51
|
Hsu XR, Wu JE, Wu YY, Hsiao SY, Liang JL, Wu YJ, Tung CH, Huang MF, Lin MS, Yang PC, Chen YL, Hong TM. Exosomal long noncoding RNA MLETA1 promotes tumor progression and metastasis by regulating the miR-186-5p/EGFR and miR-497-5p/IGF1R axes in non-small cell lung cancer. J Exp Clin Cancer Res 2023; 42:283. [PMID: 37880793 PMCID: PMC10601119 DOI: 10.1186/s13046-023-02859-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Lung cancer is the most common and deadliest cancer worldwide, and approximately 90% of all lung cancer deaths are caused by tumor metastasis. Tumor-derived exosomes could potentially promote tumor metastasis through the delivery of metastasis-related molecules. However, the function and underlying mechanism of exosomal long noncoding RNA (lncRNA) in lung cancer metastasis remain largely unclear. METHODS Cell exosomes were purified from conditioned media by differential ultracentrifugation and observed using transmission electron microscopy, and the size distributions were determined by nanoparticle tracking analysis. Exosomal lncRNA sequencing (lncRNA-seq) was used to identify long noncoding RNAs. Cell migration and invasion were determined by wound-healing assays, two-chamber transwell invasion assays and cell mobility tracking. Mice orthotopically and subcutaneously xenografted with human cancer cells were used to evaluate tumor metastasis in vivo. Western blot, qRT‒PCR, RNA-seq, and dual-luciferase reporter assays were performed to investigate the potential mechanism. The level of exosomal lncRNA in plasma was examined by qRT‒PCR. MS2-tagged RNA affinity purification (MS2-TRAP) assays were performed to verify lncRNA-bound miRNAs. RESULTS Exosomes derived from highly metastatic lung cancer cells promoted the migration and invasion of lung cancer cells with low metastatic potential. Using lncRNA-seq, we found that a novel lncRNA, lnc-MLETA1, was upregulated in highly metastatic cells and their secreted exosomes. Overexpression of lnc-MLETA1 augmented cell migration and invasion of lung cancer. Conversely, knockdown of lnc-MLETA1 attenuated the motility and metastasis of lung cancer cells. Interestingly, exosome-transmitted lnc-MLETA1 promoted cell motility and metastasis of lung cancer. Reciprocally, targeting lnc-MLETA1 with an LNA suppressed exosome-induced lung cancer cell motility. Mechanistically, lnc-MLETA1 regulated the expression of EGFR and IGF1R by sponging miR-186-5p and miR-497-5p to facilitate cell motility. The clinical datasets revealed that lnc-MLETA1 is upregulated in tumor tissues and predicts survival in lung cancer patients. Importantly, the levels of exosomal lnc-MLETA1 in plasma were positively correlated with metastasis in lung cancer patients. CONCLUSIONS This study identifies lnc-MLETA1 as a critical exosomal lncRNA that mediates crosstalk in lung cancer cells to promote cancer metastasis and may serve as a prognostic biomarker and potential therapeutic target for lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiu-Rui Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-En Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ying Wu
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Yen Hsiao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, Division of Hematology-Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Jui-Lin Liang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Ya-Ju Wu
- Department of Pathology, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Chia-Hao Tung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Fan Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shiu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- YongLin Institute of Health, National Taiwan University, Taipei, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Tse-Ming Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
52
|
Zhao P, Wang Y, Yu X, Nan Y, Liu S, Li B, Cui Z, Liu Z. Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis. Front Med 2023; 17:924-938. [PMID: 37434064 DOI: 10.1007/s11684-023-1004-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/27/2023] [Indexed: 07/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) play a crucial regulatory role in the development and progression of multiple cancers. However, the potential mechanism by which lncRNAs affect the recurrence and metastasis of ovarian cancer remains unclear. In the current study, the lncRNA LOC646029 was markedly downregulated in metastatic ovarian tumors compared with primary tumors. Gain- and loss-of-function assays demonstrated that LOC646029 inhibits the proliferation, invasiveness, and metastasis of ovarian cancer cells in vivo and in vitro. Moreover, the downregulation of LOC646029 in metastatic ovarian tumors was strongly correlated with poor prognosis. Mechanistically, LOC646029 served as a miR-627-3p sponge to promote the expression of Sprouty-related EVH1 domain-containing protein 1, which is necessary for suppressing tumor metastasis and inhibiting KRAS signaling. Collectively, our results demonstrated that LOC646029 is involved in the progression and metastasis of ovarian cancer, which may be a potential prognostic biomarker.
Collapse
Affiliation(s)
- Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yating Wang
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bin Li
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
53
|
Zheng X, Liu W, Zhu Y, Kong W, Su X, Huang L, Cui Y, Sun G. Development and Validation of the Oxidative Stress Related lncRNAs for Prognosis in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4399. [PMID: 37686677 PMCID: PMC10487246 DOI: 10.3390/cancers15174399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Esophageal squamous cell cancer (ESCC) is an aggressive disease associated with a poor prognosis. Long non-coding RNAs (lncRNAs) and oxidative stress play crucial roles in tumor progression. We aimed to identify an oxidative stress-related lncRNA signature that could predict the prognosis in ESCC. In the GSE53625 dataset, we identified 332 differentially expressed lncRNAs (DElncRNAs) between ESCC and control samples, out of which 174 were oxidative stress-related DElncRNAs. Subsequently, seven oxidative stress-related DElncRNAs (CCR5AS, LINC01749, PCDH9-AS1, TMEM220-AS1, KCNMA1-AS1, SNHG1, LINC01672) were selected based on univariate and LASSO Cox to build a prognostic risk model, and their expression was detected by RT-qPCR. The model exhibited an excellent ability for the prediction of overall survival (OS) and other clinicopathological traits using Kaplan-Meier (K-M) survival curves, receiver operating characteristic (ROC) curves, and the Wilcoxon test. Additionally, analysis of infiltrated immune cells and immune checkpoints indicated differences in immune status between the two risk groups. Finally, the in vitro experiments showed that PCDH9-AS1 overexpression inhibited proliferation ability and promoted apoptosis and oxidative stress levels in ESCC cells. In conclusion, our study demonstrated that a novel oxidative stress-related DElncRNA prognostic model performed favorably in predicting ESCC patient prognosis and benefits personalized clinical applications.
Collapse
Affiliation(s)
- Xuan Zheng
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; (X.Z.); (Y.C.)
| | - Wei Liu
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Yingze Zhu
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Wenyue Kong
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Xin Su
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Lanxiang Huang
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Yishuang Cui
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; (X.Z.); (Y.C.)
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan 063000, China
- Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
54
|
Yue L, Gu Y, Xu J, Liu T. Roles of noncoding RNAs in septic acute kidney injury. Biomed Pharmacother 2023; 165:115269. [PMID: 37541179 DOI: 10.1016/j.biopha.2023.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Septic acute kidney injury (SAKI) is one of the most common and life-threatening complications of sepsis. Patients with SAKI have increased mortality. However, the underlying pathogenesis is unclear, and the treatment targeting SAKI is unsatisfactory. Thus, identifying optimal biomarkers for SAKI diagnosis and treatment is an urgent requisite. Accumulating evidence indicates that noncoding RNAs (ncRNAs) are involved in the occurrence and progression of SAKI. In the present review, we summarized the studies of ncRNAs in SAKI, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). The ncRNAs are divided into protective and damage factors according to their role in SAKI, and their expression patterns, functions, and molecular mechanisms were elaborated. Next, we proposed that ncRNAs have the potential to be diagnostic and prognostic biomarkers for SAKI and as new therapeutic targets. This review aimed to provide a comprehensive overview of ncRNAs in SKAI and explored the clinical value of ncRNAs as ideal biomarkers of SAKI.
