Computer Engineering Department, Kuwait University, Kuwait
| | | | - Ameer Mohammed
- Computer Engineering Department, Kuwait University, Kuwait
| |
Collapse
|