Collapse
Affiliation(s)
- Lili Yue
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yulu Gu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Juntian Xu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Tongqiang Liu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
55
|
Wu F, Zhang X, Zhang S, Zhang Y, Feng Y, Jiang Z, Shi Y, Zhang S, Tu W. Construction of an immune-related lncRNA-miRNA-mRNA regulatory network in radiation-induced esophageal injury in rats. Int Immunopharmacol 2023; 122:110606. [PMID: 37423154 DOI: 10.1016/j.intimp.2023.110606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Radiation-induced esophageal injury (RIEI) is an adverse reaction of radiation therapy in patients with esophageal cancer, lung cancer and other malignant tumors. Competitive endogenous RNA (ceRNA) network is known to play a significant role in the onset and progression of many diseases, but the exact mechanism of ceRNA in RIEI has not been fully elucidated. In this study, rat esophaguses were obtained after conducting irradiation under different doses (0 Gy, 25 Gy, 35 Gy). Total RNA was extracted and mRNA, lncRNA, circRNA, and miRNA sequencing was performed. Multiple dose-dependent differentially expressed RNAs (dd-DERs), including 870 lncRNAs, 82 miRNAs, 2478 mRNAs, were obtained through the integration of differential expression analysis and dose-dependent screening (35 Gy ≥ 25 Gy > 0 Gy, or 35 Gy ≤ 25 Gy < 0 Gy). Co-expression analysis and prediction of the binding site in dd-DER were conducted and 27 lncRNAs, 20 miRNAs, and 168 mRNAs were selected to construct a ceRNA network. As the immune microenvironment is crucial for RIEI progression, we constructed an immune-related ceRNA network consisting of 11 lncRNAs, 9 miRNAs, and 9 mRNAs. The expression levels of these immune-related RNAs were verified by RT-qPCR. Immune infiltration analysis showed that the RNAs in the immune-related ceRNA network were mainly associated with the proportion of monocytes, M2 macrophages, activated NK cells, and activated CD4+ memory T cells. Drug sensitivity analysis was conducted based on the expression levels of mRNAs in the immune-related ceRNA network, and small molecule drugs with preventive and therapeutic effects on RIEI were identified. In summary, an immune-related ceRNA network associated with RIEI progression was constructed in this study. The findings provide useful information on new potential targets for the prevention and treatment of RIEI.
Collapse
Affiliation(s)
- Fengping Wu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Xiaolin Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Shuaijun Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuehua Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yahui Feng
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China
| | - Zhiqiang Jiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Yuhong Shi
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Shuyu Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China.
| | - Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China.
| |
Collapse
|
56
|
Ding N, You A, Zhao S, Yang H, Lai C, Ye F. EZH2 inhibitor Tazemetostat synergizes with JQ-1 in esophageal cancer by inhibiting c-Myc signaling pathway. Med Oncol 2023; 40:281. [PMID: 37634215 DOI: 10.1007/s12032-023-02147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
EZH2, a highly conserved histone methyltransferase, plays an essential role in tumorigenesis and development. The inhibitor of EZH2 tazemetostat has been approved to treat metastatic or locally advanced epithelioid sarcoma and recurrent or refractory follicular lymphoma. However, the effect of tazemetostat alone or in combination with other drugs in esophageal cancer has not been reported. In this study, we found that EZH2 was highly expressed in esophageal cancer at both mRNA and protein levels through transcriptomic and proteomic analyses. Furthermore, the results of CCK8, colony formation, cell cycle and cell apoptosis assays revealed that tazemetostat exerted an antitumour effect on esophageal cancer cells. Mechanistically, RNA-sequencing analysis of the tazemetostat-treated cells and vehicle-treated ones suggested that tazemetostat mainly inhibited the c-Myc signaling pathway and its targets, which was validated by western blotting. JQ-1, an inhibitor of bromodomain 4, was proven to attenuate c-Myc signaling in tumors. Thus, a therapeutic strategy based on tazemetostat in combination with JQ-1 is promising. The results demonstrated that tazemetostat and JQ-1 had a synergistic effect in vitro and in vivo for esophageal cancer.
Collapse
Affiliation(s)
- Nan Ding
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- The Third Clinical Medical College, Fujian Medical University, FuZhou, China
| | - Abin You
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- The Third Clinical Medical College, Fujian Medical University, FuZhou, China
| | - Senxia Zhao
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Hu Yang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chunping Lai
- The Third Clinical Medical College, Fujian Medical University, FuZhou, China
| | - Feng Ye
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.
- The Third Clinical Medical College, Fujian Medical University, FuZhou, China.
| |
Collapse
|
57
|
Dong Q, Qiu H, Piao C, Li Z, Cui X. LncRNA SNHG4 promotes prostate cancer cell survival and resistance to enzalutamide through a let-7a/RREB1 positive feedback loop and a ceRNA network. J Exp Clin Cancer Res 2023; 42:209. [PMID: 37596700 PMCID: PMC10436424 DOI: 10.1186/s13046-023-02774-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Prostate cancer threatens the health of men over sixty years old, and its incidence ranks first among all urinary tumors among men. Enzalutamide remains the first-line drug for castration-resistant prostate cancer, however, tumors inevitably become resistant to enzalutamide. Hence, it is of great importance to investigate the mechanisms that induce enzalutamide resistance in prostate cancer cells. METHODS Bioinformatic analyzing approaches were used to identified the over-expressed genes in prostate cancer tumor tissues from three GEO datasets. qRT-PCR, western blotting and immunochemistry/In situ hybridization staining assays were performed to assess the expression of SNHG4, RRM2, TK1, AURKA, EZH2 and RREB1. Cell cycle was measured by flow cytometry. CCK-8, plate colony formation and EdU assays were performed to assess the cell proliferation. Senescence-associated β-Gal assay was used to detect the cell senescence level. γ-H2AX staining assay was performed to assess the DNA damages of PCa cells. Luciferase reporter assay and RNA immunoprecipitation assay were performed to verify the RNA-RNA interactions. Chromatin immunoprecipitation assay was performed to assess the bindings between protein and genomic DNA. RESULTS We found that RRM2 and NUSAP1 are highly expressed in PCa tumors and significantly correlated with poor clinical outcomes in PCa patients. Bioinformatic analysis as well as experimental validation suggested that SNHG4 regulates RRM2 expression via a let-7 miRNA-mediated ceRNA network. In addition, SNHG4 or RRM2 knockdown significantly induced cell cycle arrest and cell senescence, and inhibited DNA damage repair and cell proliferation, and the effects can be partially reversed by let-7a knockdown or RRM2 reoverexpression. In vitro and in vivo experiments showed that SNHG4 overexpression markedly enhanced cell resistance to enzalutamide. RREB1 was demonstrated to transcriptionally regulate SNHG4, and RREB1 was also validated to be a target of let-7a and thereby regulated by the SNHG4/let-7a feedback loop. CONCLUSION Our study uncovered a novel molecular mechanism of lncRNA SNHG4 in driving prostate cancer progression and enzalutamide resistance, revealing the critical roles and therapeutic potential of RREB1, SNHG4, RRM2 and let-7 miRNAs in anticancer therapy.
Collapse
Affiliation(s)
- Qingzhuo Dong
- Department of Urology, First Hospital of China Medical University, #155 Nanjing North Road, Shenyang, 110001, China
| | - Hui Qiu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chiyuan Piao
- Department of Urology, First Hospital of China Medical University, #155 Nanjing North Road, Shenyang, 110001, China
| | - Zhengxiu Li
- Department of Dermatology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaolu Cui
- Department of Urology, First Hospital of China Medical University, #155 Nanjing North Road, Shenyang, 110001, China.
| |
Collapse
|
58
|
He T, Zhang Q, Xu P, Tao W, Lin F, Liu R, Li M, Duan X, Cai C, Gu D, Zeng G, Liu Y. Extracellular vesicle-circEHD2 promotes the progression of renal cell carcinoma by activating cancer-associated fibroblasts. Mol Cancer 2023; 22:117. [PMID: 37481520 PMCID: PMC10362694 DOI: 10.1186/s12943-023-01824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The encapsulation of circular RNAs (circRNAs) into extracellular vesicles (EVs) enables their involvement in intercellular communication and exerts an influence on the malignant advancement of various tumors. However, the regulatory role of EVs-circRNA in renal cell carcinoma (RCC) remains elusive. METHODS The in vitro and in vivo functional experiments were implemented to measure the effects of circEHD2 on the phenotype of RCC. The functional role of EVs-circEHD2 on the activation of fibroblasts was assessed by collagen contraction assay, western blotting, and enzyme-linked immunosorbent assay (ELISA). The mechanism was investigated by RNA pull-down assay, RNA immunoprecipitation, chromatin isolation by RNA purification, luciferase assay, and co-immunoprecipitation assay. RESULTS We demonstrated that circEHD2 was upregulated in RCC tissues and serum EVs of RCC patients with metastasis. Silencing circEHD2 inhibited tumor growth in vitro and in vivo. Mechanistic studies indicated that FUS RNA -binding protein (FUS) accelerated the cyclization of circEHD2, then circEHD2 interacts with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta (YWHAH), which acts as a bridge to recruit circEHD2 and Yes1-associated transcriptional regulator (YAP) to the promoter of SRY-box transcription factor 9 (SOX9); this results in the sustained activation of SOX9. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) regulates the package of circEHD2 into EVs, then EVs-circEHD2 transmits to fibroblasts, converting fibroblasts to cancer-associated fibroblasts (CAFs). Activated CAFs promote the metastasis of RCC by secreting pro-inflammatory cytokines such as IL-6. Furthermore, antisense oligonucleotides (ASOs) targeting circEHD2 exhibited a strong inhibition of tumor growth in vivo. CONCLUSIONS The circEHD2/YWHAH/YAP/SOX9 signaling pathway accelerates the growth of RCC. EVs-circEHD2 facilitates the metastasis of RCC by converting fibroblasts to CAFs. Our results suggest that EVs-circEHD2 may be a useful biomarker and therapeutic target for RCC.
Collapse
Affiliation(s)
- Tao He
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Qiansheng Zhang
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Peng Xu
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Wen Tao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Fuyang Lin
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Renfei Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Mingzhao Li
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Xiaolu Duan
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Chao Cai
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Guohua Zeng
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Yongda Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China.
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China.
| |
Collapse
|
59
|
Ahmad M, Weiswald LB, Poulain L, Denoyelle C, Meryet-Figuiere M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk. J Exp Clin Cancer Res 2023; 42:173. [PMID: 37464436 PMCID: PMC10353155 DOI: 10.1186/s13046-023-02741-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer is the main cause of death worldwide and metastasis is a major cause of poor prognosis and cancer-associated mortality. Metastatic conversion of cancer cells is a multiplex process, including EMT through cytoskeleton remodeling and interaction with TME. Tens of thousands of putative lncRNAs have been identified, but the biological functions of most are still to be identified. However, lncRNAs have already emerged as key regulators of gene expression at transcriptional and post-transcriptional level to control gene expression in a spatio-temporal fashion. LncRNA-dependent mechanisms can control cell fates during development and their perturbed expression is associated with the onset and progression of many diseases including cancer. LncRNAs have been involved in each step of cancer cells metastasis through different modes of action. The investigation of lncRNAs different roles in cancer metastasis could possibly lead to the identification of new biomarkers and innovative cancer therapeutic options.
Collapse
Affiliation(s)
- Mohammad Ahmad
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- Biochemistry Division, Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 14000, Egypt
| | - Louis-Bastien Weiswald
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Laurent Poulain
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Christophe Denoyelle
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Matthieu Meryet-Figuiere
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
60
|
Duan X, Du H, Yuan M, Liu L, Liu R, Shi J. Bioinformatics analysis of necroptosis‑related lncRNAs and immune infiltration, and prediction of the prognosis of patients with esophageal carcinoma. Exp Ther Med 2023; 26:331. [PMID: 37346407 PMCID: PMC10280318 DOI: 10.3892/etm.2023.12030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/21/2023] [Indexed: 06/23/2023] Open
Abstract
Esophageal carcinoma (ESCA) is one of the most common malignancies in the world, and has high morbidity and mortality rates. Necrosis and long noncoding RNAs (lncRNAs) are involved in the progression of ESCA; however, the specific mechanism has not been clarified. The aim of the present study was to investigate the role of necrosis-related lncRNAs (nrlncRNAs) in patients with ESCA by bioinformatics analysis, and to establish a nrlncRNA model to predict ESCA immune infiltration and prognosis. To form synthetic matrices, ESCA transcriptome data and related information were obtained from The Cancer Genome Atlas. A nrlncRNA model was established by coexpression, univariate Cox (Uni-Cox), and least absolute shrinkage and selection operator analyses. The predictive ability of this model was evaluated by Kaplan-Meier, receiver operating characteristic (ROC) curve, Uni-Cox, multivariate Cox regression, nomogram and calibration curve analyses. A model containing eight nrlncRNAs was generated. The areas under the ROC curves for 1-, 3- and 5-year overall survival were 0.746, 0.671 and 0.812, respectively. A high-risk score according to this model could be used as an indicator for systemic therapy use, since the half-maximum inhibitory concentration values varied significantly between the high-risk and low-risk groups. Based on the expression of eight prognosis-related nrlncRNAs, the patients with ESCA were regrouped using the 'ConsensusClusterPlus' package to explore potential molecular subgroups responding to immunotherapy. The patients with ESCA were divided into three clusters based on the eight nrlncRNAs that constituted the risk model: The most low-risk group patients were classified into cluster 1, and the high-risk group patients were mainly concentrated in clusters 2 and 3. Survival analysis showed that Cluster 1 had a better survival than the other groups (P=0.016). This classification system could contribute to precision treatment. Furthermore, two nrlncRNAs (LINC02811 and LINC00299) were assessed in the esophageal epithelial cell line HET-1A, and in the human esophageal cancer cell lines KYSE150 and TE1. There were significant differences in the expression levels of these lncRNAs between tumor and normal cells. In conclusion, the present study suggested that nrlncRNA models may predict the prognosis of patients with ESCA, and provide guidance for immunotherapy and chemotherapy decision making. Furthermore, the present study provided strategies to promote the development of individualized and precise treatment for patients with ESCA.
Collapse
Affiliation(s)
- Xiaoyang Duan
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Huazhen Du
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Meng Yuan
- Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 804-8550, Japan
| | - Lie Liu
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Rongfeng Liu
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jian Shi
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
61
|
Cheng M, Xin Q, Ma S, Ge M, Wang F, Yan X, Jiang B. Advances in the Theranostics of Oesophageal Squamous Carcinoma. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202200251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 01/04/2025]
Abstract
AbstractOesophageal squamous carcinoma (ESCC) is one of the most lethal human malignancies, and it is a more aggressive form of oesophageal cancer (EC) that comprises over 90% of all EC cases in China compared with oesophageal adenocarcinoma (EAC). The high mortality of ESCC is attributed to the late‐stage diagnosis, chemoradiotherapy resistance, and lack of appropriate therapeutic targets and corresponding therapeutic formulations. Recently, emerging clinical and translational investigations have involved genome analyses, diagnostic biomarkers, and targeted therapy for ESCC, and these studies provide a new horizon for improving the clinical outcomes of patients with ESCC. Here, the latest research advances in the theranostics of ESCC are reviewed and the unique features of ESCC (including differences from EAC, genomic alterations, and microbe infections), tissue and circulating biomarkers, chemoradiotherapy resistance, clinical targeted therapy for ESCC, identification of novel therapeutic targets, and designation of nanotherapeutic systems for ESCC are particularly focused on. Finally, the perspectives for future clinical and translational theranostic research of ESCC are discussed and the obstacles that must be overcome in ESCC theranostics are described.
Collapse
Affiliation(s)
- Miaomiao Cheng
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Qi Xin
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Saiyu Ma
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Mengyue Ge
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Feng Wang
- Oncology Department The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450000 China
| | - Xiyun Yan
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Zhengzhou Henan 450001 China
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China
| | - Bing Jiang
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Zhengzhou Henan 450001 China
| |
Collapse
|
62
|
Luo Z, Ding E, Yu L, Wang W, Guo Q, Li X, Wang Y, Li T, Zhang Y, Zhang X. Identification of hub necroptosis-related lncRNAs for prognosis prediction of esophageal carcinoma. Aging (Albany NY) 2023; 15:204763. [PMID: 37263709 DOI: 10.18632/aging.204763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Necroptosis is a newly identified programmed cell death associated with the biological process of various cancers, including esophageal carcinoma (ESCA). Meanwhile, the dysregulation of long non-coding RNAs (lncRNAs) is greatly implicated in ESCA progression and necroptosis regulation. However, the lncRNAs involved in regulating necroptosis in ESCA are still unclear. In this study, we aim to explore the expression profile of necroptosis-related lncRNAs (NRLs), and evaluate their roles in ESCA prognosis and treatment. In the present study, 198 differentially expressed NRLs were identified between the ESCA and adjacent normal tissues through screening the data extracted from the Cancer Genome Atlas (TCGA) database. And, a prognostic panel consisting of 6 NRLs was constructed using the LASSO algorithm and multivariate Cox regression analysis. The ESCA patients with high risks had a markedly reduced survival time and higher mortality prevalence. Moreover, C-index of 6 NRLs-panel was superior to 48 published prognostic models based on lncRNAs or mRNAs for ESCA. There were significant differences between the high-risk and low-risk groups in tumor-related pathways, genetic mutations, and drug sensitivity responses. In vitro analysis revealed that inhibition of PVT1 impeded the proliferation, migration, and colony formation of ESCA cells, increased the expressions of p-RIP1 and p-MLKL and promoted necroptosis. By contrast, PVT1 overexpression resulted in a decrease in necroptotic cell death events, thus promoting tumor progression. Collectively, the established 6-NRLs panel was a promising biomarker for the prognostic prediction of ESCA. Moreover, our current findings provided potential targets for individualized therapy for ESCA patients.
Collapse
Affiliation(s)
- Zhengdong Luo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - E Ding
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Wenwu Wang
- Hangzhou Lin’an District Fourth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Qining Guo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xinyang Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yifeng Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Tingting Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
63
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
64
|
Guo Y, Zhou X, Gao F, Wang M, Yang Q, Li X, Liu Z, Luo A. MiR-423-5p is a novel endogenous control for the quantification of circulating miRNAs in human esophageal squamous cell carcinoma. Heliyon 2023; 9:e14515. [PMID: 37025904 PMCID: PMC10070386 DOI: 10.1016/j.heliyon.2023.e14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/28/2023] Open
Abstract
Circulating miRNA expression is most commonly measured by qRT-PCR, however, the lack of a suitable endogenous control hinders people from evaluating the accurate changes in miRNA expression levels and developing the non-invasive biomarkers. In this study, we aimed to screen the specific, highly stable endogenous control in esophageal squamous cell carcinoma (ESCC) to overcome the obstacle. We selected "housekeeping" miRNAs according to the published database and initially acquired 21 miRNAs. Subsequently, we screened these miRNAs using GSE106817 and TCGA datasets according to specific inclusion criteria and evaluated the suitability of "candidate" miRNAs. Among these miRNAs, the average abundance of miR-423-5p was relatively high in serum. Notably, miR-423-5p expression in serum showed no significant difference between ESCC patients and healthy controls (n = 188, P = 0.29). Moreover, among these miRNAs, miR-423-5p was the most stable miRNA using the NormFinder algorithms. Overall, these results indicate that miR-423-5p, as a novel and optimal endogenous control, could be used to quantify circulating miRNAs in ESCC.
Collapse
Affiliation(s)
- Yuanyuan Guo
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuantong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Feng Gao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510655, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Supported by National Key Clinical Discipline, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510655, China
| | - Minjie Wang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Yang
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Li
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Aiping Luo
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
65
|
Li L, Wang Q, Sun X, Li Z, Liu S, Zhang X, Zhou J, Zhang R, Liu K, Wang P, Niu J, Wen Y, Zhang L. Activation of RhoA pathway participated in the changes of emotion, cognitive function and hippocampal synaptic plasticity in juvenile chronic stress rats. Int J Biol Macromol 2023; 233:123652. [PMID: 36780962 DOI: 10.1016/j.ijbiomac.2023.123652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Neuropsychiatric diseases are related to early life stress (ELS), patients often have abnormal learning, memory and emotion. But the regulatory mechanism is unclear. Hippocampal synaptic plasticity (HSP) changes are important mechanism. RhoA pathway is known to regulate HSP by modulating of dendritic spines (DS), whether it's involved in HSP changes in ELS hasn't been reported. So we investigated whether and how RhoA participates in HSP regulation in ELS. The ELS model was established by separation-rearing in juvenile. Results of IntelliCage detection etc. showed simple learning and memory wasn't affected, but spatial, punitive learning and memories reduced, the desire to explore novel things reduced, the anxiety-like emotion increased. We further found hippocampus was activated, the hippocampal neurons dendritic complexities reduced, the proportion of mature DS decreased. The full-length transcriptome sequencing techniques was used to screen for differentially expressed genes involved in regulating HSP changes, we found RhoA gene was up-regulated. We detected RhoA protein, RhoA phosphorylation and downstream molecules expression changes, results shown RhoA and p-RhoA, p-ROCK2 expression increased, p-LIMK, p-cofilin expression and F-actin/G-actin ratio decreased. Our study revealed HSP changes in ELS maybe regulate by activation RhoA through ROCK2/LIMK/cofilin pathway regulated F-actin/G-actin balance and DS plasticity, affecting emotion and cognition.
Collapse
Affiliation(s)
- Lvmei Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China; Department of human anatomy and histoembryology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Qiang Wang
- Science - Technology Centers, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Xiangping Sun
- Department of Surgery, Ningxia Traditional Chinese Medicine Hospital, 114 West Beijing Road, Yinchuan, Ningxia 750021, China
| | - ZeLong Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Shuwei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China; Department of human anatomy and histoembryology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Xian Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jinyu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Rui Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Kunmei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Peng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China; Department of human anatomy and histoembryology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Yujun Wen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China; Department of human anatomy and histoembryology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Lianxiang Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China; Department of human anatomy and histoembryology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
66
|
Li N, Zhu Y, Liu F, Zhang X, Liu Y, Wang X, Gao Z, Guan J, Yin S. Integrative Analysis and Experimental Validation of Competing Endogenous RNAs in Obstructive Sleep Apnea. Biomolecules 2023; 13:biom13040639. [PMID: 37189386 DOI: 10.3390/biom13040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Obstructive sleep apnea (OSA) is highly prevalent yet underdiagnosed. This study aimed to develop a predictive signature, as well as investigate competing endogenous RNAs (ceRNAs) and their potential functions in OSA. Methods: The GSE135917, GSE38792, and GSE75097 datasets were collected from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Weighted gene correlation network analysis (WGCNA) and differential expression analysis were used to identify OSA-specific mRNAs. Machine learning methods were applied to establish a prediction signature for OSA. Furthermore, several online tools were used to establish the lncRNA-mediated ceRNAs in OSA. The hub ceRNAs were screened using the cytoHubba and validated by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Correlations between ceRNAs and the immune microenvironment of OSA were also investigated. Results: Two gene co-expression modules closely related to OSA and 30 OSA-specific mRNAs were obtained. They were significantly enriched in the antigen presentation and lipoprotein metabolic process categories. A signature that consisted of five mRNAs was established, which showed a good diagnostic performance in both independent datasets. A total of twelve lncRNA-mediated ceRNA regulatory pathways in OSA were proposed and validated, including three mRNAs, five miRNAs, and three lncRNAs. Of note, we found that upregulation of lncRNAs in ceRNAs could lead to activation of the nuclear factor kappa B (NF-κB) pathway. In addition, mRNAs in the ceRNAs were closely correlated to the increased infiltration level of effector memory of CD4 T cells and CD56bright natural killer cells in OSA. Conclusions: In conclusion, our research opens new possibilities for diagnosis of OSA. The newly discovered lncRNA-mediated ceRNA networks and their links to inflammation and immunity may provide potential research spots for future studies.
Collapse
Affiliation(s)
- Niannian Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Yaxin Zhu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Feng Liu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Yuenan Liu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Xiaoting Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Zhenfei Gao
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| |
Collapse
|
67
|
PVT1 inhibition stimulates anti-tumor immunity, prevents metastasis, and depletes cancer stem cells in squamous cell carcinoma. Cell Death Dis 2023; 14:187. [PMID: 36894542 PMCID: PMC9998619 DOI: 10.1038/s41419-023-05710-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Cancer stem cells (CSCs) cause tumor metastasis and immune evasion by as-yet-unknown molecular mechanisms. In the present study, we identify a long noncoding RNA (lncRNA), termed PVT1, which is highly expressed in CSCs and correlated closely with lymph node metastasis of head and neck squamous cell carcinoma (HNSCC). PVT1 inhibition eliminates CSCs, prevents metastasis, and stimulates anti-tumor immunity, while inhibiting HNSCC growth. Moreover, PVT1 inhibition promotes the infiltration of CD8+ T cells into the tumor microenvironment, thereby enhancing immunotherapy by PD1 blockade. Mechanistically, PVT1 inhibition stimulates the DNA damage response, which induces CD8+ T cell-recruiting chemokines, while preventing CSCs and metastasis via regulating the miR-375/YAP1 axis. In conclusion, targeting PVT1 might potentiate the elimination of CSCs via immune checkpoint blockade, prevent metastasis, and inhibit HNSCC growth.
Collapse
|
68
|
Li F, Zheng Z, Chen W, Li D, Zhang H, Zhu Y, Mo Q, Zhao X, Fan Q, Deng F, Han C, Tan W. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat 2023; 68:100938. [PMID: 36774746 DOI: 10.1016/j.drup.2023.100938] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Bladder cancer is one of the most common malignancies in the world. Cisplatin is one of the most potent and widely used anticancer drugs and has been employed in several malignancies. Cisplatin-based combination chemotherapies have become important adjuvant therapies for bladder cancer patients. Cisplatin-based treatment often results in the development of chemoresistance, leading to therapeutic failure and limiting its application and effectiveness in bladder cancer. To develop improved and more effective cancer therapy, research has been conducted to elucidate the underlying mechanism of cisplatin resistance. Epigenetic modifications have been demonstrated involved in drug resistance to chemotherapy, and epigenetic biomarkers, such as urine tumor DNA methylation assay, have been applied in patients screening or monitoring. Here, we provide a systematic description of epigenetic mechanisms, including DNA methylation, noncoding RNA regulation, m6A modification and posttranslational modifications, related to cisplatin resistance in bladder cancer.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Urology, Institute of Precision Medicine, Zigong Forth People's Hospital, Zigong, Sichuan, China
| | - Dongqing Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Henghui Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qixin Mo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinlei Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Conghui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
69
|
Shi SJ, Han DH, Zhang JL, Li Y, Yang AG, Zhang R. VIM‑AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2‑mediated HMGCS1 mRNA stabilization. Int J Oncol 2023; 62:34. [PMID: 36734275 PMCID: PMC9911078 DOI: 10.3892/ijo.2023.5482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
VIM‑AS1, a cancer‑specific long non‑coding RNA, has been recognized as a pivotal regulator in multiple types of cancer. However, the role of VIM‑AS1 in the proliferation and resistance to anti‑androgen therapy of LNCaP and C4‑2 prostate cancer cells remains to be determined. In the current study, gain‑and‑loss experiments were used to investigate the effects of VIM‑AS on the proliferation and anti‑androgen therapy of LNCaP and C4‑2 cells. RNA sequencing, RNA pulldown and RNA immunoprecipitation were used to elucidate the underlying mechanism of VIM‑AS1 driving prostate progression. It was demonstrated that VIM‑AS1 was upregulated in C4‑2 cells, an established castration‑resistant prostate cancer (CRPC) cell line, compared with in LNCaP cells, an established hormone‑sensitive prostate cancer cell line. The present study further demonstrated that VIM‑AS1 was positively associated with the clinical stage of prostate cancer. Functionally, overexpression of VIM‑AS1 decreased the sensitivity to enzalutamide treatment and enhanced the proliferation of LNCaP cells in vitro, whereas knockdown of VIM‑AS1 increased the sensitivity to enzalutamide treatment and reduced the proliferation of C4‑2 cells in vitro and in vivo. Mechanistically, 3‑hydroxy‑3‑methylglutaryl‑CoA synthase 1 (HMGCS1) was identified as one of the direct downstream targets of VIM‑AS1, and VIM‑AS1 promoted HMGCS1 expression by enhancing HMGCS1 mRNA stability through a VIM‑AS1/insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2)/HMGCS1 RNA‑protein complex. Rescue assays indicated that knockdown of HMGCS1 expression ameliorated the increase in proliferation and enzalutamide resistance of prostate cancer cells induced by VIM‑AS1 overexpression. Overall, the present study determined the roles and mechanism of the VIM‑AS1/IGF2BP2/HMGCS1 axis in regulating proliferation and enzalutamide sensitivity of prostate cancer cells and suggested that VIM‑AS1 may serve as a novel therapeutic target for the treatment of patients with CRPC.
Collapse
Affiliation(s)
- Sheng-Jia Shi
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Department of Andrology, Reproduction Center, Northwest Women's and Children's Hospital, Xian Jiaotong University Health Science Center, Xi'an, Shaanxi 710004, P.R. China,Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Dong-Hui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Jing-Liang Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Yu Li
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| |
Collapse
|
70
|
Zhao L, Yu L, Wang X, He J, Zhu X, Zhang R, Yang A. Mechanisms of function and clinical potential of exosomes in esophageal squamous cell carcinoma. Cancer Lett 2023; 553:215993. [PMID: 36328162 DOI: 10.1016/j.canlet.2022.215993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 11/20/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains one of the most lethal and widespread malignancies in China. Exosomes, a subset of tiny extracellular vesicles manufactured by all cells and present in all body fluids, contribute to intercellular communication and have become a focus of the search for new therapeutic strategies for cancer. A number of global analyses of exosome-mediated functions and regulatory mechanism in malignant diseases have recently been reported. There is extensive evidence that exosomes can be used as diagnostic and prognostic markers for cancer. However, our understanding of their clinical value and mechanisms of action in ESCC is still limited and has not been systematically reviewed. Here, we review current research specifically focused on the functions and mechanisms of action of ESCC tumor-derived exosomes and non-ESCC-derived exosomes in ESCC progression and describe opportunities and challenges in the clinical translation of exosomes.
Collapse
Affiliation(s)
- Lijun Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lili Yu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiangpeng Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jangtao He
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiaofei Zhu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Angang Yang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
71
|
Li W, Ke C, Yang C, Li J, Chen Q, Xia Z, Xu J. LncRNA DICER1-AS1 promotes colorectal cancer progression by activating the MAPK/ERK signaling pathway through sponging miR-650. Cancer Med 2023; 12:8351-8366. [PMID: 36708020 PMCID: PMC10134332 DOI: 10.1002/cam4.5550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a disease with high morbidity and mortality rates globally. Long noncoding RNAs (lncRNAs) play a fundamental role in tumor progression, and increasing attention has been paid to their role in CRC. This study aimed to determine the function of lncRNA DICER1 antisense RNA 1 (DICER1-AS1) in CRC and confirm its potential regulatory mechanisms in CRC. METHODS The publicly available dataset was used to assess DICER1-AS1 function and expression in CRC. RT-qPCR or western blot assays were performed to verify DICER1-AS1, miR-650, and mitogen-activated protein kinase 1 (MAPK1) expression in CRC cells or tissues. To determine the function of DICER1-AS1, we performed CCK-8, colony formation, transwell, cell cycle, and in vivo animal assays. Using RNA sequence analysis, luciferase reporter assays, and bioinformatics analysis, the connection between DICER1-AS1, MAPK1, and miR-650 was investigated. RESULTS DICER1-AS1 was significantly upregulated in CRC tissue compared to normal colon tissue. High DICER1-AS1 expression suggested a poor prognosis in CRC patients. Functionally, upregulation of DICER1-AS1 effectively promoted CRC proliferation, migration, and invasion ex vivo and tumor progression in vivo. Mechanistically, DICER1-AS1 functions as a competitive endogenous RNA (ceRNA) that sponges miR-650 to upregulate MAPK1, promotes ERK1/2 phosphorylation, and sequentially activates the MAPK/ERK signaling pathway. CONCLUSION Our investigations found that upregulation of DICER1-AS1 activates the MAPK/ERK signaling pathway by sponging miR-650 to promote CRC progression, revealing a possible clinically significant biomarker and therapeutic target.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chuanfeng Ke
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuiyan Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieyao Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qikui Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhongsheng Xia
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jihao Xu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
72
|
Liu WJ, Zhao Y, Chen X, Miao ML, Zhang RQ. Epigenetic modifications in esophageal cancer: An evolving biomarker. Front Genet 2023; 13:1087479. [PMID: 36704345 PMCID: PMC9871503 DOI: 10.3389/fgene.2022.1087479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Esophageal cancer is a widespread cancer of the digestive system that has two main subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA). In the diverse range of cancer therapy schemes, the side effects of conventional treatments remain an urgent challenge to be addressed. Therefore, the pursuit of novel drugs with multiple targets, good efficacy, low side effects, and low cost has become a hot research topic in anticancer therapy. Based on this, epigenetics offers an attractive target for the treatment of esophageal cancer, where major mechanisms such as DNA methylation, histone modifications, non-coding RNA regulation, chromatin remodelling and nucleosome localization offer new opportunities for the prevention and treatment of esophageal cancer. Recently, research on epigenetics has remained at a high level of enthusiasm, focusing mainly on translating the basic research into the clinical setting and transforming epigenetic alterations into targets for cancer screening and detection in the clinic. With the increasing emergence of tumour epigenetic markers and antitumor epigenetic drugs, there are also more possibilities for anti-esophageal cancer treatment. This paper focuses on esophageal cancer and epigenetic modifications, with the aim of unravelling the close link between them to facilitate precise and personalized treatment of esophageal cancer.
Collapse
Affiliation(s)
- Wen-Jian Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xu Chen
- School of Basic Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Man-Li Miao
- School of Basic Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ren-Quan Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
73
|
Wu T, Li X, Yan G, Tan Z, Zhao D, Liu S, Wang H, Xiang Y, Chen W, Lu H, Liao X, Li Y, Lu Z. LncRNA BCAR4 promotes migration, invasion, and chemo-resistance by inhibiting miR-644a in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:14. [PMID: 36627684 PMCID: PMC9830721 DOI: 10.1186/s13046-022-02588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Metastasis and drug resistance of breast cancer have become a barrier to treating patients successfully. Long noncoding RNAs (lncRNAs) are known as vital players in cancer development and progression. METHODS: The RT-qPCR were used to detect the gene expression. Colony formation assay, would healing assay, and transwell assay were performed to investigate oncogenic functions of cells. CCK8 assay was used to detect the cell viability. Western blot was applied to detect the protein level. Dual-luciferase reporter assay was used to determine the relationship between molecules. Mouse orthotopic xenograft tumor models were established to evaluate the effects of BCAR4 on tumor growth and metastasis in vivo. RESULTS: LncRNA BCAR4 was significantly increased in breast cancer patients' tissues and plasma and upregulated in breast cancer cell lines. BCAR4 upregulation was correlated with the TNM stages and decreased after surgical removal of breast tumors. Silencing of BCAR4 suppressed breast cancer cell colony formation, migration, invasion, and xenograft tumor growth and promoted chemo-sensitivity. Mechanistically, BCAR4 facilitates breast cancer migration and invasion via the miR-644a-CCR7 axis of the MAPK pathway. BCAR4 promotes ABCB1 expression indirectly by binding to and down-regulating miR-644a to induce chemo-resistance in breast cancer. CONCLUSIONS Our findings provide insights into the oncogenic role of BCAR4 and implicate BCAR4 as a potential diagnostic biomarker and a promising therapeutic agent to suppress metastasis and inhibit chemo-resistance of breast cancer.
Collapse
Affiliation(s)
- Tangwei Wu
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.257143.60000 0004 1772 1285College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Xiaoyi Li
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China
| | - Ge Yan
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.257143.60000 0004 1772 1285School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Zheqiong Tan
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China
| | - Dan Zhao
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.257143.60000 0004 1772 1285School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Shuiyi Liu
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Hui Wang
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China
| | - Yuan Xiang
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China
| | - Weiqun Chen
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Hongda Lu
- grid.33199.310000 0004 0368 7223Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Xinghua Liao
- grid.412787.f0000 0000 9868 173XInstitute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei 430081 People’s Republic of China
| | - Yong Li
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.39382.330000 0001 2160 926XDepartment of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Zhongxin Lu
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.257143.60000 0004 1772 1285College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China ,grid.257143.60000 0004 1772 1285School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China ,grid.33199.310000 0004 0368 7223Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| |
Collapse
|
74
|
Lv E, Sheng J, Yu C, Rao D, Huang W. Long noncoding RNA MAPKAPK5-AS1 promotes metastasis through regulation miR-376b-5p/ECT2 axis in hepatocellular carcinoma. Dig Liver Dis 2022:S1590-8658(22)00822-2. [PMID: 36567178 DOI: 10.1016/j.dld.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/05/2022] [Accepted: 11/30/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is one of the most common diseases threatening human health worldwide. However, the molecular mechanisms of HCC are still unclear. Here, we identified a differentially expressed lncRNA called MAPKAPK5-AS1(abbreviation: MK5-AS1) and elucidated its role and molecular mechanism in the development of HCC. METHODS Real-time PCR (RT-PCR) was used to verify the expression of MK5-AS1 in hepatocarcinoma cell lines and tumor tissues of HCC patients. The biological functions of MK5-AS1 in HCC cells was assessed both in vitro and in vivo assays. The Lncbase, miRDB and TargetScan databases were used to predict the lncRNA-miRNA-mRNA interactions. RNA immunoprecipitation (RIP) and double luciferase reporter gene assays further verified the interactions. RESULTS MK5-AS1 expression was significantly upregulated in HCC tissues and cell lines. Furthermore, high MK5-AS1 expression was positively associated with tumor progression and poor prognosis. In vitro and in vivo experiments confirmed that overexpressed MK5-AS1 promoted migration and invasion of HCC cells. Bioinformatics analysis based on Lncbase, miRDB and TargetScan databases showed MK5-AS1 competitively bound to miR-376b-5p that prevented epithelial cell transforming sequence 2 (ECT2) from miRNA-mediated degradation, thus facilitated HCC metastasis. CONCLUSION Our results established a tumor promotive role of MK5-AS1 in HCC pathogenesis.
Collapse
Affiliation(s)
- Enjun Lv
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Jiaqi Sheng
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Chengpeng Yu
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Dean Rao
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
75
|
Wu K, Liu F, Zhang T, Zhou Z, Yu S, Quan Y, Zhu S. miR-375 suppresses the growth and metastasis of esophageal squamous cell carcinoma by targeting PRDX1. J Gastrointest Oncol 2022; 13:2154-2168. [PMID: 36388649 PMCID: PMC9660039 DOI: 10.21037/jgo-22-929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Esophageal cancer (EC) is one of the most lethal cancers. Esophageal squamous cell carcinoma (ESCC) is the most common histological subtype in Asian people. Diverse microRNAs, such as miR-375, have been confirmed to be involved in the process of tumorigenesis and metastasis. However, the underlying mechanism through which miR-375 acts in ESCC patients remains unknown. METHODS We used The Cancer Genome Atlas (TCGA) database to analyze the association between miR-375 and the survival rate in patients with esophageal squamous cell carcinoma. Real Time quantitative PCR (RT-qPCR) analysis was performed to evaluate the level of miR-375 in EC tissues and cells. A luciferase reporter assay was used to confirm the target gene of miR-375. A colony formation assay as well as flow cytometric and transwell invasion experiments were employed to examine the effects of miR-375 and peroxiredoxin 1 (PRDX1) on ESCC cells. A tumor xenograft mouse model was then used to investigate the role of miR-375 on tumor growth in vivo. Moreover, we performed rescue experiments to evaluate the effect of PRDX1 on ESCC progression. RESULTS miR-375 expression was significantly downregulated in both ESCC clinical tissues and serum, and the reduction of miR-375 was remarkably linked to a poor prognosis in ESCC. Further investigation illustrated that aberrant expression of miR-375 dampened the growth and infiltration of ESCC cells both in vitro and in vivo. Bioinformatics and luciferase reporter analysis verified that the transcript of PRDX1 is a direct target of miR-375 and its expression in ESCC cells was found to be inversely modulated by miR-375. Moreover, the tumor formation experiment in nude mice confirmed that miR-375 can effectively dampen tumor growth in xenograft tumor mice models. Notably, over-expression of PRDX1 effectively counteracted the tumor-suppressing capabilities of miR-375. CONCLUSIONS We demonstrated the antitumor effect of miR-375 on ESCC by targeting PRDX1 both in vitro and in vivo.
Collapse
Affiliation(s)
- Kunpeng Wu
- Department of Thoracic Surgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Feng Liu
- Department of Thoracic Surgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Tingting Zhang
- Department of Gastroenterology, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Zhiliang Zhou
- Department of Thoracic Surgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Shouqiang Yu
- Department of Thoracic Surgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Yonghui Quan
- Department of Thoracic Surgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Shaojin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| |
Collapse
|
76
|
Liu J, Jiang M, Guan J, Wang Y, Yu W, Hu Y, Zhang X, Yang J. LncRNA KCNQ1OT1 enhances the radioresistance of lung squamous cell carcinoma by targeting the miR-491-5p/TPX2-RNF2 axis. J Thorac Dis 2022; 14:4081-4095. [PMID: 36389338 PMCID: PMC9641317 DOI: 10.21037/jtd-22-1261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Lung cancer, especially lung squamous cell carcinoma (LUSC), is one of the most common malignant tumors worldwide. Currently, radiosensitization research is a vital direction for the improvement of LUSC therapy. Long non-coding RNAs (lncRNAs) can be novel biomarkers due to their multiple functions in cancers. However, the function and mechanism of lncRNA KCNQ1OT1 in the radioresistance of LUSC remain to be elucidated. METHODS The clonogenic assay was employed to determine the radioresistance of SK-MES-1R and NCI-H226R cells. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were conducted for the detection of gene expression. Cell proliferation was determined by the methyl thiazolyl tetrazolium (MTT) assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine (EdU) staining, and cell apoptosis was assessed by flow cytometry. The relationships between genes were also evaluated by applying the luciferase reporter and radioimmunoprecipitation (RIP) assays. RESULTS Radioresistant LUSC cells (SK-MES-1R and NCI-H226R) had strong resistance to X-ray irradiation, and lncRNA KCNQ1OT1 was highly expressed in SK-MES-1R and NCI-H226R cells. Moreover, knockdown of lncRNA KCNQ1OT1 prominently suppressed proliferation, attenuated radioresistance, and accelerated the apoptosis of SK-MES-1R and NCI-H226R cells. More importantly, we verified that miR-491-5p was a regulatory target of lncRNA KCNQ1OT1, and Xenopus kinesin-like protein 2 (TPX2) and RING finger protein 2 (RNF2) were the target genes of miR-491-5p. The rescue experiment results also demonstrated that miR-491-5p was involved in the inhibition of cell proliferation and the downregulation of TPX2 and RNF2 expression mediated by lncRNA KCNQ1OT1 knockdown in SK-MES-1R and NCI-H226R cells. CONCLUSIONS LncRNA KCNQ1OT1 was associated with the radioresistance of radioresistant LUSC cells, and the lncRNA KCNQ1OT1/miR-491-5p/TPX2-RNF2 axis might be used as a therapeutic target to enhance the radiosensitivity of radioresistant LUSC cells.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Cardiothoracic Surgery Nursing Platform, First Hospital of Jilin University, Changchun, China
| | - Mi Jiang
- Department of Cardiothoracic Surgery Nursing Platform, First Hospital of Jilin University, Changchun, China
| | - Jinlei Guan
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjuan Yu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanping Hu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Zhang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
77
|
MicroRNA-22-3p ameliorates Alzheimer's disease by targeting SOX9 through the NF-κB signaling pathway in the hippocampus. J Neuroinflammation 2022; 19:180. [PMID: 35821145 PMCID: PMC9277852 DOI: 10.1186/s12974-022-02548-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Studies have suggested that many down-regulated miRNAs identified in the brain tissue or serum of Alzheimer’s disease (AD) patients were involved in the formation of senile plaques and neurofibrillary tangles. Specifically, our previous study revealed that microRNA-22-3p (miR-22-3p) was significantly down-regulated in AD patients. However, the molecular mechanism underlying the down-regulation of miR-22-3p has not been comprehensively investigated. Methods The ameliorating effect of miR-22-3p on apoptosis of the Aβ-treated HT22 cells was detected by TUNEL staining, flow cytometry, and western blotting. The cognition of mice with stereotaxic injection of agomir or antagomir of miR-22-3p was assessed by Morris water maze test. Pathological changes in the mouse hippocampus were analyzed using hematoxylin and eosin (HE) staining, Nissl staining, and immunohistochemistry. Proteomics analysis was performed to identify the targets of miR-22-3p, which were further validated using dual-luciferase reporter analysis and western blotting analysis. Results The miR-22-3p played an important role in ameliorating apoptosis in the Aβ-treated HT22 cells. Increased levels of miR-22-3p in the mouse hippocampus improved the cognition in mice. Although the miR-22-3p did not cause the decrease of neuronal loss in the hippocampus, it reduced the Aβ deposition. Proteomics analysis revealed Sox9 protein as the target of miR-22-3p, which was verified by the luciferase reporter experiments. Conclusion Our study showed that miR-22-3p could improve apoptosis and reduce Aβ deposition by acting on Sox9 through the NF-κB signaling pathway to improve the cognition in AD mice. We concluded that miR-22-3p ameliorated AD by targeting Sox9 through the NF-κB signaling pathway in the hippocampus. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02548-1.
Collapse
|
78
|
A Novel lncRNA FPASL regulates fibroblasts proliferation via PI3K/AKT and MAPK signaling pathways in Hypertrophic scar. Acta Biochim Biophys Sin (Shanghai) 2022; 55:274-284. [PMID: 36082934 PMCID: PMC10157618 DOI: 10.3724/abbs.2022122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hypertrophic scar is a problem for numerous patients, especially after burns, and is characterized by increased fibroblast proliferation and collagen deposition. Increasing evidence demonstrates that lncRNAs contribute to the development and progression of various diseases. However, the function of lncRNAs in hypertrophic scar formation remains poorly characterized. In this study, a novel fibroblast proliferation-associated lncRNA, named lncRNA FPASL (MSTRG.389905.1), which is mainly localized in the cytoplasm, is found to be downregulated in hypertrophic scar, as detected by lncRNA microarray and qRT-PCR. The full-length FPASL is characterized and further investigation confirms that it has no protein-coding potential. FPASL knockdown in fibroblasts triggers fibroblast proliferation, whereas overexpression of FPASL directly attenuates the proliferation of fibroblasts. Furthermore, target genes of the differentially expressed lncRNAs in hypertrophic scars and the matched adjacent normal tissues are enriched in fibroblast proliferation signaling pathways, including the PI3K/AKT and MAPK signaling pathways, as determined by GO annotation and KEGG enrichment analysis. We also demonstrate that knockdown of FPASL activates the PI3K/AKT and MAPK signaling pathways, and specific inhibitors of the PI3K/AKT and MAPK signaling pathways can reverse the proliferation of fibroblasts promoted by FPASL knockdown. Our findings contribute to a better understanding of the role of lncRNAs in hypertrophic scar and suggest that FPASL may act as a potential novel therapeutic target for hypertrophic scar.
Collapse
|
79
|
Yu H, Wang C, Ke S, Bai M, Xu Y, Lu S, Feng Z, Qian B, Xu Y, Zhou M, Li Z, Yin B, Li X, Hua Y, Zhou Y, Pan S, Fu Y, Ma Y. Identification of CFHR4 as a Potential Prognosis Biomarker Associated With lmmune Infiltrates in Hepatocellular Carcinoma. Front Immunol 2022; 13:892750. [PMID: 35812416 PMCID: PMC9257081 DOI: 10.3389/fimmu.2022.892750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Background Complement factor H-related 4 (CFHR4) is a protein-coding gene that plays an essential role in multiple diseases. However, the prognostic value of CFHR4 in hepatocellular carcinoma (HCC) is unknown. Methods Using multiple databases, we investigated CFHR4 expression levels in HCC and multiple cancers. The relationship between CFHR4 expression levels and clinicopathological variables was further analyzed. Various potential biological functions and regulatory pathways of CFHR4 in HCC were identified by performing a Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA). Single-sample gene set enrichment analysis (ssGSEA) was performed to confirm the correlation between CFHR4 expression and immune cell infiltration. The correlations between CFHR4 expression levels in HCC and N6-methyladenosine (m6A) modifications and the competing endogenous RNA (ceRNA) regulatory networks were confirmed in TCGA cohort. Results CFHR4 expression levels were significantly decreased in HCC tissues. Low CFHR4 expression in HCC tissues was significantly correlated with the patients’ sex, race, age, TNM stage, pathological stage, tumor status, residual tumor, histologic grade and alpha fetal protein (AFP) level. GO and KEGG analyses revealed that differentially expressed genes related to CFHR4 may be involved in the synaptic membrane, transmembrane transporter complex, gated channel activity, chemical carcinogenesis, retinol metabolism, calcium signaling pathway, PPAR signaling pathway, insulin and gastric acid secretion. GSEA revealed that the FCGR-activated reaction, PLK1 pathway, ATR pathway, MCM pathway, cascade reactions of PI3K and FGFR1, reactant-mediated MAPK activation and FOXM1 pathway were significantly enriched in HCC with low CFHR4 expression. Moreover, CFHR4 expression was inversely correlated the levels of infiltrating Th2 cells, NK CD56bright cells and Tfh cells. In contrast, we observed positive correlations with the levels of infiltrating DCs, neutrophils, Th17 cells and mast cells. CFHR4 expression showed a strong correlation with various immunomarker groups in HCC. In addition, high CFHR4 expression significantly prolonged the overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI). We observed a substantial correlation between the expression of CFHR4 and multiple N6-methyladenosine genes in HCC and constructed potential CFHR4-related ceRNA regulatory networks. Conclusions CFHR4 might be a potential therapeutic target for improving the HCC prognosis and is closely related to immune cell infiltration.
Collapse
Affiliation(s)
- Hongjun Yu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanjia Ke
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Miaoyu Bai
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhigang Feng
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The First Department of General Surgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Baolin Qian
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Xu
- Department of Pediatrics, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Menghua Zhou
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihao Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yao Fu, ; Yong Ma,
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yao Fu, ; Yong Ma,
| |
Collapse
|
80
|
Chen X, Guo J, Zhou F, Ren W, Pu J, Mutti L, Niu X, Jiang X. Over-Expression of Long Non-Coding RNA-AC099850.3 Correlates With Tumor Progression and Poor Prognosis in Lung Adenocarcinoma. Front Oncol 2022; 12:895708. [PMID: 35646670 PMCID: PMC9132095 DOI: 10.3389/fonc.2022.895708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. Long noncoding RNAs (lncRNAs) have been implicated in the initiation and progression of various cancers. LncRNA-AC099850.3 is a novel lncRNA that is abnormally expressed in diverse cancer types including LUAD. However, the clinical significance, prognostic value, diagnostic value, immune role, and potential biological function of AC099850.3 LUAD remain elusive. In this study, we found that AC099850.3 was highly expressed in LUAD and associated with an advanced tumor stage, poor prognosis, and immune infiltration. Receiver operating curve analysis revealed the significant diagnostic ability of AC099850.3 (AUC=0.888). Functionally, the knockdown of AC099850.3 restrained LUAD cell proliferation and migration in vitro. Finally, we constructed a competitive endogenous RNAs (ceRNA) network that included hsa-miR-101-3p and 4 mRNAs (ESPL1, AURKB, BUB3, and FAM83D) specific to AC099850.3 in LUAD. Kaplan-Meier survival analysis showed that a lower expression of miR-101-3p and a higher expression of ESPL1, AURKB, BUB3, and FAM83D, were associated with adverse clinical outcomes in patients with LUAD. This finding provided a comprehensive view of the AC099850.3-mediated ceRNA network in LUAD, thereby highlighting its potential role in the diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jishu Guo
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Fan Zhou
- Hematology and Rheumatology Department, The Pu'er People's Hospital, Pu'er, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Xiaoqun Niu
- Department of Respiratory Medicine, Second Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
81
|
Ling C, Zhou X, Gao Y, Sui X. Identification of Immune Subtypes of Esophageal Adenocarcinoma to Predict Prognosis and Immunotherapy Response. Pharmaceuticals (Basel) 2022; 15:605. [PMID: 35631431 PMCID: PMC9144862 DOI: 10.3390/ph15050605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
A low response rate limits the application of immune checkpoint inhibitors (ICIs) in the treatment of esophageal adenocarcinoma (EAC), which requires the precise characterization of heterogeneous tumor microenvironments. This study aimed to identify the molecular features and tumor microenvironment compositions of EAC to facilitate patient stratification and provide novel strategies to improve clinical outcomes. Here, we performed consensus molecular subtyping with nonnegative matrix factorization (NMF) using EAC data from the Cancer Genome Atlas (TCGA) and identified two distinct subtypes with significant prognostic differences and differences in tumor microenvironments. The findings were further validated in independent EAC cohorts and potential response to ICI therapy was estimated using Tumor Immune Dysfunction and Exclusion (TIDE) and SubMap methods. Our findings suggest that EAC patients of subtype 2 with low levels of cancer-associated fibroblasts, tumor associated macrophages (TAMs), and MDSCs in the tumor microenvironment may benefit from PD-1 blockade therapy, while patients of subtype 1 are more responsive to chemotherapy or combination therapy. These findings might improve our understanding of immunotherapy efficacy and be useful in the development of new strategies to better guide immunotherapy and targeted therapy in the treatment of EAC.
Collapse
Affiliation(s)
| | | | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (C.L.); (X.Z.)
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (C.L.); (X.Z.)
| |
Collapse
|
82
|
Liu M, Xu Q, Zhao J, Guo Y, Zhang C, Chao X, Cheng M, Schinckel AP, Zhou B. Comprehensive Transcriptome Analysis of Follicles from Two Stages of the Estrus Cycle of Two Breeds Reveals the Roles of Long Intergenic Non-Coding RNAs in Gilts. BIOLOGY 2022; 11:biology11050716. [PMID: 35625443 PMCID: PMC9138455 DOI: 10.3390/biology11050716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary This study provides new perspectives about the roles of lincRNAs in the estrus expression of gilts, which is correlated with ovarian steroid hormone and follicular development. Follicular tissues from two stages of the estrus cycle of Large White and Mi gilts were used for RNA-seq. Some genes and lincRNAs related to estrus expression in pigs were discovered. PPI and ceRNA networks related to the estrus expression were constructed. These results suggest that the estrus expression may be affected by lincRNAs and their target genes. Abstract Visible and long-lasting estrus expression of gilts and sows effectively sends a mating signal. To reveal the roles of Long Intergenic Non-coding RNAs (lincRNAs) in estrus expression, RNA-seq was used to investigate the lincRNAs expression of follicular tissues from Large White gilts at diestrus (LD) and estrus (LE), and Chinese Mi gilts at diestrus (MD) and estrus (ME). Seventy-three differentially expressed lincRNAs (DELs) were found in all comparisons (LE vs. ME, LD vs. LE, and MD vs. ME comparisons). Eleven lincRNAs were differentially expressed in both LD vs. LE and MD vs. ME comparisons. Fifteen DELs were mapped onto the pig corpus luteum number Quantitative Trait Loci (QTL) fragments. A protein–protein interaction (PPI) network that involved estrus expression using 20 DEGs was then constructed. Interestingly, three predicted target DEGs (PTGs) (CYP19A1 of MSTRG.10910, CDK1 of MSTRG.10910 and MSTRG.23984, SCARB1 of MSTRG.1559) were observed in the PPI network. A competitive endogenous RNA (ceRNA) network including three lincRNAs, five miRNAs, and five genes was constructed. Our study provides new insight into the lincRNAs associated with estrus expression and follicular development in gilts.
Collapse
Affiliation(s)
- Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Meng Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
- Correspondence:
| |
Collapse
|